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Over the last decade, a new paradigm for cancer therapies has emerged which

leverages the immune system to act against the tumor. The novel mechanism of

action of these immunotherapies has also introduced new challenges to drug

development. Biomarkers play a key role in several areas of early clinical

development of immunotherapies including the demonstration of mechanism

of action, dose finding and dose optimization, mitigation and prevention of

adverse reactions, and patient enrichment and indication prioritization. We

discuss statistical principles and methods for establishing the prognostic,

predictive aspect of a (set of) biomarker and for linking the change in

biomarkers to clinical efficacy in the context of early development studies. The

methods discussed are meant to avoid bias and produce robust and reproducible

conclusions. This review is targeted to drug developers and data scientists

interested in the strategic usage and analysis of biomarkers in the context

of immunotherapies.
KEYWORDS

biomarkers, statistical methods, validation, immunotherapy, prognostic model,
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1 Introduction

Targeted therapies and cancer immuno-therapies (CIT), including immune checkpoint

inhibitors (CPI) have revolutionized the treatment paradigm for a number of cancers,

leading to improvements in progression-free and overall survival, and more durable

responses [reviewed in: Shahid et al. (1); Esfahani et al. (2); Robert (3); Murciano-Goroff

et al. (4)]. Despite these successes, many patients do not or only transiently benefit from

such treatments and additional efforts are required to truly unleash the full potential of

precision and personalized medicine. Biomarkers play an integral role in this process and
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can guide and impact clinical research and development and,

ultimately, actual patient care [reviewed in: (5–8)].

With emerging and evolving technologies, our understanding of

cancer biology and tumor immunology is growing, which also is

helping the discovery and development of novel biomarkers.

Biomarkers may already play an important role by providing

answers to key questions in the following areas of early clinical

development of immunotherapies (please also refer to Table 1 in the

supplementary section for examples): 1) Demonstration of

mechanism of action (MoA) by analyzing the pharmacodynamic

effect. For CIT, characterization of drug effects and efficacy may

differ from classical therapies focused on direct tumor cell killing

and tumor shrinkage. 2) Dose finding and dose optimization. 3)

Mitigation and prevention of adverse reaction to the drug. In

particular, new challenges arise from the need to improve

tolerability of immunotherapies, and to predict and mitigate

adverse immune reactions. 4) Patient enrichment and indication

prioritization, typically based on baseline characteristics of the

respective tumor such as target expression. Considerations

regarding the variety of immune targets leveraged by the new

immune therapies, as well as emergence of resistance mechanisms

are key to the success of these therapies.

A number of research studies have highlighted challenges and a

lack of reproducibility in several areas of biomarker research (10,

11). These challenges are accentuated in the context of

immunotherapies due to the complexity of the immune system

and the variety of biomarkers studied. A comprehensive review of

the statistical principles for biomarkers in CIT is lacking. In this

review, we describe these statistical principles focusing to the

application of biomarkers in early clinical development studies of

CIT. We believe that adherence to these principles improves the
Frontiers in Immunology 02
quality of biomarker studies and the generalizability and robustness

of their findings

The remainder of this manuscript is structured as follows: In

Section 2, we review biomarker definitions, examples, and

technologies, and typical clinical endpoints. We also connect the

previously mentioned four areas of early CIT drug development

listed above with the statistical analyses reviewed in the next section.

Section 3 describes appropriate statistical methods for biomarkers,

starting with the choice of data transformation and probabilistic

models (Section 3.1), and relevant biomarker considerations for

dose selection and optimization (Section 3.2). Sections 3.3 and 3.4

discuss the assessment of prognostic and predictive characteristics

of baseline biomarkers. Section 3.5 covers analysis methods for on-

treatment biomarkers including landmarking and joint modeling.

Challenges related to high-dimensional biomarker analyses are

described in Section 3.6. Finally, Section 3.7 provides examples of

the use of PK/PD models in relation to biomarkers. We conclude

the manuscript with a brief discussion.
2 Biomarker definitions, examples and
clinical endpoints

The complexity of the human immune system is reflected in

the plethora of biomarkers that have been developed to capture the

activation of the immune system against cancer cells, and the

interaction between immunotherapies and the immune system.

Supplementary Table 1 in the supplemental material provides

examples of biomarkers which have been proposed in the

scientific literature. This diversity strengthens the need for a

rigorous and robust analysis of the effect of biomarkers.

Biomarkers may serve four different purposes as summarized in

Table 1 and further described below (9, 12).

First, prognostic baseline biomarkers differentiate patients with

regards to the outcome of the disease independently of the

treatment. A typical example of a prognostic biomarker is the

total CD8 count in the tumor. Patients with a high number of

CD8+ cells, which identifies the T-cell, have immune response

against the tumor and better prognosis (13).

Second, predictive biomarkers at baseline are markers that

differentiate patients that benefit most from a treatment. Hence,

predictive biomarkers are specific to a (class of) treatments and,

sometimes, specific to a tumor type. PD-L1 expression is a

predictive biomarker for CPI for some tumor types and disease

stages though it has limitations (14).

