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Glycosylation is a critical post-translational modification that plays a pivotal role

in several biological processes, such as the immune response. Alterations in

glycosylation canmodulate the course of various pathologies, such as the case of

congenital disorders of glycosylation (CDG), a group of more than 160 rare and

complex genetic diseases. Although the link between glycosylation and immune

dysfunction has already been recognized, the immune involvement in most CDG

remains largely unexplored and poorly understood. In this study, we provide an

update on the immune dysfunction and clinical manifestations of the 12 CDG

with major immune involvement, organized into 6 categories of inborn errors of

immunity according to the International Union of Immunological Societies (IUIS).

The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most

frequent CDG - was comprehensively reviewed, highlighting a higher prevalence

of immune issues during infancy and childhood and in R141H-bearing genotypes.

Finally, using PMM2-CDG as a model, we point to links between abnormal

glycosylation patterns in host cells and possibly favored interactions with

microorganisms that may explain the higher susceptibility to infection. Further

characterizing immunopathology and unusual host-pathogen adhesion in CDG

can not only improve immunological standards of care but also pave the way for

innovative preventive measures and targeted glycan-based therapies that may

improve quality of life for people living with CDG.
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1 Glycosylation: a key process in
proteome diversity and
immune function

For several decades, molecular biology research has been guided

by the paradigm that biological information flows from DNA to

RNA and to protein. Today it is acknowledged that glycosylation

plays a vital role in all species, and that its study is becoming

increasingly important to comprehend the entirety of the cellular

context (1). Glycosylation is an essential biological process that

modulates cell function and molecular stability found in nearly all

known living organisms (2, 3). It is a post-translational modification

where sugar-chains are assembled, processed, and commonly

attached to proteins or lipids, through glycosidic links (1). The

sugar components of the glycoproteins have been known to

modulate several properties of the parent protein, protecting

them from proteolysis, regulating their stability and modifying

the protein conformation. In addition, glycans can mediate

various physiological functions, as they contribute to structural

organization, energy metabolism and are information carriers since

their patterns can be recognized by other proteins (4).

Two main types of protein glycosylation exist: N-glycosylation

and O-glycosylation (1). N-glycosylation is the covalent attachment

of glycans to a protein at specific asparagine (Asn) residues. Its

biosynthesis is initiated in the endoplasmic reticulum (ER)

membrane, where a precursor oligosaccharide is assembled on a

resident lipid carrier (5, 6). An oligosaccharyltransferase complex

then transfers the glycan to a target protein via a N-glycosidic

linkage of a N-acetylglucosamine (GlcNAc) to an Asn residue in the

consensus amino acid sequence Asn-X-serine (Ser)/threonine

(Thr), in which “X” is any amino acid except for proline (Pro)

(7). The subsequent stage includes the trimming and processing in

the ER and Golgi, converting a limited repertoire of N-glycans into

a vast array of mature and complex N-glycans (8). O-glycosylation,

on the other hand, is the attachment of glycans initiated by N-

acetylgalactosamine (GalNAc) to the hydroxyl group of Ser or Thr

residues in proteins, usually initiated in the Golgi by N-

acetylgalactosaminyltransferases (GalNAcTs) (8). Subsequently,

sequential enzymatic elongation steps elongate this Ser/Thr-

GalNAc structure to form longer and more complex structures

(9). Both N- and O-glycosylation processes can be further modified

by sialylation, sulfation, acetylation, fucosylation, and

polylactosamine-extension.

Glycosylation introduces considerable variety to the proteome

with effects on protein functionality, localization, solubility, and

stability, thereby contributing substantially to biological complexity

(10). It is important for cell-cell and cell-matrix interactions, with

glycans lining the cell surface as mediators of intra and extracellular

communication, signaling, immune recognition, and pathogen

detection (11). The vast diversity of glycans, resulting from

saccharide position and stereochemistry options, contribute not

only to the complexity but also to the specificity of the mechanisms

and interactions outlined above (10).

In the immune function, glycosylation has a crucial role as most

of the molecules involved in the immune response are glycoproteins
Frontiers in Immunology 02
(12). Immunoglobulins (Ig), adhesion molecules, cytokines,

chemokines, complement proteins, and pathogen recognition

receptors, such as Toll like receptors, are heavily glycosylated

(13–16). Specifically, N-glycans decorate the a and b chains of

the T cell receptor and the heavy chain of the MHC class I complex

(17–19). Most proteins present multiple glycosylation sites and can

be decorated with both N- and O- glycans, such as all Ig classes, and

immunoregulators such as CD45 (20–22).

Glycosylation plays a dual role in pathogen infection. On one

hand, glycans can prevent microbial attachment and invasion, by

reinforcing the physical barriers that are part of the innate immune

response. This is exemplified by mucins, high molecular-weight

glycoproteins with extensive O-glycosylation, that form a viscous

protective barrier between the epithelial cells and microorganisms

(23). Conversely, glycosylation facilitates infection and helps

pathogens escape the immune defenses, as pathogens interact

with host glycans through glycan-binding proteins (e.g., pili),

promoting adherence or internalization (24, 25). Furthermore,

microbial patterns are also glycans or glycoconjugates that often

mimic the host carbohydrates, favoring the escape from the

immune surveillance (26).

Deregulation of glycosylation pathways can then be at the root

of critical changes in physiological processes, such as the immune

function, and is commonly found to be associated and to modulate

the progression of various disorders. For instance, IgG with N-

glycosylation lacking terminal galactose and sialic-acid linkages has

been associated with rheumatoid arthritis (27). Such glycosylation

modifications can trigger an inflammatory response through

recognit ion by complement mannose-binding lect ins .

Inflammatory bowel disease (IBD), whose full etiology remains

unclear, has also been associated with aberrant glycosylation.

Disruption of the binding and signaling of the glycan-binding

protein galectin-1 has been linked to increased susceptibility for

colitis and disruption of intestinal homeostasis (28). Therefore, the

balance between health and disease requires both glycosylation and

modulation of glycan-binding proteins.
2 Exploring glycosylation defects in
congenital diseases

Congenital disorders of glycosylation (CDG) represent a group

of 163 rare inherited metabolic defects encompassing 193 different

phenotypes stemming from abnormalities in glycosylation

biosynthesis and processing (29). These disorders can be classified

into four main categories based on their underlying defect: i) N-

linked glycosylation (e.g., MAN2B2-, PGM3-, ALG12-CDG), ii) O-

linked glycosylation (e.g., B3GALT6-, XYLT2-, and EXTL3-CDG),

iii) combined N- and O- linked/multiple glycosylation pathways

(most prevalent with number of phenotypes), (e.g., AT6AP1-,

A T P 6V 1A - , B 4GALT 1 - CDG ) a n d i v ) l i p i d a n d

glycosylphosphatidylinositol (GPI) anchor defects (e.g., PIGA-,

PIGB-, PIGW-CDG) (29–31). As a result of the vast molecular

diversity, this group of diseases exhibits a remarkable genetic and

clinical heterogeneity within each and between CDG. This
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variability is illustrated by numerous system and organs, such as the

varying degrees of severity of intellectual disability and

developmental delay, observed, for example, in PMM2-, PIGA-

and ALG12-CDG (32). Furthermore, even within patients with the

same genetic variant, there are differences in clinical symptomology

and progression, as demonstrated in GNE-CDG (33). This issue

reflects the lack of biochemical biomarkers, where even the

commonly used transferrin isoelectric focusing (TIEF) assay can

only screen for a limited number of CDG (34). Furthermore, even

within the identifiable CDG, some patients might not show different

profiles compared to healthy individuals (35, 36). Nevertheless,

some potential markers have been identified for few CDG and

alternative approaches like glycomics have been explored (34). As

we delve deeper into CDG mechanisms, there are clinical

manifestations such as those derived from immune system, which

accentuate the complexity and challenges our current

understanding of the role of glycans. While extensive research has

been dedicated to unravelling how glycans govern immune cell-cell

and receptor-ligand interactions, only few studies endeavored to

elucidate these mechanisms in the context of CDG and established a

link with diverse clinical observations.

