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and The Second People’s Hospital of Huai’an, Huai’an, Jingsu, China, 2Department of
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Otorhinolaryngology, People’s Hospital of Hongze District, Huai’an, Jingsu, China
Background: Rhinitis is a complex condition characterized by various subtypes,

including allergic rhinitis (AR), which involves inflammatory reactions. The

objective of this research was to identify crucial genes associated with

inflammatory response that are relevant for the treatment and diagnosis of AR.

Methods: We acquired the AR-related expression datasets (GSE75011 and

GSE50223) from the Gene Expression Omnibus (GEO) database. In GSE75011,

we compared the gene expression profiles between the HC and AR groups and

identified differentially expressed genes (DEGs). By intersecting these DEGs with

inflammatory response-related genes (IRGGs), resulting in the identification of

differentially expressed inflammatory response-related genes (DIRRGs).

Afterwards, we utilized the protein–protein interaction (PPI) network, machine

learning algorithms, namely least absolute shrinkage and selection operator

(LASSO) regression and random forest, to identify the signature markers. We

employed a nomogram to evaluate the diagnostic effectiveness of the method,

which has been confirmed through validation using GSE50223. qRT-PCR was

used to confirm the expression of diagnostic genes in clinical samples. In

addition, a consensus clustering method was employed to categorize patients

with AR. Subsequently, extensive investigation was conducted to explore the

discrepancies in gene expression, enriched functions and pathways, as well as

potential therapeutic drugs among these distinct subtypes.

Results: A total of 22 DIRRGs were acquired, which participated in pathways

including chemokine and TNF signaling pathway. Additionally, machine learning

algorithms identified NFKBIA, HIF1A, MYC, and CCRL2 as signature genes

associated with AR’s inflammatory response, indicating their potential as AR

biomarkers. The nomogram based on feature genes could offer clinical benefits

to AR patients. We discovered two molecular subtypes, C1 and C2, and observed

that the C2 subtype exhibited activation of immune- and inflammation-

related pathways.
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Conclusions: NFKBIA, HIF1A, MYC, and CCRL2 are the key genes involved in the

inflammatory response and have the strongest association with the advancement

of disease in AR. The proposed molecular subgroups could provide fresh insights

for personalized treatment of AR.
KEYWORDS

allergic rhinitis, diagnostic biomarkers, subtypes, inflammatory response,
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Introduction

Rhinitis, affecting over 400 million individuals globally, is a

prevalent condition caused by allergens that triggers an

inflammatory response. It is characterized by symptoms such as

the presence of postnasal drip, frequent sneezing, nasal congestion,

and excessive nasal discharge (1, 2). There are three main types of

rhinitis: infectious rhinitis, allergic rhinitis (AR), and nonallergic

rhinitis (NAR), which can be further categorized into distinct

phenotypes (3). AR, which includes perennial allergic rhinitis and

seasonal allergic rhinitis, is the most common form of rhinitis (4).

AR is a type of atopic disease that is mediated by immunoglobulin E

(IgE) (5). It is characterized by symptoms such as congestion,

sneezing, and itching in the nose, all of which have a negative

impact on the individual’s quality of life (6). Studies have previously

demonstrated that the occurrence of AR in adults in China has risen

significantly, with the prevalence increasing from 11.1% to 17.6%

(7). AR is often accompanied by other health conditions like asthma

and allergic conjunctivitis (8, 9). Indeed, research has indicated that

clinical asthma is present in 20% to 50% of individuals with AR,

while over 80% of patients diagnosed with allergic asthma also

experience symptoms of rhinitis simultaneously (10). In addition,

individuals suffering from AR frequently experience reduced

productivity in learning and work, disrupted sleep patterns,

diminished quality of life, and in some cases, psychological

conditions like depression. As a result, this places a significant

financial strain on society (11, 12). Despite significant progress in

comprehending the pathophysiology of AR, its early detection,

treatment intervention, and underlying causes continue to pose

challenges. Consequently, there is an immediate need to further

explore the pathogenesis of AR in order to identify effective targets

for therapeutic interventions.

Rhinitis is a diverse condition that hasbeen linked to inflammatory

reactions, as seen in AR, but can also manifest without inflammation,

asobserved in idiopathic rhinitis (13).ThedevelopmentofAR involves

a complex and diverse set of causes and factors. AR is characterized by

the involvementof immune inflammationand IgE,whichare crucial in

driving the allergic inflammatory process (14). The inflammatory

response in AR is distinguished by the entrance of inflammatory

cells, such as eosinophils, basophils, mast cells, and T cells, into the

nasalmucosa (15, 16).Overexpression of IL-36g amplifies eosinophilic
02
inflammation in AR by enhancing the adhesion, survival, and

activation of eosinophils (17). Moreover, targeting the NLRP3

inflammasome-induced pyroptosis pathway holds great potential as

a viable therapeutic approach to alleviate inflammatory reactions in

individuals with AR (18). Earlier research has demonstrated that a

correlation exists between inflammatory response-related genes

(IRRGs) and various illnesses, such as diabetic kidney disease and

sepsis (19, 20). As a result, the identification of diagnostic and

therapeutic targets linked to inflammatory response is anticipated to

impede the progression of the AR. This study aims to identify

inflammation-related diagnostic biomarkers for patients with AR,

making it a valuable contribution to the field.
Methods

Acquisition and pre-processing of raw data

The Gene Expression Omnibus (GEO) database is an extensive

public resource for gene expression data across various species (21).