In clinical trials, prognostic and predictive biomarkers are

utilized for the enrichment of the study population to obtain a

more homogeneous population. For example, prognostic

biomarkers may be used to select only subjects with a poor

prognosis who are in most urgent need of better treatment

options into the study. Moreover, the power of a trial with a

time-to-event endpoint (such as progression- free survival) to

detect a targeted hazard ratio depends on the observed number of

events and not on the number of recruited subjects (15, chapter 15).

In a population with a worse prognosis, these events are observed

more quickly allowing for trials with a lower sample size and/or a
TABLE 1 Biomarker definitions.

Biomarker A factor that is objectively measured and evaluated
as an indicator of normal biological processes,
pathogenic processes, or pharmacological responses
to a therapeutic intervention (9)

Prognostic biomarker
(measured at baseline)

A biomarker used to identify likelihood of a clinical
event, disease recurrence or progression in patients
who have the disease or medical condition of
interest. Prognostic biomarkers are often identified
from observational data and are regularly used to
identify patients more likely to have a
particular outcome.

Predictive biomarker
(measured at baseline)

A biomarker used to identify individuals who are
more likely than similar individuals without the
biomarker to experience a favorable or unfavorable
effect from exposure to a medical product or an
environmental agent.

Pharmacodynamic
biomarker (measured at
baseline and
on-treatment)

A biomarker that indicates biologic activity of a
drug. These biomarkers are usually linked to the
MoA but can also be independent of the MoA.
These biomarkers may also be related to the clinical
activity of the drug.

Safety biomarker
(measured at baseline
and on-treatment)

A biomarker related to the likelihood, presence, or
extent of toxicity as an adverse effect
MoA = Mechanism of Action.
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shorter trial duration. Predictive biomarkers are more specifically

utilized to investigate restrictions on the patient population (in the

drug label). In a first phase of development, early studies may enroll

all-comers. The emerging understanding of cancer biology and the

mechanism of action of the drug, supported by data analysis of

these early studies may allow definition of a biomarker-positive

subgroup with an enhanced treatment effect. In a second phase of

development, subsequent trials may restrict the population to

patients who benefit most from the drug, based on the identified

biomarker or continue with two primary populations: all-comers

and the biomarker-positive populations (see section 3.4 for an

example), in both cases the biomarker status is determined by a

diagnostic test. Moreover, prognostic and predictive biomarkers are

also used in randomized clinical trials as stratification factors (to

ensure balance between groups) and for covariate adjustment

purposes (to increase power). Finally, adjustment for such

biomarkers is important to render non-randomized groups more

comparable (e.g. through propensity score methods, see Austin (16)

and Brookhart et al. (17), or regression adjustment).

Third, on-study pharmacodynamic biomarkers capture the

effect of the drug after its administration. The goal of these

biomarkers is to demonstrate that the drug has the anticipated

biological effect (i.e. establishes a proof of mechanism (PoM)).

These biomarkers are usually linked to the MoA (e.g. the

activation of natural killer cells, CD8 T cells during the treatment

with Il15 (18)), but can be independent of it. A goal of analyses

involving pharmacodynamic biomarkers is to relate the measured

biological effect indicated by the biomarker itself to the observed

clinical efficacy. In the optimal case, these biomarkers help in

understanding the dose-response relationship and may be used as

surrogates for clinical efficacy endpoints (formal surrogacy needs to

be established with extensive subject level-data and specific

methods (see Burzykowski et al. (19)).

Fourth, safety biomarkers are on-study biomarkers intended to

measure the likelihood, presence, or extent of toxicity (e.g. IL6

serum levels in the context of cytokine release syndrome (CRS), see

Pabst et al. (20) and Section 3.2). Detection of or change in a

biomarker can allow dose modification or treatment interruption

before toxicity becomes severe. These markers may also serve to

characterize the dose-safety relationship.

Along with these biomarkers, the efficacy benefits that patients

derive from a drug is measured through classical clinical endpoints.

In early phase trials and for classical cytotoxic drugs for solid tumors,

the benefit is typically measured in terms of tumor shrinkage induced

by the drug. The tumor shrinkage has been classified into a response

criteria by Therasse et al. (21). Even though long term benefit,

typically measured by the time to death (or overall survival,

abbreviated as OS), is not always associated to responses (RECIST

criteria defined by Therasse et al. (21)), the goal of drugs other than

immunotherapies remains to shrink the tumors. For drugs with an

indirect effect on the tumors, like immunotherapies, tumor shrinkage

may no longer be representative of the MoA and of long term clinical

benefit (22). Therefore, endpoints like progression-free survival

(PFS), which can capture the absence or a slow regrowth, and

especially OS are more relevant to represent the benefit of

immunotherapies. Also tumor growth kinetic models, based on the
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total tumor size, can provide additional insights in the clinical benefit

of immunotherapies (23). The analysis of biomarkers and the link to

these endpoints introduce additional complexities (reviewed in

Section 3.5).