In the following sections, we delve into specific CDG with

reported immunological implications. Understanding the

immunological aspects of CDG becomes paramount given the

multifaceted role of glycosylation in regulating immune

responses. The insights gleaned from a revision of literature on

the current evidence of immune implications in CDG may have

implications beyond CDG, contributing to a broader understanding

of the immune response mechanisms and with potential

clinical applications.
3 Immunological burden in congenital
disorders of glycosylation

The immunological burden of CDG is well-mirrored by their

clinical heterogeneity. In view of the intricate interplay between

glycosylation and immune responses (see section “Glycosylation: a

key process in proteome diversity and immune function”), it is

reasonable to expect that among the 163 known CDG, some would

exhibit immune defects. Previous studies referred that 23 CDG had

minor (less than 50% of patients) or major (more than 50% of

patients) immunological involvement according to the prevalence

of immunological clinical manifestations (e.g., infectious,

inflammatory, allergic, or autoimmune events, biochemical or

functional alterations and abnormal responses to vaccination) (37,

38). However, the predominance and relevance of these immune

events compared to the average healthy population remain unclear,

underscoring the need to revisit the list of CDG with

immunological burden.

Importantly, according to the recently updated classification of

the International Union of Immunological Societies (IUIS) (39, 40),

11 CDG have been reported as having immunological dysfunction

or manifestations as one of the primary disease hallmarks. These
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CDG span across the five categories within the Inborn Errors of

Immunity classification, based on clinical features, biochemical

presentations, and impaired mechanisms. Additionally, we

describe FUT8-CDG as a CDG with predominant lung immune

dysfunction (Figure 1). The details of the inclusion of each of these

CDG in these different groups will be detailed below, and their

reported immunological manifestations are portrayed in

Supplementary Table 1.
3.1 Immunodeficiencies affecting cellular
and humoral immunity

One notable inclusion in this category is MAN2B2-CDG,

recently recognized as an inborn error of immunity with the first

reported patient presenting immunodeficiency, dysmorphic facial

features, coagulopathy, and severe developmental delay (39, 41).

MAN2B2 is a mannosidase involved in the second-to-last step

of lysosomal degradation of glycoproteins, the cleavage of the a1,6-
mannose residue of Man2GlcNAc1 to generate Man1GlcNAc1

(Figure 2). MAN2B2 deficiency dysregulate the deglycosylation

and monosaccharide recycling process, leading to the

accumulation of terminal 1,6-mannose-bearing Man2GlcNAc1

and defective protein N-glycosylation (41). The clinical

manifestations in the first reported patient were recurrent

vasculitis, arthritis, and infections. The patient showed decreased

counts of naïve cytotoxic and helper T cells, but increased effector

memory T cells, meaning a skewed T cell repertoire. There was also

low T cell proliferation and undetectable T cells receptor excision

circles (TRECs), highlighting lack of T cell maturation.

Additionally, B cell lymphopenia with elevated circulating

plasmablasts and dysreactive B cells were detected, along with low

IgM and IgA levels and high IgE, which are not a typical feature of

CDG-related immunodeficiencies, but may explain autoimmunity

(Supplementary Table 1) (41). There were no investigations directly

linking MAN2B2 deficiency to the observed immune alterations.

Nevertheless, the intercellular adhesion molecule 1 (ICAM1)

adhesion protein and lysosomal associated membrane protein 2

(LAMP2), known to play a critical role in T cell regulation (42, 43),

are underglycosylated in the patient’s fibroblasts (41), suggesting

the protein functions are affected and deserving further studies to

address the exact mechanisms. Yet, a newly reported Chinese

patient presented normal immune parameters alongside

presentation of several malformations (44), which raises the

question if MAN2B2-CDG is as a condition with major

immunological involvement or a disorder with infrequent

immunological occurrences.

Due to the small number of MAN2B2-CDG patients described,

there is a lack of information regarding treatment response. One

patient receiving immunoglobulin replacement therapy initiated at

two years of age failed to improve the immune manifestations. Yet,

hematopoietic stem cell transplantation (HCST) at the age of five

years restored T cell count and function, antibodies production and

resolved the infection episodes (41).
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3.2 Combined immunodeficiencies with
syndromic or associated features

EXTL3- and PGM3-CDG are the CDG included in the category

of combined immunodeficiencies with syndromic features, presenting

variable immunophenotypes ranging from isolated infections to

severe immunodeficiency, including neurodevelopmental and

skeletal defects. EXTL3-CDG compromises the glycosaminoglycan

and the heparan sulfate biosynthesis by affecting GlcNAc transfer

(Figure 2). Alterations in the length and content of heparan sulfate are

known to disbalance biological mechanisms and signaling pathways.

On the one hand, heparan sulfate has a critical role in the binding and

directing cells and growth factors during thymic epithelial cell

differentiation and hematopoietic progenitor cell expansion (45–47).

Consistently, EXTL3-CDG immunodeficiency was shown to majorly

derive from defects in early T cell development (48). On the other

hand, heparan sulfate alterations increase fibroblasts growth factor

receptor signaling by increasing ligand binding, concordant with

previously reported mechanisms of skeletal dysplasia. Besides,

decreased STAT5 phosphorylation in response to IL-2 and IL-7 was

found in patient immune cells indicative of impaired cellular

responses (48). In addition to patients with variable

immunophenotypes, some patients (n = 3/16) have no apparent

immune issues (49). The cause of EXTL3-CDG clinical variability has

been suggested to be related to the associated genetic variants.

Variants affecting the EXT domain seem to be related with skeletal

defects whilst variants affecting the transferase activity resulting in

defective glycosaminoglycans modifications associated with

immunophenotypes. However, patients with the same mutation can

greatly differ phenotypically (50). Other genetic interactions, gene

modifiers or environmental factors are possibly behind the different

degrees of immunodeficiency severity (48).

In PGM3-CDG, there is an impairment on the synthesis of

UDP-GlcNAc due to the deficient PGM3 activity (Figure 2). This

deficiency affects the number and function of different immune cells
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resulting in repeated dermal and pulmonary bacterial or fungal

infections (Supplementary Table 1). These manifestations seem to

mainly derive from altered signaling pathways disbalancing the

immune response towards a Th2 profile (51, 52). Specifically, in

PGM3-CDG, the N- and O-glycosylation of T cells is impaired.

Decreased O-GlcNAcylation disrupts NFAT function (53) and NF-

kB transcriptional activation (54) whilst defective N-glycosylation

of the gp130 protein impairs STAT3-mediated signaling (55), which

negatively interferes with T cell proliferative capacity and cytokine

production (53, 55, 56). This results in abnormal levels of various

cytokines (e.g., IL-6, IL-17, IL-27, and granulocyte colony

stimulating factor - GCSF) which impairs cytokine-mediated

immune responses, such as memory cell differentiation, and

elevates IgE associated allergy and atopy – a hallmark of PGM3-

CDG (55, 57). The dysregulation of the metabolic profile of PGM3-

deficient cells was also proposed as a contributing factor to the

immune issues (58).

HSCT has been successfully performed as a treatment for

EXTL3-CDG and PGM3-CDG immunodeficiency recovering the

normal T cell development in these patients and is already approved

for PGM3-CDG (59, 60).
3.3 Predominantly antibody deficiencies

ALG12-, ATP6AP1-, and MOGS-CDG fall within as the

category of predominantly antibody deficiencies since all of them

present hypogammaglobulinemia, with low IgG levels. Despite this

common immune hallmark, each disorder presents distinct clinical

features. ALG12- and MOGS-CDG are multi-systemic disorders

with development delays, hypotonia, dysmorphism and various

organ-related manifestations, while ATP6AP1-CDG mainly

presents an immunodeficient phenotype with liver involvement.