We obtained the transcriptome data from the GEO database, which

can be accessed at https://www.ncbi.nlm.nih.gov/geo/. For our study,

the datasetsmust satisfy the following criteria: 1) TheARgroup should

comprise at least 20 participants; 2) The researchmust focus onHomo

sapiens; 3) The raworprocesseddatamust bepublicly available; 4) The

research must involve blood samples from both individuals with AR

andhealthy individuals. Thedatasets used in this study consisted of the

following:GSE75011,which included15healthy control (HC) samples

and 25 samples from individuals with AR, and GSE50223, which

included 21HC samples and 21AR samples. GSE75011 was chosen as

the test set, while GSE50223was selected as the validation set. The data

obtained from these GEO datasets underwent preprocessing and

normalization using the “affy” R package.

Identifying differentially expressed genes in
patients with AR

Using the limma package, we performed a differential

expression analysis on the GSE75011 dataset, comparing the HC

and AR groups. The DEGs were determined based on the criteria of

a p-value < 0.05 and a |log-fold change (FC)| > 0.5.
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Identifying differentially expressed
inflammatory response-related genes and
performing functional enrichment analysis
on them

Todetermine themost significantpathwaysbetween theHCandAR

groups, we utilized the ClusterProfiler package to perform Gene Set

EnrichmentAnalysis (GSEA).Weobtained the “h.all.v7.4.symbols.gmt”

subset from the Molecular Signatures Database to assess pertinent

pathways. Statistical significance was defined as a p value below 0.05.

Subsequently, the gene set variation (GSVA) method was employed to

assess the inflammatory score. To accomplish this, we employed the

GSVA package to calculate the inflammatory response score for each

sample within the inflammatory response gene set. The resulting

inflammatory response score was then visually represented using a

boxplot.Weobtaineda totalof 200 inflammatory response-relatedgenes

(IRGGs) from theMSigDB (inflammatory response gene set). To obtain

the gene expression profile ofDIRGGs, we intersected these IRGGswith

the DEGs identified from the GSE75011 dataset. By utilizing the

“pheatmap” R package, we generated a heat map that illustrates the

expression patterns of DIRGGs.We used the ClusterProfiler package to

perform functional enrichment analyses on DIRRGs. Our analysis

involved the use of the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Gene Ontology (GO). GO function annotation includes

three categories: biological process (BP), cell component (CC), and

molecular function (MF). The statistical significance was determined by

enrichment,witha significance level set atp<0.05.Ultimately, the results

were visually represented using the ggplot2 package.
Construction of protein-protein
interaction network

The STRING database (https://string-db.org/) is a valuable

resource that allows users to investigate protein interactions (22).

We rely on the STRING database to construct PPI networks, with a

confidence score of 0.4 serving as the threshold for determining the

reliability of these interactions. CytoHubba offers 11 different

topological analysis techniques, encompassing Maximal Clique

Centrality Degree (MCC), Density of Maximum Neighborhood

Component, Maximum Neighborhood Component, Edge

Percolated Component, and six centralities (Stress, Betweenness,

Radiality, Closeness, EcCentricity, and Bottleneck). Out of these

eleven methods, the recently introduced MCC method demonstrates

superior precision in predicting essential proteins from the PPI

network, setting it apart from the rest (23). We utilized the

cytoHubba plugin within the Cytoscape software to identify hub

genes using the MCC method. The top 10 genes with the highest

MCC scores were chosen as hub genes, and these selected genes were

further investigated in subsequent analyses (24).
Random forest and LASSO algorithms are
utilized to screen signature genes

To identify potential candidate genes for diagnosing AR, two

machine learning algorithms were used. The randomForest package
Frontiers in Immunology 03
in R was used to construct a model and calculate the average error

rate for all DIRRGs. Another random forest (RF) model was created

to determine importance values by reducing accuracy. Genes with

an importance value > 1 were identified as hub genes for future

model development (25). The top 8 genes were chosen as promising

candidates. The glmnet package was used for LASSO analysis, with

penalty parameters for 10-fold cross-validation. This approach

surpasses traditional regression analysis for high-dimensional data

assessment (26). Subsequently, we obtained diagnostic genes by

identifying the genes based on their scores in MCC, RF, and LASSO,

and then intersecting the resulting gene lists.
Construction and evaluation of
nomogram model

The construction of a nomogram is extremely advantageous for

the diagnosis of clinicalAR.Tocreate thenomogram,we employed the

rms R package and considered the candidate genes (27). Each

candidate gene was given a score known as “points”, while the “Total

Points” represents the total score of all the genes. The diagnostic

efficacy of both the candidate genes in AR diagnosis was evaluated by

establishing a ROC curve. Additionally, the model’s accuracy was

assessed using decision curve analysis (DCA) and calibration curves.
Single gene GSEA

