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and their crucial role in antiviral
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model Bombyx mori
Mian Muhammad Awais, Shigang Fei, Junming Xia,
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Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of
Animal Science, South China Agricultural University, Guangzhou, China
Themidgut, a vital component of the digestive system in arthropods, serves as an

interface between ingested food and the insect’s physiology, playing a pivotal

role in nutrient absorption and immune defense mechanisms. Distinct cell types,

including columnar, enteroendocrine, goblet and regenerative cells, comprise

themidgut in insects and contribute to its robust immune response. Enterocytes/

columnar cells, the primary absorptive cells, facilitate the immune response

through enzyme secretions, while regenerative cells play a crucial role in

maintaining midgut integrity by continuously replenishing damaged cells and

maintaining the continuity of the immune defense. The peritrophic membrane is

vital to the insect’s innate immunity, shielding the midgut from pathogens and

abrasive food particles. Midgut juice, a mixture of digestive enzymes and

antimicrobial factors, further contributes to the insect’s immune defense,

helping the insect to combat invading pathogens and regulate the midgut

microbial community. The cutting-edge single-cell transcriptomics also

unveiled previously unrecognized subpopulations within the insect midgut

cells and elucidated the striking similarities between the gastrointestinal tracts

of insects and higher mammals. Understanding the intricate interplay between

midgut cell types provides valuable insights into insect immunity. This review

provides a solid foundation for unraveling the complex roles of the midgut, not

only in digestion but also in immunity. Moreover, this reviewwill discuss the novel

immune strategies led by the midgut employed by insects to combat invading

pathogens, ultimately contributing to the broader understanding of insect

physiology and defense mechanisms.
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1 Introduction

In insects, the gastrointestinal tract, despite variations in its

morphology (due to differences in feeding habits), comprises a

monolayer of epithelial cells surrounded by visceral muscles. This

intricate anatomical structure is divided into three discrete regions -

the fore, mid, and hindgut (Figure 1), each characterized by distinct

attributes, roles, and embryonic origin (1). In Drosophila and

silkworms, the midgut is a complex tissue bearing a striking

resemblance to its mammalian counterpart (2). Its multifaceted

functions include digestion, immune responses, the regeneration of

the aged cells, and recovery of the infected luminal tract.

The second-largest organ within the insect body is involved in

digestion-related activities and holds critical importance in the

insect’s defense against pathogens (3). It serves as the initial line of

defense against invading pathogens. One of the most conspicuous

aspects of the midgut’s immune function lies in its ability to produce

antimicrobial peptides (AMPs) and reactive oxygen species (ROS) (4,

5). These molecular weapons are integral components of the insect’s

defense arsenal to combat and neutralize potential threats from

invading pathogens. The production of AMPs is a particularly

significant aspect of this defense mechanism, as these small yet

potent molecules possess the ability to target a wide array of

invading microorganisms (4). Researchers have dedicated

significant efforts to unravel the intricate mechanisms underlying

AMP production and to isolate novel AMPs (6).
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Beyond its role in AMP production, the midgut also plays a

crucial part in maintaining the intricate balance of gut microbes. To

maintain this delicate equilibrium, the midgut expels disease-related

microbes and pathogens (7), preserving a beneficial microbial

community. The unique immunological features of the midgut

render it a subject of considerable scientific interest and

investigation. This ongoing pursuit of knowledge concerning the

midgut’s immune functions is invaluable, as it contributes to a

deeper understanding of silkworm’s immunity. Ultimately, these

insights not only enhance our comprehension of silkworm biology

but also hold the potential to inform broader discussions on

immunity across various biological systems.

Further, the utilization of Bomby mori as a model organism

offers numerous advantages for scientific research (8). Notably, a

straightforward and well-characterized genome sequence has

facilitated genetic manipulations and studies on gene functions

and regulations (9). The short life cycle, progressing through stages

in a matter of weeks and big progeny size, enables rapid

experimentation and observation (Figure 2). Silkworms are easy

to handle and can be maintained in laboratory conditions with a

simple diet of mulberry leaves. Additionally, the large size of

silkworm eggs and the transparency of their pupal stage enhance

experimental accessibility (10). Their well-defined developmental

stages, shared biological processes with other insects, and certain

similarities to mammals further elucidate the value of silkworms as

versatile model organisms across various research disciplines (11).
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FIGURE 1

Schematic representation of midgut cell types. (A) Mature larvae, (B) The midgut, (C) Different types of midgut cells in silkworm (D) Different roles of
enterocyte due to the presence of various organelles. Secretory enterocytes in anterior midgut contain secretory organelles such as endoplasmic
reticulum and lysosomes whereas, absorptive enterocytes located in the posterior midgut have absorptive organelles like microvilli and infoldings to
support the absorption of the nutrients.
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1.1 Modern-omics technologies and
cell types