To illustrate the structure of the manuscript, Table 2 connects

the biomarker objectives described above with the statistical models

and consideration that we cover below.
3 Statistical methodologies

This section provides an overview of relevant statistical

considerations and models. Many of the described methods and

statistical principles have not been developed specifically for CIT

biomarkers but we believe that adherence to good statistical practice

is particularly important in this context because of the complexity of

questions related to the immune system and the variety of new

biomarkers analyzed. We would also like to stress that prior to any

statistical analysis, a statistical analysis plan should be written which

describes the precise scientific questions and all planned analyses.

While exploratory analysis also play an important role, they should

still be guided by a predefined analysis strategy to avoid

data dredging.
3.1 Statistical modeling of biomarker data

An important step prior to any statistical analysis is to have a

thorough understanding of how the biomarker data were obtained.

Additional data normalization might be required depending on the

steps already performed during the data acquisition process. The

awareness of these details ultimately guides the various statistical

modeling considerations, e.g. the choice of distribution, the need for
TABLE 2 Structure of the manuscript: Clinical Questions are depicted
on the left.

Biomarker
objectives

Biomarker
types

Statistical considerations
and models

MoA/PoM

Longitudinal
biomarkers

Data modeling &
transformation
(Section 3.1)

PK-PD models
(Section 3.7)
PD biomarker
models (Sections
3.5, low
dimensional/3.6,
high dimensional)

Dose
optimization

Models for dose
finding (Section 3.2)

Characterization
of adverse events

PD biomarker
models (Sections
3.5/3.6)

Patient
enrichment

Baseline
biomarkers

Prognostic (Section
3.3) and predictive
(Section
3.4) biomarkers
Type of biomarker and statistical considerations are given with their respective Sections. MoA
stands for mechanism of action, PoM for proof of mechanism, PK for pharmaco-kinetic, PD
for pharmaco-dymanic.
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covariate adjustment, or the treatment of missing values. Let’s

illustrate this with an example. In the field of immuno-oncology a

technology called flow cytometry plays a key role in measuring

immune cell markers. An important step in the data acquisition is

called “manual gating” which is typically employed to classify single

cells into discrete cell types based on emitted fluorescent signals. As

a consequence, the readout for flow cytometry data are proportions,

i.e. number of cells relative to some reference cell population. The

statistical challenge is then to choose a model with adequate

distributional assumptions. For example linear regression relating

the dose of a drug with the change in the proportion of activated T

cells (adjusted by baseline) assumes that the residual errors are

normally, independently and identically distributed with mean zero.

Oftentimes biomarker data do not conform with these standard

statistical assumptions (e.g. flow cytometry data). Statistics offers

three possible solutions to deal with this challenge: the first

approach is to transform the original values using a deterministic

function such that the standard statistical assumptions are

approximately met. The logarithmic and square root functions

are popular examples of data transformations. The Box-Cox

transformation family (24) is often used to approach data

transformation more systematically using statistical estimation

techniques. A transformation particularly useful in the example

outlined above is the empirical logit transformation which maps

proportions monotonically to the whole real line while keeping the

interpretation of regression coefficients simple (25). The second

approach extends linear regression by allowing the linear model to

be related to the response variable via a link function and by

allowing the magnitude of the variance of each measurement to

be a function of its predicted value (26). In the case of the flow

cytometry example, a logit-link function and binomial mean-

variance relationship is well suited; overdispersion is dealt with

either by including a random effect to account for the between

sample variation or by adding a dispersion parameter to the mean-

variance relationship (the latter approach is referred to as the quasi-

binomial approach). The third approach consists in avoiding any

distributional assumption and resort to non-parametric methods.

In our view, in the context of exploratory biomarker analysis, the

data transformation approach has two key advantages: firstly,

statistical inference based on standard linear regression is robust

and goes hand-in-hand with familiar visualizations (e.g. boxplot

and scatter plot), which in-turn facilitates communication of results

to non-statisticians; secondly, transformed data can be readily used

as input to a variety of advanced statistical methods and data

mining tools.

Two additional complications of biomarker analyses are: First,

measurements below the assay’s detection limit may occur. Such

measurements should not be excluded from the analysis. If their

frequency is low, ad-hoc approaches such as imputing them with, say,

half of the detection limit may be sufficient but if they are frequent,

more sophisticated methods such as treating them as left-censored

may be preferable (27). Second, the assay may be impacted by

measurement errors. In this case, models, such as those described

in the next sections, need to account for the additional variability

potentially bias induced by the measurement error. To elicit the

components (e.g. distribution assumptions) needed for a proper
Frontiers in Immunology 04
handling of measurement error, one needs to have data, either

within the dataset considered in the analysis (internal), or outside

(external, e.g. a assay development dataset or preclinical experiments)

in which the true value can be linked to the assay. Several models can

then be implemented (see Carroll et al. (28) for a general reference).
3.2 Dose finding

The introduction of new mechanisms of action has led to new

safety risks and challenges in the determination of the optimal dose

to be administered. In this context, biomarkers are used to provide a

more granular observation of the drug’s anti-tumor activity or

safety and allow the determination of the dose based on a more

precise benefit risk assessment (compared to clinical endpoints). In

this section, we highlight some challenges of dose finding for

immunotherapies and provide some options to optimize dose

finding using biomarkers.