Defects in either ALG12 or MOGS compromise N-glycan

biosynthesis (61, 62). ALG12 is a mannosyltransferase responsible
FIGURE 1

Classification of CDG according to inborn errors of immunity. CDG presenting immune deficiencies were categorized according to the recent
International Union of Immunological Societies (IUIS) classification as (I) Immunodeficiencies affecting cellular and humoral immunity (MAN2B2-
CDG), (II) Combined immunodeficiencies with syndromic or associated features (EXTL3-, and PGM3-CDG), (III) predominantly antibody deficiencies
(ALG12-, ATP6AP1-, and MOGS-CDG), (IV) Diseases of immune dysregulation (MAGT1-CDG), (V) Congenital defects of phagocytes (SLC35C1-,
G6PC3-, JAGN1-, and VPS13B-CDG), and a provisional classification for diseases with Predominant lung immune dysfunction (FUT8-CDG). Created
using BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2024.1350101
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pascoal et al. 10.3389/fimmu.2024.1350101
for adding the eighth mannose to the lipid-linked oligosaccharide

precursor, whereas MOGS is a glucosidase that catalyzes the

trimming of the first glucose residue from the Glc3-Man9-

GlcNAc2 precursor (Figure 2). In turn, ATP6AP1 is the first

accessory subunit of the proton transporting vacuolar (V)-

ATPase pump (Figure 2) whose defects compromises both N-
Frontiers in Immunology 05
glycosylation and mucin type O-glycosylation (63, 64). This leads

to deficient antibody glycosylation that decrease their thermal

stability, resistance to unfolding and proteolytic cleavage (65) and

interferes with their function by affecting antibody binding to Fc

receptors (66, 67). Consequently, this likely contributes to the

genesis of the antibody deficiency, inflammatory episodes and
FIGURE 2

Glycosylation pathways in CDG with immunological involvement. The affected proteins in these CDG participate in N-glycosylation, O-glycosylation
(particularly in the synthesis of heparin and heparan sulphate) and multiple glycosylation pathways. Proteins linked to CDG major immunological
involvement are highlighted in red. ADP, adenosine diphosphate; ALG, asparagine-linked glycosylation; ATP, adenosine triphosphate; ATP6AP1/2,
ATPase H+ transporting accessory protein 1/2; B4GALT1, b-N-acetylglucosaminyl-glycolipid b-1,4-galactosyltransferase; CMP, cystidine-5’-
monophosphate; COG, conserved oligomeric Golgi; DOLK, dolichol kinase; ER, endoplasmic reticulum; EXTL3, exostosin like glycosyltransferase 3;
FUT8, fucosyltransferase 8; G6PC3, glucose-6-phosphate catalytic subunit 3; GDP, guanosine diphosphate; GT, glycosyltransferase; JAGN1, jagunal
homolog 1; MAGT1, magnesium transporter 1; MAN1B1, mannosidase a class 1B member 1; MAN2B2, mannosidase a class 2B member 2; MGAT2, a-
1,6-mannosyl-glycoprotein 2-b-N-acetylglucosaminyltransferase; MOGS, mannosyl-oligosaccharide glucosidase; PGM3, phosphoglucomutase 3;
PMM2, phophomannomutase 2; SLC, solute carrier family; VPS13B, vacuolar protein sorting 13 homolog. Created using BioRender.com.
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absent responses to vaccines observed in ALG12-, MOGS-, and

ATP6AP1-CDG. The hypogammaglobulinemia reported in

ALG12- and MOGS-CDG patients (68, 69) translates into

propensity for recurrent and severe bacterial infections due

affected antibody-mediate immune processes. Altered lymphocyte

counts and dysfunction are also common even though the causative

mechanisms are still not understood (Supplementary Table 1). It

has been described that MOGS-CDG patients have resistance to

glycosylation-dependent enveloped viruses. This can be explained

by the fact that these viruses often hijack the host glycosylation

machinery to modify their viral proteins required for viral

replication and cellular entry (70, 71). Yet, a recent report

challenges this hypothesis, by identifying several infections by

enveloped viruses in two patients (62, 72–74).

Considering that these CDG belong to the category of inborn

error of immunity mainly associated with decreased levels of

circulating Igs, some ALG12-CDG patients have been treated

with Ig infusions with apparent no success (61, 75). Similar

therapeutic strategies to control immune manifestations in

MOGS- or ATP6AP1-CDG are not known in the literature.

Nevertheless, Ig infusions are widely recommended to this

category of inborn error of immunity.
3.4 Diseases of immune dysregulation

Magnesium transporter 1 (MAGT1) deficiency has been only

recently recognized as a CDG after the unveiling that MAGT1

besides function as Mg2+ transporter is a critical accessory protein

for immune cell N-glycosylation (76–78). Clinically, most patients

present a disease named X-linked MAGT1 deficiency with

increased predisposition to Epstein-Barr virus (EBV) infection

and N-linked glycosylation defects (XMEN) (76, 78–80), having

increased susceptibility to viral respiratory, oral, and skin infections

and, in some cases, autoimmune conditions and alterations in

vaccination responses (Supplementary Table 1). More recently,

variations of the MAGT1-CDG phenotype were described with

one patient with muscle involvement characterized by myositis with

immune infiltrates (81) and two patients with a different

neurological phenotype without immune involvement (79).

However, the causes of clinical variability are still elusive.

The selective immune dysregulation in MAGT1-CDG with the

XMEN phenotype stems from STT3B-dependent glycosylation

alterations of immune-related molecules. In fact, MAGT1 is part

of the STT3B complex which is a subunit of the OST complex

(Figure 2). Therefore, even though the exact mechanisms are not yet

understood, the Mg2+ transport defect results in incomplete

glycosylation of a subgroup of STT3B substrate proteins (77, 79).

Namely, among others, defective glycosylation of NKG2D, a

regulator of natural killer (NK) and CD8+ T cells responsiveness,

reduces its stability and membrane expression while increasing its

degradation, compromising the anti-viral immune responses (78).

The T cells co-stimulator CD28 is also hypoglycosylated, impairing

CD28-mediated cell signaling required for immune processes, such

as leukocyte activation, movement, apoptosis regulation, cellular
Frontiers in Immunology 06
adhesion, and adaptive immune responses. Importantly, CD70

underexpression and hypoglycosylation was also found, which

predisposes individuals to uncontrolled EBV infection by affecting

humoral and cell-mediated immunity in humans through CD27-

CD70 impaired signaling, especially important for the control of

EBV (78, 82). Ig hypoglycosylation was observed, explaining the

hypogammaglobulinemia in about half of the reported patients

(Supplementary Table 1) (77). These observations not only support

the association of MAGT1 deficiency with CDG but also explain the

increased EBV viremia and a higher risk of EBV-related B cell

lymphomas and lymphoproliferative disorders which are associated

with increased mortality in these patients (83).

Patients with EBV-related malignancies are managed with radio

and/or radiotherapy with varying outcomes (76). The use of

magnesium supplementation in MAGT1-CDG patients with an

XMEN phenotype showed mixed results. While it partially

recovered NKG2D expression and reduced persistent EBV

infections and likely reduced EBV-associated malignancies in

some patients (84), others did not respond to supplementation

(85). Alternative therapeutic approaches have been tested. One

patient was treated with a MAGT1 messenger RNA with

restoration of NKG2D expression and CD8+ T and NK cell levels

(86). More recently, an ex vivo approach using CRISPR/Cas9

adeno-associated vector able to insert a MAGT1 gene in T

lymphocytes or hematopoietic stem and progenitor cells from

MAGT1-CDG patients was optimised which recoved NKG2D

expression and function in NK and CD8+ T cells in an

immunodeficient mice (87). These studies bring some hope in

developing effective therapeutic options for this CDG.
3.5 Congenital defects of phagocyte
number, function, or both

SLC35C1-, G6PC3-, JAGN1-, and VPS13B-CDG are diseases

related to phagocytic cells which, subsequently, manifest with

frequent and severe infections, particularly affecting the skin, oral

cavity, and respiratory tract (Supplementary Table 1).