The advent of single-cell RNA sequencing technology (scRNA-

seq) has revolutionized our understanding of gene regulation at the

single-cell level by scrutinizing the gene expression profiles of

thousands of individual cells, thus facilitating the identification of

previously unknown cell types and their unique physiological states

(12). Moreover, it has provided a means to unravel the intricate

developmental trajectories of cells, shedding light on their origins

and evolutionary pathways (12). Recent transcriptomic

investigations have unveiled different cell types in the midgut in

Drosophila (2, 13) mosquitoes (14) and silkworms (15), and a

compelling narrative, revealing that the insect midgut, exemplified

by Drosophila and silkworms, closely related to the mammalian

small intestine in terms of the cell types present and their associated

marker gene expression patterns (2). Table 1 summarizes well-

established cell type markers from scRNA-seq analysis of midgut

tissues in Drosophila, mosquitoes, silkworms and mice. In the model

insect Drosophila, the midgut undergoes renewal at regular intervals

of one to two weeks, facilitated by specialized regenerative cells

known as intestinal stem cells (ISCs) (17). These ISCs exhibit

similarities with mammalian transit-amplifying cells (TACs) in the

G2 phase of the cell cycle. Additionally, within the midgut milieu in

insects, there are endocrine cells, enterocytes, and enteroblasts, all of

which share akin marker gene expression patterns when compared

with their counterparts in mammals (2). In Drosophila,

enteroendocrine cells (EEs) mirror their mammalian counterparts,

while goblet cells found in lepidopteran midguts resemble

mammalian goblet cells. Furthermore, cardia cells within the

Drosophila midgut exhibit marked similarities in marker
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expression profiles with the goblet cells of mammals (2). Similar

observations were reported by Xia et al. in a recent study, wherein

diverse cell types identified in the silkworm midgut exhibited nearly

identical patterns of marker gene expression (15). This convergence

extends to the functional domain, where homologous marker genes

underscore numerous facets of midgut function. These findings shed

light on the remarkable conservation and convergent evolution of

midgut biology across diverse taxa, underscoring its significance in

understanding insect physiology and potential implications for our

comprehension of mammalian gastrointestinal biology.

Regarding the origin of different types of cells, recent studies

have revealed that the self-renewable ISCs similar to TACs in

mammals raise enteroblasts (EBs) or enteroendocrine progenitor

cells (EEPs), and the notch signaling pathway controls this

determination. Heightened notch signaling pathway directs ISCs

toward a developmental trajectory culminating in the formation of

absorptive enterocytes (ISC → EB → EC) (18, 19). In contrast,

when notch signaling is maintained at a lower level, ISCs follow an

alternative route, leading to the generation of hormone-secreting

enteroendocrine cells (ISC → EEP → EEs) (20). This finely

regulated process of cellular fate determination plays a critical

role in regulating the composition and functional dynamics of the

insect midgut.

This review will discuss a concise yet comprehensive overview

of the cell-level functionalities of the insect midgut, with a particular

focus on the silkworm, from the insights derived from advanced

transcriptomic studies. Additionally, we discuss the role of various

midgut cell types in the immune defense mechanisms against

pathogens. This integrated approach aims to provide readers with

a coherent and deep understanding of the immunologically active

organ, the insect midgut.
FIGURE 2

The Silkworm (B.mori): from egg to adult.
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2 Mid-gut cell types

2.1 Columnar cells/enterocytes

Columnar cells (CCs) are pivotal among the four primary

cellular phenotypes within the insect midgut (Figure 1) (7). They

are referred to as “enterocytes” by the feature of their akin

absorptive functionalities to their mammalian small intestinal

counterparts (21–23). Beyond their absorptive nature, these CCs

prominently orchestrate the synthesis and secretion of digestive

enzymes, thereby underscoring their indispensable contribution to

digestive processes within the insect midgut environment (24). The

distinct anatomical feature of CCs includes the centrally located

nucleus accompanied by a prominently convoluted apical

membrane, giving rise to microvilli with an inherent actin

cytoskeletal structure (Figure 1) (25). In addition to the common

characteristics inherent to CCs across insect species, there exist

specialized ultrastructural features that are discernible within

distinct regions of the midgut and feeding behaviors of insects

(26–29). The ultrastructural composition of CCs within the midgut

exhibits a transition along the longitudinal axis, displaying distinct

roles in the shifting anatomical context (21). Structural evidence

highlights that CCs in the anterior midgut are responsible for

secreting an array of digestive enzymes encompassing

exopeptidases, maltases, endopeptidases, amylases, lipases, and

lysozymes (Figure 1) (24, 30). These enzymes are secreted into
Frontiers in Immunology 04
the midgut lumen via conventional exocytosis and through

mechanisms involving apocrine or micro-apocrine modes of

secretion (30). Conversely, CCs within the posterior midgut

region are characterized by their involvement in synthesizing

serine proteases (31–33). Given that digestive enzymes play a

direct and crucial role in facilitating nutrient accessibility and

development (34, 35), the production and activities of these

enzymes are regulated by a rigorous regulatory framework.