A typical issue with some classes of immunotherapies (T-cell

engagers) is the cytokine release syndrome (CRS), a trigger of a

systemic inflammatory response characterized by a large amount of

cytokines being released. CRS limits the exploration of high and

effective doses. Amitigation strategy was found by which one or more

low priming doses (also called step-up) attenuate the cytokine release

upon repeated doses and allow the subsequent administration of a

high and effective target dose (Bartlett et al. (29)). The dose finding

exercise then requires the determination of the priming doses and the

target dose, as opposed to, for classical drugs, the determination of the

tolerable target dose. Dose escalation designs have been proposed in

this context by Xu et al. (30); Gerard et al. (31) and more recently by

Dejardin et al. (32).

Other dose finding challenges are summarized by Wages et al.

(33). Challenges include late onset toxicities, i.e. toxicities occurring

beyond the typical observation period (set to 21-28 days after

dosing). In the presence of late toxicities, one could prolong the

observation period for each patient. However, this causes the dose

escalation trial to be significantly prolonged in some cases. Wages

et al. (33) reports dose escalation designs to allow partial

observation of patients in the dose escalation decisions. Another

challenge is the fact that higher doses may not be the best in terms

of efficacy. Indeed, some drugs may have an optimal biological

activity at intermediate dose ranges (“bell-shaped-response”) with

suboptimal activity at higher doses, for which however toxicity may

be observed. Dose escalation designs must therefore be constructed

such that both safety and efficacy are optimized. Wages et al. (33)

reports options to use both safety and efficacy in the determination

of the next dose in a dose escalation design. These approaches work

conditionally on the fact that the efficacy endpoint is available at the

time of the dose escalation decision.

When optimizing on efficacy, a key question is the identification

of the most appropriate function that describes dose-response

relationship. A structured procedure to study the relationship

with dose has been proposed by Bretz et al. (34); Nie et al. (35).

In this procedure, a set of coefficients from candidate models are

calculated, allowing different dose response shapes. Then, a multiple

test procedure is implemented to select the dose response signals,
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followed by a model selection step. This procedure allows flexible

modeling of the dose response signal, preserving the robustness to

misspecification that are associated with multiple testing. A simpler

approach consists in using a general model that can accommodate

many different dose-response shapes. The EMACS model (see Seber

and Wild (36) Section 7) is an example of such models.
3.3 Prognostic baseline biomarkers and
models for clinical endpoints

The prognostic association of one or multiple baseline

biomarkers with clinical outcomes is typically assessed using

regression models, such as the logistic model for binary outcomes

(e.g. the overall response rate) or the Cox proportional hazards

model for time-to-event outcomes (e.g. PFS or OS). As described in

Section 3.1 it is important that adequate transformations are applied

to biomarkers before including them as covariates. If there’s

uncertainty regarding the shape of the association between a

biomarker and the outcome, spline models can easily be

incorporated into regression models (Harrell (37)). In order to

reduce the complexity of a multivariable regression model, naive

step-wise variable selection methods are frequently used but have a

number of issues including that they yield over-optimistic

regression coefficients and p-values. More modern selection

procedures such as the lasso, boosting, or Bayesian model

averaging are recommended (Harrell (37)). To aid clinical

decision making, medical practitioners are used to discretizing

continuous biomarker into different risk categories by applying

cut-points. A number of statistical pitfalls are associated with this

practice. First, discretization introduces a substantial loss of

information. Second, data-driven cut-point selection algorithms

may lead to overfitting and an exaggerated association between

the dichotomized biomarker and the clinical outcome. For a review

of these pitfalls and guidance on the selection of cutpoints, we refer

to Polley and Dignam (38) and (39, Chapter 16).

A dataset of sufficient size and quality is essential in order to

develop a robust prognostic model (Riley et al. (40)). Sample sizes of

early development studies are typically insufficient for this purpose

and data from large cohort studies or confirmatory trials are

required. Moreover, for most cancer types, a plethora of

published prognostic models exist already. As an example, a

systematic review of prognostic models in breast cancer identified

58 published models but only a few of them had been validated

widely in different settings and, frequently, their performance was

suboptimal in independent populations (Phung et al. (41)). For this

reason, it may be scientifically more relevant to externally validate

or update existing prognostic models in new contexts or to assess

whether the addition of a new biomarker improves an already

existing prognostic model (Steyerberg (39)).

We refer to Harrell (37); Steyerberg (39), and Collins et al. (42)

for comprehensive resources to developing and reporting

prognostic models and only highlight a few points relevant to

performance assessment and validation below. First, it is

important to characterize the performance and clinical utility of a
Frontiers in Immunology 05
prognostic model. Performance measures should report the overall

performance of a model, its discrimination, i.e. its ability to

discriminate subjects with an event from those without an event,

as well as its calibration, i.e. the agreement between observed

outcomes and predictions. Frequently reported measures for these

three performance aspects are the Brier score, the concordance

probability or c-index, and calibration plots. For a detailed review of

performance measures, we refer to (39, Chapter 15).