SLC35C1 codes for a transporter of GDP-fucose (Figure 2) and

SLC35C1 pathogenic variants affect the biosynthesis of selectin

ligands and other fucosylated glycoproteins important for

leukocyte adhesion (88, 89). Thus, SLC35C1-CDG, also called

Leukocyte Adhesion Deficiency type II (LAD-II), shows

impairment of leukocyte migration and homing due to decreased

expression of selectin ligands, with subsequent propensity for

infections (90). The clinical phenotype includes milder intellectual

disability, short stature (91–93), and, in severe cases dysmorphia,

immunodeficiency, and the Bombay blood type (94, 95). Oral

fucose supplementation was found to not only improve the

neurological development of SLC35C1-CDG patients, but also

reduce the number of recurrent infections and normalize the

neutrophil counts. However, fucose supplementation can induce

autoimmunity, as the appearance of fucosylated neoantigens on the

cells may induce the production of autoantibodies (94, 96).
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Genetic variants in G6PC3, JAGN1, and VPS13B affect the

number and function of neutrophils (rather than their migration)

which consequently cause different forms of severe congenital

neutropenia (SCN). While G6PC3- and JAGN1-CDG show

persistent neutropenia and bone marrow defects, VPS13B-CDG

presents intermittent decreased neutropenia with normal bone

marrow development and cellularity (Supplementary Table 1).

Besides, G6PC3-CDG and VPS13B-CDG patients present Dursun

and Cohen syndrome, respectively, whereas JAGN1-CDG presents

solely SCN (97, 98). These phenotypes are likely to arise from the

distinct roles of these enzymes in the glycosylation process.

Specifically, G6PC3 catalyzes the last step of glycogenolysis in the

ER (Figure 2), decreasing the levels of glucose and glucose-6-P in

the cytoplasm. Additionally, G6PC3-CDG patient neutrophils show

truncated, galactose-defective N- and O-glycans (99). JAGN1 is

involved in the vesicle-mediated transport in the glycosylation

pathway (Figure 2) and its deficiency leads to increased Gal-a-
1,3-Gal terminated triantennary glycans and decreased sialylated

biantennary glycans (100). VPS13B protein mediates lipid transfer

between membranes (Figure 2) and defects in this protein causes

Golgi disorganization, hypoglycosylation of early endosome antigen

1 and of lysosome-associated membrane glycoprotein 2, as well as

N-glycan maturation defects (101–103).

Even though the direct cause of glycosylation-related

pathological effects is still elusive, proposed mechanisms for the

multi-factorial neutropenic phenotypes, include increased

neutrophil death associated with metabolic dysregulation, ER

stress and apoptosis, and decreased levels of respiratory burst,

calcium mobilization, and neutrophil survival factor (SERPINB1)

(103–106); neutrophil dysfunction with abnormal protein

glycosylation impacting neutrophil migration, adhesion and

cytotoxicity (101, 105, 107); and bone marrow maturation defects

and in some cases myelokathexis (99, 108, 109). Consequently,

these defects impact the ability of neutrophils to correctly

fight infections.

Besides neutrophils, other immune cells and antibodies can be

altered in the CDG included in this category (Supplementary

Table 1). In fact, abnormal B cell counts, and function were

detected, associated with altered ER homeostasis and aberrant Ig

N-glycosylation in a Jagn1 deficient mouse model and patient-

derived cells (110). Inflammatory and autoimmune manifestations,

especially in G6PC3-CDG include IBD with 16% of prevalence

(Supplementary Table 1). It was suggested that IBD prevalence in

this CDG could derive from higher and consistent neutrophil

activation leading to elevated expression of adhesion molecules,

inflammatory cytokines, and reactive oxygen species (111).

Treatment with sodium-glucose cotransporter 2 inhibitors,

which inhibit renal glucose reabsorption, improved neutrophil

counts and function and reduced the severity of infection

episodes in G6PC3-CDG patients (112, 113). On the other hand,

GCSF is typically used in neutropenia management but failed to

show therapeutic efficacy, despite increasing neutrophil production

(112). GCSF treatment also showed poor response when used in

patients with JAGN1 mutations and HSCT has been the treatment
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of choice for JAGN1-CDG (114, 115). Regarding VPS13B-CDG,

GCSF can be used to control the neutrophil levels (116, 117).
3.6 FUT8-CDG: predominantly lung
immune dysfunction

Although FUT8-CDG has not been yet categorized as an inborn

error of immunity, all described patients show strong

immunological involvement especially in the lung. FUT8-CDG is

caused by genetic variants in fucosyltransferase 8 (FUT8) which

catalyzes the transfer of the fucose residue from GPD-fucose to the

first GlcNAc residue of N-glycans, known as core fucosylation

(Figure 2). Presently, only nine known FUT8-CDG patients

exhibit severe multi-organ disease (118–120) with infection and

inflammatory events of the lungs and respiratory tract. These

immune manifestations are mostly recurrent leading to

respiratory failure in severe instances (Supplementary Table 1)

(120). The reason for the variable outcomes in FUT8-CDG is still

elusive. The lung immune dysfunction observed in FUT8-CDG is

likely related to dysregulation of the TGF-b1 receptor. Specifically,

studies in Fut8-/- mice show that defects in TGF1-b1 activation and

signaling, leading to overexpression of matrix metalloproteinases

and downregulation of extracellular matrix proteins, resulting in

delayed alveolar epithelial differentiation and the presence of

emphysema-like lung abnormalities (121).

Cellularly and biochemically, the few available reports show the

occurrence of neutropenia and IgG hypofucosylation in FUT8-

CDG. Nevertheless, FUT8-related depletion of core fucosylation has

been linked to antibody dysfunction, profound alterations in B and

T cells, hypogammaglobulinemia, as well as impaired recognition,

assembly, and lipid raft association of pre- and IgG-B cell receptor

antigen (122–127). Even though these finding underline a key role

of FUT8 in controlling lung immunity and inflammation, further

detailed investigations are warranted to: (1) unveil systemic

immune response impact, which might become apparent as more

patients are diagnosed, and (2) accurately categorize FUT8-CDG as

an inborn error of immunity.

Fucose supplementation has been explored for FUT8-CDG

with mild improvement of the clinical phenotype in two patients.

However, a more noticeable effect may require adjusting the

amount of fucose (118). In case of severe respiratory disease,

supportive measures like continuous positive airway pressure and

tracheostomy have been adopted (118, 120).
4 PMM2-CDG: a CDG with minor
immunological involvement

While this revision provides an in-depth analysis of the twelve

CDG with prominent immunological features, it is important to

note that other CDG also present immune issues, though less

frequent yet not always less severe. A notable example is

phosphomannomutase 2 (PMM2)-CDG (MIM: 212065), the most
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common CDG, with an estimated incidence of 1:20,000 people, and

the first ever described CDG in 1980 (128, 129). PMM2-CDG is

caused by pathogenic autosomal recessive genetic variants in PMM2

which affects PMM2 activity. PMM2 catalyzes the conversion of

mannose-6-phosphate into mannose-1-phosphate, a precursor of

guanosine diphosphate mannose (GDP-Man) and dolichol-P-

mannose (Dol-P-Man) required for the precursor oligosaccharide

assembly during N-glycosylation (Figure 2). PMM2 deficiency leads

to hypoglycosylation of numerous glycoproteins, causing multi-

organ involvement and broad-spectrum presentations, ranging

from severe neonatal to mild adulthood presentation. Besides the

major defective neurological phenotype, several immunological

complications and abnormalities have been reported in PMM2-

CDG patients over the years. To have a comprehensive

understanding of the immune dysfunction in PMM2-CDG, we

performed a literature revision using an automated python search

through the MEDLINE database and using PubMed as the search

engine (Supplementary File 1). Based on the literature revision, 89

patients were reported to present clinical manifestations related to

the immune system. In this cohort, 46 distinct genotypes were

identified, among which 41 are heterozygotic and 5 are

homozygotic (Figure 3). Almost a third of these patients (n = 25/

89, 28.1%) present the R141H/F119L genotype and 5.6% (n = 5/89)

the R141H/V231M genotype. Other genotypes associated with

immune issues occur in the remaining 55.1% of the patients and

account for three or less patients per genotype (Figure 3). Notably,
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there are two prevalent heterozygous genetic variants – R141H and

F119L – which are present in 50 (56.2%) and 29 (32.6%)

patients, respectively.