Multiple factors, encompassing the composition of nutrients,

signals from endocrine and neuronal sources, and interactions

with gut microorganisms, collectively contribute to the intricate

modulation of enzymatic processes underlying nutrient digestion

and absorption (36–39). Nutrient absorption within CCs is

executed through the activity of transport proteins, which exhibit

distinct distribution patterns upon the regionalization of the midgut

(Figure 1) (32, 40). The Na+/K+ ATPase channel for absorption is

absent in CCs, and the cotransporters of CCs capitalize on the

electrochemical gradient of K+ rather than that of Na+ as a driving

ion. The amino acids from protein digestion are translocated from

the lumen into the intracellular cytoplasm, marking the specialized

functionality of CCs in nutrient absorption (41, 42).

2.1.1 Role of CCs in immunity
CCs play a multifaceted role in immunity and nutritional

uptake. These cells secrete enzymes that have been demonstrated

to have a significant role in immunity within various insect species.
TABLE 1 Marker genes for major cells types in mice, Drosophila and Aedes aegypti.

Organism Mice Drosophila Aedes aegypti Bombyx mori

Cell types Potential
marker

Reference Potential
marker

Reference Potential
marker

Reference Potential
marker

Reference

Columnar
cells
(Enterocytes)

Reg3g,
Gsdmc4,
Prss32, Krt8,
Krt19,
Reg3b,
Gsdmc2,
Apoa1,
Mep1b

(16) Trypsin genes,
Alpha-theta
trypsin, Lab,
Vha100-4

(2) Nubbin, Ubiquitin,
Trypsin, Aquaporin,
Lipase, V-type
proton ATPase

(14) Ara,
Amy35, Bs,

(15)

Endocrine Cells Chgb, Chga,
Gfra3,
Trp53i11,
Neurod,
Vwa5b2,
Cpe,T
ac1,Fam183b

(16) Pros, AstA,
NFP, AstC

(2) Prospero, (14) Npfr-a4, Npf,
Npy2r-a10,
Npfr-a11

(15)

Intestinal Stem
cells (Tansit
amplifying cells
in Mice model)

Hspd1, Ptbp1,
Snora26,
Snhg20,
Rps271,
C1qbpwdr4,
Nxt1,
Ppil1, Rfc2

(16) Delta, Esg (2) Delta, Klumpfuss (14) NID1, (15)

Goblet cells Clca3,Zg16,
Fcgbp,Tff3,
Agr2,Scin,
pdia5, Spink4,
Muc2,
Ccla6Klk1

(16) Ets98B (15)
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For instance, the lysozymes secreted by CCs regulate the microbial

load across distinct midgut regions in synergy with the alkaline

environment (43). A myriad of proteases is secreted into the lumen

of the insect gut by CCs. Alongside their primary function of

enzymatic breaking down of ingested food, they also play a

critical role in degrading proteins linked to invading pathogens.

Importantly, these proteases possess the ability to target the proteins

of such pathogens. This includes the structural components of

virions and their surface proteins crucial for initiating cellular

infection (44, 45). Bm-SP142 is a 35 kDa protease mainly

expressed in the middle part of the silkworm midgut, effectively

impairs Bombyx mori nuclear polyhedrosis virus (BmNPV)’s ability

to infect BmN cells. Furthermore, Bm-SP142 has demonstrated its

efficacy in diminishing the propagation efficiency of both BmNPV

and Bombyx mori bidensovirus (BmBDV) within silkworms,

indicating the antiviral potential of proteases secreted by CCs

(46). It was reported that a midgut serine protease, the alkaline

digestive enzyme trypsin termed Alkaline A (BmTA), has antiviral

potential against BmNPV. The proteomic analysis elucidated a

substantially high level of BmTA in the resistant silkworm larvae

compared to the susceptible. Viral analysis showed a decreased level

of the Vp39 gene in the recombinant-BmTA-treated group (47).

The secretion of the signaling protein Hedgehog has been well-

documented in both Drosophila and B. mori (48, 49). Following

infection by Escherichia coli or Bacillus thuringiensis, a notable

proliferation of midgut cells and upregulation of Hedgehog genes

have been observed in the silkworm. When genes associated with

the Hedgehog pathway were experimentally silenced, cell growth

was suppressed, indicating the pathway’s regulatory role (49). These

findings provide insights into the critical role of signaling proteins

in immunity against pathogens. Notably, in Drosophila, these

proteins exhibit a connection with nutritional availability and

developmental process as these play a role in the delayed

pupation observed in starved flies, attributed to their capacity to

inhibit ecdy-streroid production due to a reduction in the

transcription of genes linked to enzyme production related to

molting (48).