A prognostic model is internally valid (or “reproducible”) if its

reported performance adequately reflects the actual performance of

the model that would be observed in an independent random data

sample from the same source population as the dataset used for

model development. One reason why a prognostic model may not

be reproducible is that performance is overestimated due to

overfitting. A common reason for this is that model development

and performance assessment are performed on the same dataset. If

one builds a complex prognostic model and then evaluates its

performance in the same dataset, then one may obtain a very

good accuracy on that dataset, but that is not a fair assessment of the

future performance of the model. Rather, the appropriate question

is whether this prognostic model will provide a sufficient level of

accuracy to be of use when applied to a truly independent test set. In

internal validation studies where only one dataset is used for model

development and validation, there are two main options to mimic

performance in an independent dataset. The first option is to

reserve a fixed portion of the dataset (e.g. 20%) for validation.

That is, model development is based on training data, i.e. the data

not included in the validation dataset, and a hold-out validation

dataset is strictly shielded from access during model development.

Once model development is completed, its performance is evaluated

in the independent hold-out dataset. Since this approach discards a

part of the dataset for training, it has some drawbacks (see Section

17.2.2.2 in Steyerberg (39)), one of which is the stability of the

findings. Therefore, a second option is to implement internal

validation using re-sampling approaches such as cross-validation

or bootstrapping. These approaches include repeatedly splitting the

data into a training and a validation data set, developing the model

including parameter estimation in the training data set, and then

assessing performance in the validation dataset. In general, cross-

validation and bootstrapping are more efficient approaches to assess

average model performance than a single random data split (see

Steyerberg (43) and the discussion about prediction stability and

error in boostrap sample in Riley and Collins (44).

The above steps outline the discovery and development stages

of prognostic markers which includes the identification of

prognostic biomarkers or the building of a prognostic model, and

their performance assessment in internal validation studies. The full

development of such biomarkers or models for clinical use is

typically split into three phases (Moons et al. (45); Ou et al. (46)):

discovery or development studies, external validation studies, and

clinical impact studies. Analytical validation of the biomarker is

another important phase that is outside of the scope for this article

(Ou et al. (46); Kraus (47)). The purpose of external validation

studies is to confirm the performance of the biomarker/prognostic

model in a completely independent dataset and to assess its
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generalizability to a wider population. Finally, impact studies assess

whether the use of the biomarkers/prognostic model by practicing

doctors actually improves clinical outcomes. Ideally, impact studies

are randomized controlled trials which compare biomarker-guided

treatment with the standard of care.
3.4 Predictive baseline biomarkers for
clinical endpoints

The exploratory assessment whether a baseline biomarker is

predictive, i.e. whether it impacts the magnitude or direction of a

treatment effect, typically requires data from randomized controlled

clinical trials. Predictive biomarker effects can be modeled by

including a treatment × biomarker interaction term in the

regression model. Of note, logistic and Cox regression model the

relative reductions in the odds or rate of an event. If a biomarker is

prognostic, then the absolute risk reduction may vary across

biomarker levels even if the relative risk reduction is the same.

Standard analyses to assess whether a biomarker is predictive are

statistical tests for the treatment × biomarker interaction term as

well as forest plots which visualize treatment effects in subgroups

defined by the biomarker (Alosh et al. (48)). For a tutorial on data-

driven identification of predictive subgroups we refer to Lipkovich

et al. (49).

Limitations of exploring several biomarkers and clinical

variables for predictive effects are well-recognized: an increased

risk of false-positive findings due to multiplicity combined with an

increased risk of false-negative findings and highly variable

treatment effect estimates in subgroups due to the limited sample

size and power in subgroups. Therefore, findings from such

analyses should only be considered credible if additional criteria

are fulfilled, e.g. that the predictive effect of the biomarker was

correctly pre-specified (including the direction of the effect), that

the predictive effect is supported by prior evidence, that only a low

number of potential predictive markers was explored (ideally 3 or

fewer), that chance cannot explain the finding, and that arbitrary

cut points were avoided (Schandelmaier et al. (50)). Otherwise, the

findings should be considered exploratory and hypothesis-

generating only.

For the confirmatory assessment of a predictive biomarker and

its inclusion in a drug label (e.g. the restriction of a label to a

biomarker-positive subgroup or a claim of enhanced efficacy in this

subgroup), a randomized clinical trial with type I error control

across the all-comers population and the biomarker-positive

subgroups is typically required. As an example, the IMpassion130

trial, a randomized phase 3 trial of the CPI atezolizumab in

advanced triple-negative breast cancer, hierarchically tested the

clinical endpoints first in the all-comers (intention-to-treat)

population and then in the PD-L1–positive subgroup (Schmid

et al. (51)). As another example, the IMpassion031 trial of the

same molecule in early-stage triple-negative breast cancer was an

adaptive enrichment trial with two primary populations (PD-L1

positives and all-comers) allowing for population section at an

interim analysis (Nguyen Duc et al. (52); Mittendorf et al. (53)).
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3.5 Models for associations between on-
treatment biomarkers and
clinical endpoints

In this section, we discuss models which analyze the impact of

one or a low number of biomarkers measured on-treatment, i.e.

pharmacodynamic biomarkers, on clinical outcome. A key aspect of

on-study biomarkers is the timing at which measures are taken. For

some biomarkers, repeated measurements are available (e.g.

parameters taken in the blood) while tumor parameters

(requiring invasive techniques or tumor imaging data, for which

the amount of radiation received by the patient is a limiting factor)

are usually taken only once after treatment start. The timing aspects

need to be explicitly accounted for in the analyses, which, in our

experience, is often not done.