While PMM2-CDG is not predominantly known for its

immune complications, and such issues mainly prevail during

infancy, the impact when they do occur can be profound

(Table 1). Infection was the most reported event, with

approximately half of the patients experiencing at least one

infection episode. This can lead to severe outcomes, including

sepsis, septic shock, multi-organ failure and/or fatalities. At the

time these reports, 19 patients (21.3%) from this cohort had

succumbed to complications due to immunological issues or

other conditions. Specifically, 10 (11.2%) of these patients passed

away due to pneumonia, unidentified infections, rotavirus, and

adenovirus. However, not all infections led to extremely dire

outcomes, some being mild while others also resulting in

hospitalizations for conditions like Influenza, enterovirus, and

Sars-CoV-2. These episodes often triggered other clinical

manifestations, mainly neurological like seizures and stroke-like

episodes, as previously reported (168). Other immune

manifestations, such as gastric and bowel inflammation, vasculitis,

pericarditis, and eczema, as well as immune effector alterations like

hypogammaglobulinemia and altered white blood counts, have also

been less frequently described in PMM2-CDG patients. Notably,

one patient succumbed to respiratory insufficiency and heart failure

following vaccination.
4.1 PMM2-CDG glycan profile

PMM2-CDG leads to profound alterations in N-glycosylation,

resulting in incomplete glycan chains and truncated lipid-linked

oligosaccharides (169). Serum protein analysis reveals decreased

tetrasialotransferrin and increased disialotransferrin and asialylated

isoforms, aiding PMM2-CDG screening (34). Besides transferrin,

many liver proteins show N-glycan defects which contribute a range

of symptoms and complications. While few studies explore patient-

derived cells, altered mannosylation and mannose-terminal glycans

are evident. Despite the reduced mannose incorporation in

fibroblasts from PMM2-CDG patients (169), an intriguing report

showcased hypermannosylation of monocytes in two patients (170).

The intricate landscape of oligomannosidic glycans showed a

reduction in long glycans (171), but an increase in short high

mannose glycans, such as Man3GlcNAc2 and Man4GlcNA2 in

several patients (171–173).

Other glycan alterations include low levels of a non-

mannosyla ted tetrasacchar ide - Neu5Aca2,6Galb1,4-
GlcNAcb1,4GlcNAc (171, 172) and elevation of endogenous

glycosphingolipids in patient fibroblasts (174). Aberrant

sialylation is observed in PMM2-CDG patients. Particularly, low

sialylation was observed in platelets, fibroblasts, and B cells of

patients (174–177), contrasting with high sialylation seen in

monocytes of three patients (170).

Overall, PMM2-CDG patients have a distinctive glycan profile

characterized by inferior number of N-glycosylation sites,
FIGURE 3

Genotype of PMM2-CDG patients with immune involvement.
Genetic background of PMM2-CDG patients with immune
involvement captured following a literature revision. Articles were
captured through an automated python search through the
MEDLINE database and using PubMed as the search engine. The list
of keywords, inclusion and exclusion criteria, selected articles and
data collection are described in Supplementary File 1. The category
‘Other’ includes genotypes that appeared in less than 5% of the
patients, representing in total less than 3 reported patients per
genotype, which are described in the text box. ND, Not defined or
not reported; †, intronic mutation c.639-1G>T. Created with
GraphPad Prism 8.
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TABLE 1 Clinical features and biochemical parameters of reported PMM2-CDG patients with immunological involvement.
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inemia Required Ig infusions
(130)

Two died of pneumonia (4.3 and 6 y), one
with septic shock (1.8 y), one with

unclassified infection (9.9 y); twelve had SLE,
often associated with fever and seizures

(131)

osis Serum transaminase concentrations highly
increased during the septic like-events

(132)

Infection episodes associated with seizures (133)

(134)

inemia (135)

(136)

t shift
(137)

Died at 8 w from deterioration of respiratory
and myocardial function (138)

Died of circulatory and respiratory failure at
1 m

(139)

penia;

nemia

IVIG treatment

(140)
;
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IVIG treatment

(141)

inemia Died at 8 w due to severe failure to thrive
and recurrent infections

(142)
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Number of
patients with

immune
involvement

Genetic
variants
(Va/Vb)

Age
(at

report)

Clinical Features
Biochemic
ParameteInfections (pathogen,

when identified)
Immune manifestations

1
R141H/V129M 2 y 6 m Recurrent episodes of fever related

to hypogammaglobulinemia
Hypogammaglobu

21

R141H/F119L 0–19 y
(mean 7.6

y)

Some presented intercurrent infections Febrile seizures

1
24delC/V231M 10 m Three septic-like events

(0–2m, inconclusive bacterial infection)
High fever ↓ CRP; leukocy

6 R141H/- – Infection episodes Fever (during infections)

1
N216I/N216I 16 m Several upper airways infections;

bronchopneumonia (4 m)

2 – – Hypogammaglobu

1 – 3 m Neonatal sepsis (S. aureus) Persistent dermatitis

1
R141H/E93A/ 6 y Upper UTI and frequent RTI until 2 y Leukocytosi

with significant le

1
F119L/F157S Deceased Macrophage activation, phagocytosis

of erythropoietic
elements (newborn)

1
V231M/T237R Deceased Pneumonia (1 w, Klebsiella)

2

P113L/IVS3
+ 2T>C

6 y Recurrent otitis media (< 1 y); pneumonia
(including Pseudomonas); Pseudomonas

cellulitis; chronic mucocutaneous Candida;
recurrent line sepsis

↓ neutrophil chemotaxis; poor
vaccination response

Leukocytosis; leuk
↑ CD19+;

hypogammaglobu

P113L/IVS3
+ 2T>C

4 y Recurrent otitis media (< 1 y); pneumonia
(RSV and Influenza); chronic

mucocutaneous Candida; recurrent line
sepsis; E. coli sepsis; S. viridans endocarditis

Poor vaccination response; fever and
vesicles post varicella vaccination;

delayed-type hypersensitivity anergic
to mumps and Candida

Leukocytosi
CD19+,

hypogammaglobu

1
T237R/C241S 5 y Intraepithelial lymphocyte

infiltration (18 m)

1
F119L/F157S Deceased Recurrent infections

(bacteria)
Hypogammaglobu

2 24delC/P113L 6 y – Diffused cerebral vasculitis
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TABLE 1 Continued
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siv penia Cow milk intolerance
(144)

Diet at 6 y due to acute ascites and
pericardial effusion during infection;

(145)Died at 1.8 y (ascites and pericardial effusion
in multi-organ failure)

Lung infection was fatal (146)

(147)

(148)

Worsening of lymph vessel structure due
to infections

(149)

euk (150)

3+ 6+/
D

Rotavirus infection required ICU admission
for 2 m

(151)

D3 +;
16+ atio

Died at 14 m (multi-organ failure) after ICU
admission due to infection

↓ Ear infections were responsive to
oral antibiotics

↓

↓
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patients with

immune
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report)
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PaInfections (pathogen,

when identified)
Immune manifestations

R141H/V139M 8 y – Pericarditis

1
– 6 y Neonatal sepsis; gastroenteritis (2 m);

recurrent upper RTI
Progres

2

R141H/F119L Deceased Adenovirus infection

D188G/L35X Deceased Minor infections with recurrent
hypoalbuminemia, ascites, tachypnea,

and dyspnea

1 M1V/V129M Deceased Lung infection at 3 m

2
I132T/F207S 10 w Few infections and bronchiolitis (viral)

R141H/V231M 5 y – Necrotizing enterocolitis (neonatal)