Given the direct correlation between nutrient availability,

growth, and development, which collectively underpin animal

survival (50–52), it becomes evident that CCs from the midgut

engage in communication to synchronize responses and evade the

deleterious effects of invading pathogens. This interplay serves as a

strategic mechanism to counteract the pathogenic influences. CCs’

the crucial components of midgut epithelium, have a dynamic role

in insect health and survival, serving as a critical nexus between

digestion and immunity.
2.2 Endocrine cells/Enteroendocrine cells

Nutrient uptake and digestion are the critical functions

performed by the insect midgut. Along with these vital

physiological phenomena’s essential for growth and development,

another critical function performed by the gut is the maintenance of

gut homeostasis. The homeostasis is maintained through the

complex gut-brain axis, forming a neurohumoral communication
Frontiers in Immunology 05
system. Thanks to midgut EEs, which secrete biologically active

peptides responsible for the sophisticated interplay of

communication within the organism (38, 53, 54). Table 2

summarize some important peptides secreted by the EEs. EEs

discovered around three decades ago (64–66), have two distinct

morphological forms, open and closed types (67), characterized by

their peptidergic nature (64); the former have direct contact with

the midgut lumen (67, 68), while the latter lacks such interaction as

they do not extend through the epithelium (Figure 1) (33, 67). The

functional application of recent genomic and proteomic approaches

provides compelling evidence of the critical role of EEs within the

insect midgut play in the physiology and developmental processes

of insects (56, 69, 70). The EEs of silkworms were classified into four

distinct subtypes according to their spatial distribution. Type I cells

were identified across all three midgut regions, while type II, III and

IV cells were localized in the anterior, middle, and posterior midgut,

respectively (56). The spatial distribution of EEs across different

midgut regions also depends on the specific peptide they produce

(17, 71). The peptides are transformed into active states by cleavage

and post-translation modification from protein precursors

produced by EEs. In Drosophila, 9 major precursors were

identified (58), whereas in silkworms, 18 distinct protein

precursors were identified (56). In different insects, the peptides

produced after cleavage are mainly involved in the regulation of

food in the alimentary canal, from reduced ion transport to

suppressed gut contractions (72, 73). In B. mori tachykinin

peptides (Tk) secretions are regulated by B. mori gustatory

receptor (BmGr4) expressed in some Tk-producing EEs in the

anterior midgut when food and digestive products arrived after

feeding began (60). The regulatory role of peptides secreted by EEs

is evident in locusts and Drosophila. Notably, in the midgut of

starved locusts, the levels of Tk diminish while their circulation in

the hemolymph increases, suggesting a potential responsiveness to

nutritional status for enhanced food uptake (74). Further insights

have emerged from studies in Drosophila, demonstrating that the

EE-produced Tks contributes to lipid metabolism through
TABLE 2 Peptides produced by endocrine ells and their functions.

Peptide Produced
By

Functions Reference

Allatostatins Endocrine cells JH secretion,
AMP production

(55–57),

Diuretic
hormone 31

Endocrine
Cells

Visceral
muscle contraction

(58, 59),

Tachykinin
(Tk)

Endocrine cells Food sensing
& Digestion

(60, 61)

Orcokinin Endocrine cells Regulation of ecdysis (62)

Ryamide Endocrine cells Feeding & Digestion (56)

Neuropeptide F Endocrine cells Feeding &
digestion modulation

(63)

Myosupression Endocrine cells Food sensing &
gut contractions

(56, 60),

CCHamide Endocrine
Cells

Gut muscle contraction (17, 56, 58),
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interaction with their receptor TKR99D situated in the brain (61).

Targeted ablation of EEs expressing TKs resulted in the suppression

of intestinal stem cell proliferation, indicating the developmental

role of these peptides (37).

2.2.1 Role of EEs in Immunity
Few of the immunologically important peptides produced by

the EEs are enlisted in the Table 2. Allatostatins, initially identified

in cockroaches, are produced by insect brain and midgut EEs (75).

The midgut of silkworms displays a pronounced enrichment of

allatostatin receptors compared to the brain (76). These peptides

play a crucial role in the development and secretion of juvenile

hormone (55). Their involvement in immune functions has been

documented in the well-studied model organismDrosophila (77). In

red imported fire ants, an upregulation of allatostatin A2 expression

was observed in response to Solenopsis invicta virus-3 (SINV-3)

infection. The elevated expression of the peptide consequently leads

to sharp production of the AMP cecropinA1, serving as an immune

strategy (57). The midgut EEs produce another bioactive peptide

known as diuretic hormone 31, which exhibits an immune response

when faced with bacterial infection. ROS accumulates within the

midgut lumen in a manner contingent on the transient receptor

potential ankyrin 1 (TRPA1) receptor. This receptor activation

enables EEs to release the diuretic hormone and its receptor in

the neighboring visceral muscles, initiating the contraction of

longitudinal visceral muscles. As a consequence, the expulsion of

the pathogen from the midgut is facilitated.

EEs secrete peptides, which are also released from neurons (70,

78), posing a challenge in precisely attributing roles to EEs. Notably,

midgut EEs are postulated to release peptides that exert paracrine

effects on adjacent cells. While extensive research investigations are

done to elaborate the EEs functions in development and immunity

using model insects, a significant knowledge gap exists in

comprehending the regulatory mechanisms governing EE-derived

peptides in other insects, such as silkworms. Molecular and

functional analyses utilizing cutting-edge techniques are

imperative to elucidate the regulatory role of peptides

comprehensively. These investigations can potentially unravel the

intricate landscape of midgut physiology and insect homeostasis.