Before discussing appropriate analysis methods for on-

treatment biomarkers, we list five additional challenges which are

important to consider while planning the analyses and writing a

statistical analysis plan. First, it is critical to avoid immortal-time

bias in the analysis (Mantel and Byar (54)). This occurs if a clinical

endpoint that is timed from study enrolment is compared across

groups defined by a classifying event occurring during follow-up

e.g. by an on-treatment biomarker. A classical example of this bias

in oncology is the naive comparison of overall survival by tumor

response categories (Anderson et al. (55)). More generally, any

analysis which treats an on-treatment biomarker as if it was a

baseline biomarker or which reverses time, i.e. tries to explain the

past with the future, should be avoided.

Second, when studying the relationship between the risk of a

clinical event (response or progression) and the longitudinal

evolution of the biomarker, models need to capture the impact of

changes in the biomarker on the risk of the event. This implies that

the biomarker and the clinical event need to be modeled jointly

across time. An example of this type of analysis is the construction

of a dynamic prognostic score for the risk of recurrence of prostate

cancer depending on longitudinal assessments of a prostate-specific

antigen (PSA) biomarker (56).

Third, considerations regarding which aspects of the

longitudinal biomarker dynamics affect the clinical endpoint are

important. In the previous example, the current value of the PSA

marker may directly affect the rate of the clinical event. In other

settings, there might be a lag-effect, i.e. the risk of event at time t is

influenced by the biomarker at time t − ℓ for a fixed or variable lag

time ℓ. Alternatively, the impact of the rate of change or the

accumulation of a biomarker is of primary interest. In the latter

setting, the biomarker’s area under the (time-)curve (AUC) may be

an alternative as the covariate of primary interest.

Fourth, competing events such as adverse events requiring

treatment interruptions, may occur which affect either the

interpretation or the existence of subsequent measurements of the

biomarker and the clinical event. It is typically not plausible that the

occurrence of such adverse events is independent of on-treatment

biomarkers and clinical endpoint. For example, the biological

activity of the drug may induce a change in the biomarker and in

the clinical endpoint, but at the same time lead to toxicity. In such
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cases, the joint evaluation of the biomarker and the clinical

endpoint is impacted by the competing risk of an interruption of

treatment due to the toxicity which needs to be accounted for in

the analysis.

Fifth, the biological variation of a biomarker may vary

substantially by subject or by dose. Typically the protocol defined

sampling schedule is common to all patients and dose levels. As a

consequence, the biomarker measurements may not be taken at the

same time relative to the biological process unfolding in each

patient. An example of a biomarker where this issue arises are

natural killer (NK) cells measured in blood: these immune cells go

through a marginalization process at which time they become non

observable in the blood (see Conlon et al. (18)).

These considerations may be addressed using the analysis

methods presented below.

For biomarkers measured infrequently (e.g. via biopsies),

landmark analyses may be used (Van Houwelingen (57)). In such

analyses, a landmark time is defined as the time of a specific

biomarker measurement which defines a new baseline (time zero)

for subsequent analysis. That is, the value of the biomarker at the

landmark is treated as a baseline covariate, subsequent biomarker

measurements are ignored, the clinical time-to-event endpoint is re-

defined based on the new time origin, and all subjects with a clinical

event or censoring prior to the landmark are excluded from the

analysis. Subsequently, standard regression methods for modeling

the clinical endpoints such as Cox regression are used. Landmark

analysis avoid immortal-time bias but care needs to be taken when

comparing randomized treatment groups because they are no

longer comparable after conditioning on the landmark.

In order to model longitudinal biomarkers and clinical

endpoints simultaneously, joint models are popular (Rizopoulos

(58)). These models have two components, a longitudinal model for

the biomarker (typically a linear mixed effects model) and a time-

to-event model for the clinical outcome (e.g. a Cox model), and

shared parameters which determine how the biomarker evolution

affects the rate of clinical event. Such models allow that the actual

(measurement-error free) value of the biomarker, or a lagged value,

or a rate of change, or the area under the curve is included as a

covariate for modeling the clinical event. Alternatively, when

relevant thresholds are defined for the biomarker values, the

subject’s evolution through different states of biomarker

categories and clinical outcomes can be modeled using multi-state

models (59). Multi-state models are also useful to address the

competing risk problem described above.