1 F157S/C241S 4 y 6 m Chickenpox (viral)

2

R141H/F119L 12 y Group A Streptococcus, E. coli
(bacterial infections)

R21G/R21G 29 y Recurrent infections
(bacterial; 2 m)

1 R141H/G57R 3.5 m L

5

E33X/V44A 1 y Severe viral infections (rotavirus at 3 m,
complicated with post-natal CMV infection)

↓ C

R141H/V231M Deceased Severe viral infections at 5.5 m (adenovirus)
and at 1 y (rotavirus)

↓ C
↑ CD

R141H/Y64C 4 y Severe viral infections: enteritis at 5 m
(rotavirus) and 8 m (adenovirus),

bronchiolitis (RSV) at 5 m; recurrent
ear infections

P113L/
haploinsufficiency

4 y

P113L/
T118S+P184D

9 y
D
C
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Observations Reference

↓ CD3,
8);
linemia
M)

Died at 21 m due to heart failure and
pulmonary edema (fatal infection crisis)

(152)

Died at 2 y (unknown cause of death)

D4+ T

linemia

IVIG treatment

(153)

Infection was a SLE trigger

(154)Infection was a SLE trigger

Infection was a SLE trigger

cytosis
y)

(155)

6 w) Died at 11 m from respiratory insufficiency
and heart failure after vaccination

(156)

(157)

Died at 10 m (cardiac issues)
(158)

(159)

ia Unknown cause of death (160)

Common cold lead to hospital visit (161)

(162)Infection with associated hyperthermia and
epileptic seizures triggered somnolence

and irritability

ia Died at 59 m at the hospital (admitted due
to pain)

(163)

Died at 11 y and 6 m due to end stage
renal disease
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patients with
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Genetic
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(Va/Vb)
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report)

Clinical Features
Biochem
ParametInfections (pathogen,

when identified)
Immune manifestations

2

R141H/V231M Deceased Pneumonia (21 m) T lymphopenia
CD4 and C

hypogammaglob
(IgG and Ig

R141H/G208A Deceased Episodes of bacterial sepsis (1 y)

1

I153*/I132T 8 m Recurrent lower respiratory infections (1/
month at 3 m and
3/month at 3 y)

Persistent low C
cells

hypogammaglob
(IgG)

3

L32R/IVS-1G>C 14 y 5 m Enterovirus

P113L/F207S 3 y 3 m Influenza virus infection

R141H/D65Y 5 y 8 m Upper viral RTI

1
L104V/L104V 6 y Persistent leuko

(from 6 to

1
R141H/V231M Deceased Two infection episodes at 10 m (A.

baumanii detected in one episode)
Fever (during infections) Leukocytosis

1 L82Vfs*2/I132T 7 y 6 m Febrile seizures

1
I132F/

I132F+G117Rfs*
Deceased Presumably viral encephalitis

(6 w)

1 F119L/F119L 21 y Several infections (5 y) Febrile seizures (4 y)

1 C9Afs*27/V129M Deceased Pancytope

1 D12H/L104V 23 y Common cold (11 y)

2

P113L/P113L 13 y Gastroenteritis (viral) Refractory fever

R141H/V44A 24 y Several unexplicit infections
(see observation)

2

R141H/G15R Deceased Recurrent infections); gastroenteritis (C.
difficile 7 m, Parvovirus 46 m); sinusitis

(46 m)

Eczema; febrile illness Pancytope

G42R/P113L Deceased Recurrent infections; pneumonia and sepsis
(9 y)
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(164)

(165)

(166)

DVT simultaneous with infection

(167)

Developed SLE during febrile illness

Developed SLE during febrile illness

Septic episode with coagulopathy resulting in
DVT (9 m)

Fever associated with SLE

SARS-CoV-2 infection led to hospitalization.
Developed SLE during febrile illness

Developed SLE during febrile illness.
Died at 12 m from liver failure and portal

venous thrombosis.

Developed SLE during febrile illness

Fever associated with SLE
(> 17 y)

PubMed as the search engine (detailed in Supplementary File 1).
venous immunoglobulin; m, months old; RSV, respiratory syncytial virus; RTI, respiratory tract
- intronic mutation c.639-1G>T.
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Number of
patients with

immune
involvement

Genetic
variants
(Va/Vb)

Age
(at

report)

Clinical Features
B
PInfections (pathogen,

when identified)
Immune manifestations

1 R141H/L32R 13 y Recurrent RTI (3 y); pneumonia (4 y)

1 G117C/I120T 2 m Pneumonia

3

R141H/promoter
variant

(c.-167G > T)

6 y Eczema; GI inflammation; colon
moderate pancolitis, cryptitis

R141H/promoter
variant

(c.-167G > T)

10 y Active gastric inflammation;
pancolitis with cryptitis

R141H/promoter
variant

(c.-167G > T)/

6 y Eczema; eosinophilic esophagitis;
gastritis; inflammation with
cryptitis; egg anaphylaxis

10

R141H/G15A/ 3 y Unspecified infection

P113L/V182D 7 y Febrile illness

T237R/C241S 8 y Febrile illness

R141H/N216I 3 y Septic episode (9 m)

P113L/T237R 7 y High fever

R141H/F119L 29 y SARS-CoV-2 infection Febrile illness

R141H/V231M Deceased Febrile illness

R141H/F119L 1 y Possible sepsis

R141H/P113L 9 y Febrile illness

F119L/† 26 y Periods of fever

Clinical and immunological data represented were obtained following a literature revision using an automated python search through the MEDLINE database and using
aCD, cluster of differentiation; CRP, C reactive protein; CMV, Cytomegalovirus; DVT, deep venous thrombosis; ICU, intensive care unit; Ig, immunoglobulin; IVIG, intr
infections; SLE, stroke-like episodes; UTI, urinary tract infection; Va, variant a; Vb, variant b; WBC, white blood cells; y, years (old); m, months (old); w, weeks (old). †
Up arrow - increased or high.
Low arrow - decreased or low.
i
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incomplete N-glycans with terminal mannose residues, reduced

sialylation, and increased expression of glycosphingolipids. This

multifaced glycan profile contributes to molecular interaction and

cell recognition, underpinning the disease ’s symptoms

and complications.
4.2 Altered glycosylation could explain
immune involvement in PMM2-CDG

The altered glycan profile of PMM2-CDG patients could be

directly or indirectly implicated in the immunological

manifestations reported in these patients (Table 1). Firstly,

compromised glycosylation indicates a disruption in the

recognition and response triggering of ligands by immune

receptors. For example, glycosylation of Toll-like receptors and

other pathogen recognition receptors is pivotal in the recognition

and binding of pathogen structural components in these heavily

glycosylated structures, affecting and conditioning the optimal

functioning of these receptors (178–182). This means that, in a

disease as PMM2-CDG, where hypoglycosylation is prevalent, the

impaired general glycosylation caused by this defect early in the N-

glycosylation pathway could compromise the effective recognition

of threats by immune receptors and the overall immunological

response in these patients, leading to a possibly higher susceptibility

to recurrent and severe infections in PMM2-CDG patients.