Moreover, they offer insights into how the second-largest organ in

insects contributes to immune defense against invading pathogens.

This pursuit advances our fundamental understanding of endocrine

activity from a molecular perspective and sheds light on broader

physiological implications.
2.3 Goblet cells

Lepidopteran insect’s midgut possesses a distinctive category of

cells known as goblet cells (GCs) (21, 23, 79, 80). These GCs, in

conjunction with the midgut’s CCs, play a pivotal role in the

elevated pH of the midgut environment. These insects primarily

feed on plant matter; their food encompasses secondary

metabolites, such as tannins and phenols, which can be

detrimental. The presence of these secondary metabolites
Frontiers in Immunology 06
diminishes nutrient accessibility, as they form insoluble

complexes via cross-linking with enzymes and proteins. To

counteract this constrained nutrient availability, the coordinated

efforts of GCs and CCs come into play, preserving an elevated pH

within the midgut lumen. GCs are characterized by a conspicuous

chalice-shaped central cavity, which originates from the

invagination of the apical membrane (Figure 1) (21, 22, 81, 82).

Their distribution within the midgut varies according to their

respective locations, resulting in heterogeneous concentrations

(21). These GCs establish intricate connections with other midgut

cells, employing septate and gap junction formations to facilitate

intercellular communication and coordination (83). The chalice-

shaped central cavity (Goblet cell cavity, GCC) is lined by small

structures known as microvilli, and these microvilli are longer at the

basal portion of GCC than the apical portion, providing extensive

surface area. These microvilli are surrounded by actin. The GCC

content is effectively separated from the intestinal lumen through a

sophisticated apical structure called a valve. This valve consists of

densely packed microvilli lacking mitochondria, which do not allow

the free movement of the content (82). GCs play a pivotal role in

preserving the distinctive characteristic of elevated alkaline pH

within the midgut of these insects. This distinct milieu is upheld

through the presence of the vacuolar-type proton pump (V-H+

ATPase) (82, 84, 85). This pump is actively engaged in the

transportation of protons (H+) from the cytoplasm into

the interior of GCCs (86, 87) at the expense of energy against the

concentration gradient (82). Mitochondria located within

the microvilli supply the requisite energy for this process. The

active translocation of H+ is instrumental in the preservation of a

transmembrane electrical potential of 150 mV (88). The V-H+

ATPase pump orchestrates an intricate exchange between H+ and

K+, resulting in the net flow of K+ from the cytoplasm of GCs into

the interior of the GCCs (81). This establishes an electrochemical

gradient conducive to the efflux of K+ from the GCCs into the

lumen of the midgut via a specialized valve. This transport

phenomenon is augmented by the activity of GCs carbonic

anhydrase, which facilitates the generation of a flux of HCO3-

(81) This flux-causing K+ transport is essential in maintaining the

elevated pH within the midgut.

2.3.1 Role of GCs in immunity
GCs within the insect alimentary tract are similar to their

mammalian small intestinal counterparts, notably evidenced by

large cavities embellished with microvilli (2, 89). The distinctive

hallmark of the mammalian intestinal goblet cells is the production

of mucus, forming a protective layer. This layer is critical in shielding

the intestinal milieu from the abrasive action of ingested food and

invading pathogens (90). Similar observations related to mucin

secretion and the associated epithelial immune competence have

been documented within fishes. Goblet cells encompass a substantial

proportion of the epithelial constitution in fish (91). Notably, these

cells evince an increase in size following exposure to microplastics

(MPs), indicative of escalated mucus production. This phenomenon,

in turn, confers enhanced epithelial protection against the abrasive

effects exerted by MPs (92). The macromolecular composition of
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mucous secretions encompasses essential constituents like mucin

proteins (93) alongside immunomodulatory proteins (94). This

collective evidential paradigm underscores the multifarious

contributions of goblet cells and their mucous effluents toward

maintaining epithelial integrity and immune homeostasis (95). The

histological resemblance observed among the GCs in mammals,

fishes, and insects suggests a potential similarity in the functional

roles attributed to these specialized insect cells. Several scientific

investigations have revealed the significant contribution of GCs to

immunity in mammals and fishes. Consequently, a conjecture arises

that these cells might potentially serve an immunological role in

insects, specifically lepidopteran insects. Despite relatively limited

research, studies have begun to shed light on the involvement of GCs

in immunity, exemplified by their response in instances such as that

observed in Helicoverpa armigera. When the larvae of H. armigera

were subjected to an infection by the cytoplasmic polyhedrosis virus,

a typical pathogen targeting the midgut, a visible deformation in the

midgut’s structural architecture emerged. This perturbation was

accompanied by the emergence of anomalous microvilli projections

subsequent to the viral infection (96).The GCs, historically linked

with mucin secretion and maintenance of epithelial barrier function,

might possess a multifaceted role beyond these established functions.