In the context of randomized trials, relevant clinical questions

may arise regarding the treatment effect in subpopulations of

patients, which could experience certain clinical or disease related

events post-randomization. As an example, subjects in the CIT

group may experience anti-drug antibodies and it is of interest to

know whether this affects CIT efficacy. A principal stratification

strategy can be applied to these events to define a causal treatment

effect (Bornkamp et al. (60)). Specifically, Kong et al. (61) describe

an approach where subjects with an ADA in the CIT arm are

compared to the control arm which is re-weighted based on relevant

baseline characteristics to be rendered more comparable to the

ADA-positive CIT subpopulation. These weighting approaches for
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principal stratification are similar to inverse probability of

treatment weighting (IPTW) approaches which are frequently

used to address causal questions, e.g. to determine the treatment

effect in subgroups defined by baseline biomarkers in the presence

of additional confounding variables [see Austin and Stuart (62)].

To address the confounding effect linked to biological variability

of the biomarker, an option is to leverage the (semi) mechanistic

models described in Section 3.7. These models provide a more

complete description of the longitudinal profile, that may be

patient- and covariate- dependent (e.g. to dose) compared to

measurements at a fixed time for all patients. Using these profile,

quantities such as the maximum value over a period of time, or the

AUC are more robustly estimated. A two-stage approach

combining the mechanistic model and models such as the

landmark or the joint models can be used to study in a more

robust manner the relationship between the clinical endpoint and

the biomarker.

In addition to these specific models, one may need to take

potential imbalances in value of the biomarker at baseline into

account. These imbalances may lead to false conclusions on the

impact of the treatment on the on-study biomarker value. Authors

[see Vickers (63), (64, Section 2.4)] suggest to incorporate the

baseline value in models of the on-study value. This conclusion is

also true when baseline values are partially missing [see Kenward

et al. (65)].
3.6 Hypothesis generation and high-
dimensional statistics

Besides testing key biomarkers hypothesis (as usually specified

in the study protocol) early clinical development many times

involves extensive exploratory data analysis work. The aim of

these analysis efforts is to generate new hypotheses related to

MoA, PoC (proof of concept) and patient selection/enrichment.

Omics-based technologies typically measure thousands of

molecular features (e.g. genomics, transcriptomics and

proteomics) in parallel. An important characteristics of such

high-dimensional data is that the number of features p is typically

much larger compared to the number of samples n (e.g. number of

patients). Such data sets present a variety of statistical challenges,

since classical theory and methodology can break down in

surprising and unexpected ways Buhlmann¨ and Van De Geer

(66), Wainwright (67), Hastie et al. (68). Hypothesis generation

based on high-dimensional biomarker data can be typically divided

into three types of analysis tasks:

The first task considers p biomarkers and one response variable

and the aim is prediction and variable selection. Such analysis can

be the starting point of the development of a novel prognostic or

predictive biomarker which then could potentially be used for

patient selection/enrichment (see section 3.3 on the prognostic/

predictive validation of biomarker). Numerous computational

approaches have been developed for this purpose which

adequately address overfitting and simultaneously provide

information on variable importance. These methods use modern

statistical concept such as such as L1/L2-regularization (e.g. Ridge-,
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Lasso Regression), bootstrap aggregation (Random forest) and

boosting. A recent example is the construction of a polygenic risk

scores (PRS) for anti-PD-L1 induced hypothyroidism and the

subsequent assessment of PRS variant importance using Lasso

Regression [Khan et al. (69)].

The second task considers one (or few) potential explanatory

variable whereas the p biomarkers take the role of response

variables. The aim is to identify those biomarkers which show a

relationship with the explanatory variable. An example is the

exploration of dose relationship with molecular PD markers (e.g.

as measured by flow cytometry or gene expression). This involves

simultaneous testing of many hypothesis. It is essential to perform

multiple testing correction in order to correct for occurrence of false

positives [Dudoit et al. (70)]. In addition, empirical Bayes

approaches which borrow information across the p biomarkers

have been shown to be superior in small n setting compared to a

one-biomarker-at-a-time analysis [Smyth (71)].

The third task explores commonalities across the samples at the

level of the p biomarkers. For example exploring the molecular

heterogeneity of patients can provide new insights on the disease

biology and the mode of action of a new molecular entity. Several

approaches have been developed for unsupervised learning in the

p >> n setting [Monti et al. (72), Städler et al. (73)]. In addition,

dimensionality reduction methods such as principle component

analysis (PCA), multidimensional scaling (MDS) and t-distributed

stochastic neighbor embedding (t-SNE) are frequently used to

visualize the high-dimensional data with fewer dimensions and

identify patters. In a recent example such statistical approaches

helped to decipher the single-cell level phenotypical and

transcriptional consequences of treatment with anti-PD-1 and

with PD1-TIM3 and PD1-LAG3 bispecific antibodies [Natoli

et al. (74)].
3.7 PK/PD modeling

Longitudinal mathematical models are powerful tools that

describe temporal changes of a biomarker upon treatment

administration and therefore leverage the entirety of the data

collected during a study, without the need to rely on a single

time-point (landmark analysis) or to discretize data. Here we

focus on top-down population pharmacokinetic (PK)/PD models

which are predominantly built on observed clinical data and are

mostly empirical or semi-mechanistic. These non-linear mixed

effec t models descr ibe the re lat ionship between the

pharmacokinetics of the drug (e.g. the plasma concentration-time

course) and the dynamics of a response variable. The model

structure is formulated via a set of differential equations defined

by estimated model parameters. The model includes statistical

distributions (e.g. normal, log-normal) representing between-

patient variability in both PK and PD parameters, which can be

quantified and distinguished from residual unexplained variability.