Moreover, increased truncated surface N-glycans have been

associated with chronic gastrointestinal inflammation, such as IBD

(183). One of the mechanisms known to be associated with IBD and

other autoimmune diseases severity is a deficiency in branched N-

glycans in the mucosal T lymphocytes, which has been associated

with mutations in the MGAT5 gene, leading to a hyperimmune

response (184, 185)With a mutation in the PMM2 enzyme, an early

defect in the N-glycosylation pathway also leading to truncated N-

glycans, a decrease in complex and branched glycans, and a known

heterogenous clinical phenotype in PMM2-CDG, it is possible that

the gastrointestinal inflammatory events observed in patients share

the same mechanisms as IBD and other autoimmune diseases. The

study of mannose in the regulation of immune processes showed

that increased levels of mannosylated glycans might play a role in

inducing inflammatory autoimmune-type responses, such as in

systemic lupus erythematosus (SLE) (186). The higher abundance

of mannosylated glycans has been associated with SLE through

increased gd T lymphocyte development and infiltration into the

kidneys (187, 188). Additionally, the alteration of terminal sialic

acid levels observed in PMM2-CDG might point towards the

dysregulation of inflammation and autoimmunity processes (189,

190). In fact, hyposialylation of immunoglobulins has been linked

to autoimmune pathologies, such as granulomatosis, chronic

inflammatory demyelinating polyneuropathy and rheumatoid

arthritis (189). Besides, sialic acid has been shown to have an

important role in regulating the activation, proliferation,

modulation, and orientation of several immune cells, including

dendritic cells, T and B cells (189, 191). Although these observations

may contribute to the understanding of infections, inflammatory

manifestations in tissues, or even unexplained febrile illness that
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occurs in PMM2-CDG, caution should be taken while drawing

definitive conclusions due to glycan heterogeneity between

patients (170).
4.3 Possible links between PMM2-CDG
glycan profile and susceptibility
to infection

The nuanced interplay between host and pathogen constitutes a

fundamental facet of the infection. Glycans are known pivotal

mediators for pathogen recognition and the cell glycoprofile

serves as critical determinants of infection outcomes. The glycans

expressed in some PMM2-CDG patient derived tissues have been

elucidated, and described above, which allows us to have a general

overview of the PMM2-CDG glycan profile.

Altered glycans in the PMM2-CDG host may also indicate

higher susceptibility to binding and invasion by microorganisms

across diverse cells and tissues, given the existence of a thinner and

less dense glycocalyx - a glycan-rich structure which protects cells

and tissues from aggression (192). The disbalance of the glycocalyx

exposes novel glycan epitopes, such as altered patterns of sialylation

and exposed mannose, thereby providing pathogens with potential

attachment and invasion sites (192).

Figure 4 illustrates a comparative analysis between the N-

glycosylated plasma membrane of a healthy individual, with the

hypothetical model of a PMM2-CDG patient plasma membrane,

constructed based on the known main characteristics of these

patients’ glycan profile. Within this context, we highlight some

potential host-pathogen interactions, where microorganisms

infecting PMM2-CDG patients gain advantages by recognizing

specific glycan structures or having facilitated access to otherwise

protected sites.

Some PMM2-CDG patients exhibit increased synthesis of

several glycosphingolipids (174), notably globotriaosylceramide

(Gb3), a sphingolipid that serves as the canonical receptor of

Shiga toxin, which is a very potent bacterial toxin that can lead to

hemolytic and uremic syndrome and, in most severe cases, death

(193, 194). This toxin is produced by Shigella dysenteriae and by

Shiga toxin producing E. coli, such as E. coli O157:H7 (193). Gb3

also acts as the binding site for lipid-binding adhesins, such as PapG

(E. coli), LecA (Pseudomonas aeruginosa) and SadP (Streptococcus

suis) (195–197). All these adhesins and Shiga toxin are identified as

mediators in the pathogenic infection process. Thus, the exposure of

Gb3 in PMM2-CDG patients can increase susceptibility to infection

by these pathogenic bacteria through these intermediaries, as

i l lus tra ted in Figure 4 . An increased express ion of

glycosphingolipids, especially Gb3, in PMM2-CDG patients,

might render them not only more susceptible to a broader range

of infections but also make organs and tissues, typically less affected

by microorganisms’ infection, more vulnerable.

Sialic acid, known to facilitate infection by many viruses and

bacteria, such as Influenza viruses or Haemophilus influenza

bacteria, also serves as an energy source for commensal

microorganisms (198, 199). Abnormal sialylation can eventually

disrupt the microbiota balance, creating a more favorable
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environment for growth and persistence of pathogenic

microorganisms. This imbalance can grant direct access to the

host epithelium or availability of secreted products, with

Clostridium difficile being the bacterial infection mostly associated

with gut dysbiosis (Figure 4) (200, 201). Additionally, some bacteria

have developed strategies to eliminate sialic acid residues to bypass

its protective roles within the intricate glycocalyx network.

Employing this strategy, the bacteria uncover novel adhesin

binding sites and gain closer proximity to the cell membrane to

infect the host. Notable examples include glycosyl-hydrolases NanA

of Streptococcus pneumoniae, and NanH (Figure 4) and ChiA of

Salmonella typhimurium, which degrade terminal sialic acid

residues (202–204). In the case of PMM2-CDG patients who

present lower levels of sialylation, pathogenic bacteria may find

the infection process easier because they do not need to use their

neuraminidase to access internal glycan epitopes to initiate their

adhesion process. Therefore, the abnormal sialic acid profile in

PMM2-CDG might contribute and indicate a disrupted microbiota,

creating a conducive environment for pathogenic infections.

The reduction of longer-high mannose glycans and high

abundance of short high-mannose glycans observed in PMM2-

CDG may also have implication in the recognition by pathogen’s

critical adhesion factors needed for the colonization and infection.

In Table 2, we present several adhesion factors that are known to be

mannose sensitive. FimH, a well-studied lectin-like mannose-

binding adhesins, is expressed in many bacteria of the

Enterobacteriaceae family, such as Escherichia coli, Salmonella

enterica and Klebsiella pneumoniae (212–215). Specifically, FimH
A B

FIGURE 4

Proposed comparative models of plasma membrane glycosylation. (A) In healthy cells, the plasma membrane exhibits glycoproteins decorated by
extended N-glycans, collectively forming the glycocalyx. Terminal mannose residues on glycoproteins serve as targets for adhesins, exemplified by
FimH in bacteria like E. coli and S. enterica. Certain bacteria, such as S. enterica, release glycosyl hydrolases like NamH, which degrade terminal
glycans as sialic acid, thereby increasing available binding sites and promoting bacterial adherence. The host glycosphingolipids, including Gb3, also
serve as binding sites for adhesins, e.g., LecA in P. aeruginosa or for bacterial toxins, such as Shiga toxin. (B) In PMM2-CDG cells, aberrant
glycosylation could promote bacterial colonization and infection by pathogens such as C. difficile. Hyposialylation could lead to the exposure of
more adhesion sites. Increased short high mannose glycans offer additional binding sites for bacteria expressing FimH (e.g., E. coli and S. enterica),
enhancing their invasion. Similarly, elevated Gb3 expression increases Shiga toxin checkpoints, intensifying its lethality. Created using
BioRender.com.
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TABLE 2 Adhesins from microorganisms that target glycans modified in
PMM2-CDG patients.

Organism Adhesin Glycan-specificity Reference

Escherichia coli
Salmonella
enterica
Klebsiella

pneumoniae
Proteus
mirabilis

FimH Mannose (205)

Enterobacter
cloacae

Type 1 Pili

Mannose
Man9(GlcNAc)2
oligosaccharides
(high affinity)

(206)

Lactobacillus
plantarum

Msa Mannose (207–209)

Pseudomonas
aeruginosa

LecB

D-a-mannose (Low
affinity)

L-a-fucose-binding PA-IIL
(High affinity)

(210)

Uropathogenic
E. coli strains

PapG

Forsmann antigen (Gb5),
globotetraosylceramide

(Gb4) and
globotriaosylceramide

(Gb3)

(25)

Acinetobacter
baumannii

CsuA pilus D-mannose (211)
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from E. coli has a striking and versatile binding capability

interacting with a wide range mannose–containing glycans,

exhibi t ing a higher affinity for ol igomannose-3 and

oligomannose-5 structures with Mana-(1,3) branches (216).

These specific glycans, such as Man3GlcNAc2, appear to be more

prevalent in PMM2-CDG patients (Figure 4). Another mannose-

related adhesion factor is CsuA pilus of Acinetobacter baumannii

which has been confirmed to contribute to biofilm formation and

adherence to the respiratory epithelium (211). In summary, an

aberrant glycosylated environment with an increased prevalence of

terminal mannose-containing glycans can significantly benefit these

microorganisms, by providing binding sites in close proximity to

the cell surface and granting an advantage over host defenses.