The emergence of analogous histological features across diverse taxa

sparks the inquiry into the potential conservation of immune

functionalities associated with GCs. Given the intricate interplay

between host organisms and pathogens, investigating the role of

GCs in insect immunity represents a frontier of scientific inquiry that

warrants further investigation. In the context of insects, such as H.

armigera, the observed response of GCs to viral infection introduces a

novel dimension to the understanding of insect immune defense

mechanisms. The morphological alterations in the midgut’s

microarchitecture following viral challenge allude to the potential

involvement of GCs in orchestrating immune responses. Elucidating

the precise molecular mechanisms that underpin this phenomenon

remains an intriguing avenue for future research endeavors.
2.4 Stem cells

The gastrointestinal tract of insects faces numerous challenges,

including the abrasive effects of ingested food’s movement along the

alimentary canal interactions with gut microbiota, a primary barrier

against ingested toxic compounds and invasive pathogens. ISCs of

midgut play a pivotal role in these critical functions. ISCs are also

critical in upholding gut integrity and homeostasis, even within the

challenging environment of the digestive tract of insects (97). ISCs

positioned along the basal side of the pseudostratified epithelial

monolayer (Figure 1) exhibit resemblances to their mammalian

counterparts as reported by the Huang et al. in Drosophila (2).

Functioning as self-renewing and multipotent entities, these cells

have the ability to give rise to diverse differentiated cell lineages

constituting the intestinal tract (98, 99). ISCs have blast-like

morphology characterized by fewer organelles and a cytoplasm of

lighter density (22). Notably, recent research has unveiled the

presence of storage entities, lipid droplets and glycogen granules

within ISCs (100, 101). The division of ISCs depends upon the
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cellular function performed after division. Two types of cell

divisions are observed in ISCs, i.e. asymmetric and symmetric. In

the asymmetric division, to maintain the constant population of

ISCs within the gastrointestinal milieu, ISCs generate a stem cell

and a terminally differentiated counterpart, poised to undertake

specific functional roles. In contrast, the symmetric division

modality results in the formation of two daughter cells, both of

which assume mature and functional phenotypes (40, 102, 103).

Once the ISCs are divided and differentiated, they can’t revert to

stem cells (104). This interplay between divisional strategies

underscores the regenerative prowess of ISCs but also attests to

their pivotal role in orchestrating tissue homeostasis and repair.

2.4.1 Indirect involvement in immunity
Various factors are responsible for the depletion of CCs,

including gut microbes, pathogenic microorganisms and the

production of AMPs as an immune strategy. The study of the

model insect Drosophila has been instrumental in shaping our

current knowledge regarding the involvement of ISCs in both

immunity and tissue renewal. The efficient and rapid restoration

of the lost cells is accomplished by a coordinated immune response

with an epithelial renewal mechanism that facilitates the repair of

the damage (37, 105). ISCs proliferation following infection

contributes substantively to replenishing the depleted cell

populations, with this process being intricately governed within

the midgut milieu. The regulation of ISC activities, requisite to

rebuild the cellular deficits, is elicited through the involvement of

established canonical signaling pathways activated upon pathogenic

invasion. Moreover, the phenomenon of epithelial renewal has been

discerned as effective in countering the immune effects against oral

viral infection (106). Hemocytes could also induce the proliferation

of ISCs during systemic infections, resulting in increased epithelial

renewal within the gut (107, 108). This process is significant due to

its essential role in improved immunity and recovery during such

infections. Central to this phenomenon is the increase of gut

renewal orchestrated by the release of secreted ligands of the Upd

family, which, in turn, engage the JAK/STAT pathway. During oral

infections, hemocytes are employed in the midgut, which triggers

the release of Dpp, orchestrating the stimulation of ISCs at an early

infection phase and restraining this activation through the recovery

stage (109). The intricate modulation of these ligands poses a

complex regulatory puzzle, necessitating further exploration into

the respective roles played by hemocytes, ISCs, and visceral muscles,

which also partake in the regenerative cascade (110, 111). Recent

studies have begun unrevealing the involvement of signaling

pathways and transcription factors underlying the expression of

Upd ligands within the midgut (112). The proliferation of ISCs

following infection is regulated by diverse signaling cascades

mediated by cell-autonomous and non-cell-autonomous

mechanisms. Canonical pathways such as JAK-STAT, EGFR (103,

113, 114), and others, including Wnt/Wg (115), BMP (116), Hippo

(117), JNK (118), and p38, play crucial roles in orchestrating the

proliferative capacities of ISCs. Nonetheless, a comprehensive

elucidation of their integrated regulation, ensuring a balanced

proliferation of ISCs, remains elusive. Further investigations are

necessary to understand these interactions and regulatory networks
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that underlie the intricate balance governing ISC proliferation,

thereby advancing our understanding of intestinal homeostasis in

the context of infection.