The PK component describes how the drug is absorbed, distributed,

and cleared from the body, including target-mediated drug

disposition when applicable. The PD component offer a simplified

mathematical representation of the patho-physiological processes
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relevant to biomarker response. A link function between PK and PD

characterizes the exposure-response relationship and quantifies the

part of the biomarker response variability that can be explained by

variability in PK. In addition, covariates such as patient baseline

characteristics can be evaluated during model building to explain

(part of) the variability in PK and PD. By further including

additional components associated to clinical response or safety

outcomes of interest, modeling frameworks can be built to answer

specific questions (fit-for-purpose). Model-based simulations can

then be used for in-silico exploration of untested dosing scenarios

that can be further evaluated in the clinic, project long-term

response, or make prospective predictions for a new patient

population. Published examples (Ribba et al. (75), Silber

Baumann et al. (76), Netterberg et al. (77), Chen et al. (78)) show

the potential of PK/PD models to help the selection of doses and

schedules (e.g. induction-maintenance doses, priming doses) to

maximize efficacy and/or mitigate safety risks of CIT. These

models may be updated during clinical drug development based

on new arising data and questions (learn and confirm paradigm). Of

note, identification of relevant biomarkers based on exploratory

data analysis are a prerequisite to the development of such models.

In addition, informative schedule of assessments for PK and

biomarker, and timely availability of data to modeling teams, are

key elements to the ensure a meaningful delivery of modeling

outputs for decision making. Other mathematical modeling

approaches, including mechanistic bottom-up and middle-out

approaches that rely less on clinical data are out of scope but

have been recently reviewed elsewhere (79).
4 Discussion

Well conducted biomarker-driven clinical trials can increase the

success rates in drug development. However, a critical condition for

success is that relevant prognostic or predictive baseline biomarkers

or pharmacodynamic on-treatment biomarkers for clinical efficacy

or safety outcomes can be identified. Despite a plethora of examples

and some success stories (see Table 1 in Supplemental Material), the

identification of an optimal biomarker proves extremely

challenging, most likely due to the complex and dynamic

interplay between the tumor and the host immune system. Many

publications identify new biomarkers but there are much fewer

studies which aim to demonstrate their clinical validity and utility

and fewer again enter clinical practice. Moreover, a number of

research studies have highlighted deficiencies in some areas of

biomarker research. As an example, Malats et al. (10) concluded

in a systematic review of 168 publications from 117 studies that

despite all of this research, there is still no sufficient evidence to

conclude whether changes in p53 act as markers of outcome in

patients with bladder cancer. More recently, a systematic review of

Kempf et al. (11) found evidence of frequent overinterpretation of

findings of prognostic factor assessment in high-impact medical

oncology journals.

In the introduction, we introduced four key challenges in the

development of CIT: 1) demonstration of MoA, 2) dose selection

and optimization, 3) mitigation and prevention of immune related
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adverse events and 4) patient enrichment and patient selection. A

major complexity of CIT development is the indirect targeting of

the tumor through the immune system which requires a better

understanding of the immune system and how it is impacted by the

drug. Biomarker technologies provide tools that can support

addressing these key challenges. In this manuscript, we reviewed

important methodological aspects in the analysis of biomarkers,

(summarized in Supplementary Table 2). We covered basic aspects

of biomarker modeling, analyses of low-dimensional baseline and

on-treatment biomarkers, high-dimensional analysis, and topics

related to dose finding and PK/PD modeling.

This article covers a broad range of statistical methods for

biomarker analyses relevant to the early development of cancer

immunotherapies. However, we also acknowledge some limitations.

First, we did not provide a detailed description of statistical methods

and their relative merits, as this would have required extending the

article substantially. Instead, we aimed to provide an overview of

methods, highlight potential pitfalls, and give relevant references

that cover these methods in-depth. Second, analytical validation of

biomarkers is not covered in this article at all (Ou et al. (46), Kraus

(47)). Third, our article primarily focuses on an early development

program setting where biomarkers are analyzed for exploratory and

hypothesis-generating purposes. In such settings, study designs

(e.g., dose escalation designs covered in Section 3.2) are usually

not specifically designed for biomarker analyses. We have only

briefly discussed the important topic of confirmatory randomized

clinical trials which are required to establish the clinical utility of

baseline biomarkers at the end of Sections 3.3 and 3.4. Important

design options at this stage include biomarker-stratified designs,

enrichment designs, and biomarker-strategy designs [Freidlin et al.

(80), Tajik et al. (81)]. A general overview of the strategic use of

biomarkers as a drug development tool and regulatory pathways is

provided by Kraus (47).

The aim of this manuscript was to highlight key statistical

consideration and present valid analysis methods for the

identification and evaluation of biomarkers relevant to early

clinical development in the CIT field. We hope that it supports

data scientists and other drug developers to derive robust and

reproducible conclusions.
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