Although these host glycosylation-based host-pathogen

interactions are recognized as contributors to infection, discerning

the exact impact of the glycosidic alterations in PMM2-CDG

patients on their susceptibility to infections remains challenging.

More information on the glycan profiling of patients’ epithelial

tissues would provide more accurate information to formulate

target research questions and exploratory studies based on

available data concerning microorganisms infecting PMM2-

CDG patients.
5 Discussion, conclusions, and
future perspectives

As in most rare diseases, the nature of the pathological

mechanisms and specificities of each CDG are still elusive.

However, recent advancements in diagnosis and research are

progressively unveiling the intricacies of the pathomechanisms,

particularly in CDG immunopathology, increasingly recognized

over the years (37, 38).

Our review not only updates the clinical picture of CDG with

immune involvement, but also categorizes them according to their

immunodeficiency profile, as established by the IUIS (39). To this

date, 11 CDG have been classified as inborn errors of immunity by

the IUIS and we propose the addition of FUT8-CDG to this group,

due to the predominance of lung immune dysfunction (120).

Nevertheless, classifying CDG is challenging especially when, so

few patients are diagnosed and present heterogeneous phenotypes.

The case of MAN2B2-CDG exemplifies this challenge, where an

initial immunocompromised presentation contrasted with a

subsequent case lacking apparent immune dysfunction,

highlighting the need for caution in categorization (41, 44).

Despite the challenges, the classification of CDG based on their

immunodeficiency is crucial. It not only enhances our

understanding and clinical management of these diseases but also

facilitates a structured analysis of underlying genetic defects, the

identification of specific clinical phenotypes, and the potential

inclusion of these CDG for targeted treatments tailored to the

unique needs of each immunodeficiency.

Our work provides, for the first time, an exhaustive review of

PMM2-CDG patients with immunological involvement. Our
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comprehensive literature review shows that immunological events

in PMM2-CDG, mostly represented as increased susceptibility to

infection, are prevalent during infancy and childhood and

occasionally lead to severe, sometimes fatal, outcomes. Our review

data highlighted that immunologically affected patients

predominantly have R141H-bearing genotypes, in line with

previous reports (128, 168) and probably because the R141H

genetic variant is the most prevalent pathogenic PMM2 variant

(30, 217). Yet, the limited evidence per genotype hampers the

establishment of genotype-phenotype correlations. Of note is the

fact that we identified 45 genotypes related to immune involvement

in PMM2-CDG patients. Nevertheless, 28 additional genotypes

captured through patient-reported data (168), highlight the need

for comprehensive studies on immune-related clinical events to fill

existing gaps. Moreover, while pinpointing precise genotyping

correlations remains challenging, the pattern of immune

involvement observed in PMM2-CDG contrasts with the more

consistent immune deficiencies seen in other CDG, where

abnormal immune cell development or function often serves as a

defining feature. This contrast underlines the critical yet variable

nature of immune involvement across different CDG. Such

variability emphasizes the importance of recognizing and

managing the broad spectrum of immune dysfunctions in CDG,

including the occasionally severe complications encountered in

CDG like PMM2-CDG.

This review highlights the broader implications of glycosylation

defects, showing that the changes in the glycosylation inherent to

CDG genetic defects result can significantly dictate the patient’s

immunophenotype. They are associated with dysregulation and the

inability to trigger an adequate and balanced immune response

which is justifiable by a plethora of dysregulated immune

parameters, such as immune cells and antibodies, whose function

is inevitably modulated by glycans. Besides, we hypothesize that

altered glycan profiles create microenvironments that favor

infection, by promoting adherence and colonization by specific

pathogens. Taking the example of PMM2-CDG, we established

associations between the altered glycan profile and reported clinical

immunological manifestations and we suggest potential host-

pathogen interactions. Nevertheless, there are some limitations

that difficult the establishment of such relationships, as follows:
(a) The gaps in knowledge on CDG immunophenotypes arise

from the lack of methodical investigation of immunological

parameters between health centers and from the lack of

evaluation or inconclusive reports about infectious agents,

which limits the identification of predisposition for

particular pathogens.

(b) The heterogeneity of reported PMM2-CDG glycan profiles

and the impact of factors and modifiers like genetic

polymorphisms and diet regimens hampers the

establishment of direct causal relationships between

altered glycosylation and infections.

(c) The multi-system involvement of most CDG and the

interrelation between organs and systems poses challenges
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in drawing clear conclusions since patients’ immunological

manifestations depend on several contexts. Uncertainty

exists on whether infection recurrence is influenced by a

predisposition to certain microorganisms, or by a

dysfunctional immune system unable to resolve

infections. Additionally, immune dysfunction in CDG

may be a hallmark of the disease ’s pathological

mechanisms, or be secondary to other clinical

manifestations (e.g., hypogammaglobulinemia subjacent

to nephrotic syndrome and/or proteinuria) (164), disease

implications (e.g., protein misfolding or instability) (218) or

metabolic decompensation (215).
While our review explores connections between modified

glycan patterns, using PMM2-CDG as a model, and the host-

pathogen adhesion processes, this relationship remains a crucial

area of research in the broad field of infectiology. Despite decades of

research on host-pathogen interactions, the diversity and variability

of glycans and adhesins in various pathogens keeps this topic active

within the scientific community. Many infectious mechanisms

remain elusive, emphasizing the need for additional studies,

which includes the identification of unknown adhesins and their

specificity. Furthermore, the relevance of alterations in specific

host-pathogen interactions is still to be determined, especially

when intact interactions with unaltered host-glycans persist. This

points out the complexity of host-pathogen interactions and

highlights the importance of continued research in this field.

All in all, this review provides a comprehensive understanding

of the immunological involvement of CDG immunodeficiencies

and of PMM2-CDG. It explores a line of research towards infection

susceptibility, proposing altered host glycans-pathogen interactions.

To address the current gaps in our understanding of immune

implications in CDG, targeted research is crucial. Improved

reporting of immune events and identification of pathogens

responsible for infections are key steps toward establishing these

connections. But other methodologies should also be taken

in account:
• Collaborative research: leveraging diverse expertise and

resources from different groups, can foster more

comprehensive investigations into CDG immunopathology.

Such collaborations spanning multiple research centers,

enable standardized measurements and depth of data

collected, facilitating the validation of findings across this

heterogeneous patient population. For example, longitudinal

studies through natural history studies such as the one

currently ongoing by the Frontiers on CDG Consortium

(ClinicalTrials.gov Identifier: NCT04199000).

• Interdisciplinary approaches: these are vital for a thorough

understanding of the immunological alterations in CDG. By

bridging disciplines like immunology, glycobiology,

bioinformatics and system biology, researchers can

employ multi-omics studies (e.g., genomic, proteomic and

glycomics) to improve our understanding of potential

genotype-phenotype associations and the roles of glycans
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Particularly in the context of immunological responses and

susceptibility to infections in CDG, nuclear magnetic

resonance presents as a promising methodology to study

protein-glycan interactions (219).

• Patient involvement: advancing research in CDG’s

immunological aspects is an effort across a broad range of

strategic areas. By embracing the involvement of patient

advocacy groups in research planning and execution, we

can ensure that the studies address the most pressing needs

and concerns of those affected by CDG. For instance,

collecting patient-reported outcomes and quality of life

data would be extremely important to have a holistic

perspective on the disease’s impact, particularly in terms

of immunological episodes. Namely, in PMM2-CDG, some

tools have been pinpointed (220, 221).
Ultimately, understanding the immunological implications in

CDG could lead to improved care and management for affected

patients, enhancing their quality of life by informing more effective

and personalized treatment strategies.
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151. Garcıá-López R, De La Morena-Barrio ME, Alsina L, Pérez-Dueñas B, Jaeken J,
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