While ISCs aren’t directly involved in the immune response,

their significance is evident in their pivotal role in expelling

pathogens from the midgut and initiating the regeneration of the

gut’s epithelium, which aids in the recovery of the insect after

infection. Despite these insights, many uncertainties persist

regarding the precise functions of ISCs in immunity.

Considerable research efforts are required to investigate the full

potential of these ever-young cells within the midgut in the context

of immunity, particularly in lepidopteran models like silkworms.

Such investigations promise not only to enhance our

comprehension of the involvement of ISCs in immunity and

epithelial renewal but also to unveil novel immune strategies

employed by this multifunctional organ in insects.
3 Peritrophic membrane
and immunity

In insects, an acellular structure known as the peritrophic

membrane (PM) exists alongside various cell types within the

midgut (Figure 1) (119–121). The PM, a semi-permeable

membrane-like structure (Figure 1), is produced by epithelial cells

(122). It possesses chitin as an essential component, cross-linked with

glycoproteins to form a crucial component of the midgut’s defense

and immune system (121). With a thickness ranging from 0.5 to 1.0

µm, the PM plays a pivotal role in selectively facilitating the transport

of nutrients and ions while also shielding the midgut cells from

abrasion caused by ingested food and potential harm from pathogens

(121, 123). The composition of the PM matrix encompasses PM

proteins (124), and numerous investigations have reported varying

numbers of proteins within the PM matrix of different lepidopteran

insects. For instance, there are reports of 305 proteins in silkworms

(125) and 41 proteins in H.armigera (126) The extent of involvement

of these proteins in PM thickness is contingent upon the composition

of ingested food. It is hypothesized that these proteins are stored

within the midgut cells and are subsequently released for PM

synthesis in response to stimuli from ingested food (127). Although

the thickness of PM during growth is evident in diverse insect species

such as Ostrinia nubilalis (128), Manduca sexta (129), Anomala

cuprea (130), Tribolium castaneum (131), Melipona quadrifasciata,

and Apis mellifera (132). This thickening of the PM in response to the

stimulus of food is not confined to Lepidoptera; it extends to other

insects, such as Anopheles gambiae, where the post-blood feeding

localization of Ag-Aper14 within the ectoperitrophic space has been

documented (133). However, dietary conditions or starvation have no

impact on the mRNA expression levels of peritrophins in Spodoptera

litura (134) and insect intestinal mucins (IIMs) in M. configurata

(135). The complex structural characteristics of the PM elucidate its

specific biological role. Studies have reported that the disruption of

PM structure facilitates the transport of the bacterial toxin into the

midgut cells, enhancing microbial damage (136, 137). Disruption of

chitin synthesis within the PM has been observed to impair the

digestive processes in S. litura, resulting in reduced pupal weight and
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adult emergence rate (138). The complete inhibition of PM secretion

by the chitin-binding reagent calcofluor has been found to induce

larval developmental retardation, increased larval mortality rates, and

a markedly increased susceptibility to baculoviral infection (139).

Bm01504, one of many peritrophins discovered in silkworms, showed

antiviral efficacy against BmNPV. The overexpression of Bm01504

results in decreased expression of the key viral gene p10. Conversely,

the RNAi of Bm01504 resulted in increased expression of the p10 viral

gene, suggesting the potential antiviral role of PM against BmNPV

(140). The protective effects of the PM matrix are also demonstrated

in the other model insects like T. castaneum. In this context, the

silencing of two PM matrix proteins, TcPMP3 and TcPMP5-B, via

RNA interference has been correlated with a depleted fat body

component and growth-related effects, ultimately leading to

increased mortality rates in T. castaneum (131). Chitin Synthetase

B (CHSB), encoded by the CHS-2 gene, plays a pivotal role in chitin

biosynthesis within the PM. RNAi targeting CHS2 has been

instrumental in elucidating its function, resulting in structural

alterations within the mosquito’s PM. These alterations encompass

vacuolization, cell invagination, partial cell rupture, and the

conspicuous disruption of PM architecture (141). Pathogenic

microbes, especially viruses, have evolved strategies to exploit the

unique properties of the PM. They produce enhancins, which, in

turn, manipulate the PM’s permeability (142, 143). Notably, the viral

protein Chitinase A shares analogous functional attributes with

enhancins, contributing to the degradation of PM integrity and the

emergence of structural perforations when administered to silkworm

larvae (144, 145). The Chitinase enzyme identified within Spodoptera

frugiperda nucleopolyhedrovirus (SfMNPV) showed insecticidal

properties through its interaction with the host’s PM (146, 147). A

similar phenomenon occurs with Dendrolimus kikuchii

nucleopolyhedrovirus, where the secretion of chitinase results in

insecticidal activity via the degradation of the chitinous framework

comprising the peritrophic membrane (148). Overall, the non-

cellular PM is critical in preserving midgut structural integrity,

facilitating the digestive processes, and acting as the first line of

defense against pathogenic microbes. A deeper exploration of the

functional roles of structural proteins within the PM promises to

enhance our understanding of this intricate midgut component.

Comprehensive studies remain imperative to unravel the

multifaceted roles of peritrophins, particularly their discernible

antiviral effects. These endeavors not only hold the potential to

illuminate context-specific responses of the midgut to microbial

challenges but also to unveil novel windows for fortifying

immunity in economically significant organisms such as the

silkworm. Furthermore, such investigations offer a promising route

for identifying innovative targets in developing insecticides designed

to control insect pest populations.
4 Midgut juice and immunity

The midgut juice, secreted by midgut cells (149) with a pH

ranging from 9.2 to 11, has long been recognized for its digestive

enzyme content essential for the digestion of food (24). Table 3

includes the proteins from the midgut juice having immune
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characteristics. Studies have revealed the immunological role of

digestive juice, unveiling the presence of proteins harboring potent

antiviral functions (150). The antimicrobial properties of midgut

juice were first reported by Hayashiya et al. They documented that

the silkworm midgut juice has a distinctive red fluorescence

emitting substance (150). Subsequent investigations have

elucidated that a membrane protein, P252, which, upon binding

with chlorophyllide, forms a red fluorescent protein (RFP) complex,

displaying robust antiviral, antibacterial, and antifungal properties

(151). Different forms of RFPs exhibit unique antiviral activities

against different viruses (157). Interestingly, different silkworm

varieties, including both resistant and susceptible strains (158),

showed varying numbers of related RFPs, implying their

involvement in the resistance mechanisms against pathogens.

Silkworm midgut juice also contains other potent antiviral factors,

including BmNOX (152), Bmlipase-1 (153) and serine protease-2

(155), all of which demonstrate strong antiviral activities. A 33%

increase in the survival rate of transgenic silkworms challenged with

BmNPV indicated the antiviral potential of Bmlipase-1 (154). The

digestive enzyme trypsin, alkaline A (BmTA) also showed antiviral

potential against BmNPV (47). Transcriptomic and proteomic

analyses further highlight the significance of these proteins in the

context of antiviral defense, with differential expression patterns

observed in resistant and susceptible silkworms. However, despite

the strong efficacy of these purified proteins as antiviral agents, the

intricate mechanisms governing their antiviral activities still need to

be discovered. Although modern multi-omics techniques have

advanced our comprehension of the antimicrobial functions of

silkworm midgut juice, comprehensive functional studies are

required to unravel the precise molecular mechanisms

underpinning these processes. This deeper understanding holds

promise for enhancing our understanding of immunity against

pathogens and opens new avenues for developing robust

silkworm varieties, ultimately benefiting sericulture practices.
5 Conclusion and future perspectives

The complex relationship between silkworm midgut cell types

and immunity has emerged as a fascinating area of research with

far-reaching implications. The diverse range of midgut cells,
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including goblet, columnar, and enteroendocrine cells, play

pivotal roles in the silkworm’s immune response. These cells

collectively contribute to recognizing, signaling, and defense

mechanisms against invading pathogens. The peritrophic

membrane not only acts as a barrier but also serves as a platform

for displaying immune-related molecules, aiding in detecting and

neutralizing pathogens within the midgut lumen. The involvement

of the midgut in pattern recognition, immune signaling, and the

production of antimicrobial peptides and enzymes further shed

light on the antimicrobial role of the second-largest organ of

the insect.

Further investigation into the specific molecular mechanisms

underlying the immune functions of different midgut cell types will

provide a deeper understanding of how silkworms combat

pathogens. High-throughput omics approaches, such as

transcriptomics and proteomics, can unveil novel immune

effectors. Knowledge based on these modern omics about the

different cell types of the midgut will help to modulate the

silkworm’s immune response through genetic manipulation or

bioengineering, leading to enhanced disease resistance in

silkworm populations, which has implications for silk production

and sericulture. The antiviral potential of midgut juice and its

components could be a platform for developing novel antiviral

therapies for agricultural and medical purposes. Investigating how

silkworm midgut immunity influences interactions with other

organisms, including pathogens and gut symbionts, can shed light

on broader ecological processes.

In conclusion, the intricate interplay between silkworm midgut

cell types, the peritrophic membrane, and midgut juice in immunity

open up a world of possibilities for both scientific exploration and

practical applications, offering a promising path toward a deeper

understanding of insect immune defenses and their potential for

biotechnological advancements in sericulture and beyond.
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TABLE 3 Immunological characteristics of Midgut Juice.

Protein Functions Reference

Red
Fluorescent protein

Antiviral activity upon binding
with chlorophyllide

(150, 151),

BmNOX Antiviral activity (152)

Bmlipase-1 Antiviral activity (153, 154),

Serine protease-2 Antiviral activity (155)

Trypsin alkaline
A (BmTA)

Antiviral activity (47)

Lipase member H-
A(BmLHA)

Antiviral activity (156)
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