Toconduct single geneGSEAanalysis, weutilized theGSEA software

to classify the samples into high and low expression groups, using the

median values of diagnostic gene expression levels as the criteria. In order

to explore the underlying molecular mechanisms associated with gene

phenotypes, we obtained the “c2.cp.kegg.v7.4.symbols.gmt” subset from

the Molecular Signatures Database. The minimum gene set was set to 5,

while themaximum gene set was set to 5000. Additionally, one thousand

resamplingswere performed. A p value lower than 0.05was considered to

be statistically significant.
Analysis of the immune microenvironment

The ssGSEAalgorithmutilized immune gene sets that incorporated

genes associated with various immune cell checkpoints, pathways,

functions, and types. To comprehensively evaluate the immunological

attributes of each sample, we applied the ssGSEA algorithm using R

packages such as limma,GSEABase andGSVA (28). Furthermore, the

ggplot2 package was utilized to investigate the association between the

expressionof diagnostic genes and the infiltrationof immunecells. The

findings were visually presented in a lollipop chart.
Identification of different AR subtypes
using unsupervised clustering

The ConsensusClusterPlu package was employed in the study to

conduct unsupervised cluster analysis using the expression profile
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of 22 DIRGGs. This facilitated the categorization of AR patients

into distinct subgroups and the identification of the most suitable

number of clusters.
Identification of small-molecule drugs

The Connectivity Map (CMap) is a database of expression

profiles that harnesses cellular responses to disturbances in order

to uncover potential functional connections between treatments,

genes, and diseases (29). In this study, we performed CMap analysis

to anticipate small-molecule compounds that target subtypes

associated with inflammatory response. We extracted drug

signatures from the Connectivity Map database (CMap, https://

clue.io/). Our input data consisted of the top 100 up-regulated and

100 down-regulated genes in the two subtypes. The final analysis

result is assigned a score ranging from -100 to 100. In the case of

small-molecule drugs, a negative score suggests the ability to reverse

gene expression, which signifies their potential therapeutic

significance. We chose the top five small-molecule compounds

based on their lowest CMap score.
Molecular docking analysis

The binding affinity between signature gene proteins and small-

molecule drugs was investigated by molecular docking technique

(30). The protein structure of signature genes was obtained from the

PDB database, while the molecular structures of small-molecule

drugs were acquired from PubChem. Ligands and receptors were

then processed using AutoDockTools, primarily through the

addition of hydrogen atoms and identification of active pockets.

The binding modes between the candidate protein and small-

molecule drugs were subsequently analyzed using AutoDock

Vina software.
Quantitative real-time PCR analysis

A total of 16 individuals participated in the study, with an equal

distribution of 8 HC and 8 patients diagnosed with AR. The blood

samples were collected from the Affiliated Huai’an Hospital of

Xuzhou Medical University. Prior to the collection, all

participants provided written informed consent, and the study

protocol received approval from the Ethics Committee of the

Affiliated Huai’an Hospital of Xuzhou Medical University (ethical

approval number: 2022029). We collected peripheral blood in tubes

containing citrate, which were then stored at 4°C until ready for use.

RNA was extracted from blood samples using the TRIzol

reagent (Invitrogen, CA, USA) following the manufacturer’s

instructions. Then, the RNA underwent spectrophotometric

quantification at a wavelength of 260 nm, and its purity was

assessed by determining the absorbance ratio at 260/280 nm. The

absorbance ratios (260/280 nm) of the RNA samples are fall within

the range of 1.8 to 2.1. 2 mg of RNA was then subjected to reverse

transcription using the First Strand cDNA Synthesis Kit
Frontiers in Immunology 04
(Invitrogen, CA, USA). qRT-PCR analysis was performed using

the SYBR qPCR Master Mix (Sigma, MO, USA). The parameter

settings during amplification are as follows: initial denaturation at

95°C for 10 minutes, followed by 40 cycles consisting of

denaturation at 95°C for 10 seconds, annealing at 60°C for 30

seconds, extension at 72°C for 1 second, and final cooling at 40°C

for 30 seconds. The expression levels of the diagnostic signature

genes were measured using the Roche LC480 Real-Time PCR

System (Roche). The internal control for mRNA was b-actin. The
primers were presented in Supplementary Table S1.
Results

Expression profile of DIRRGs in AR

The flowchart illustrating the analysis process for this study is

presented in Figure 1. A comparative analysis was conducted

between samples from HC and AR, resulting in the identification

of 1323 DEGs. Among these DEGs, 307 were upregulated, whereas

1016 were found to be downregulated (Figure 2A). The heat map

displayed the level of DEGs in the top 50 between the two groups.

The majority of these genes exhibit a downward trend (Figure 2B).

The GSEA analysis revealed a significant enrichment of the

inflammatory response gene set in the HC group (Figure 2C).

Moreover, the GSVA algorithm was utilized to calculate the

inflammatory response score, highlighting a significantly lower

score in the AR group compared to the HC group (Figure 2D).

Based on our findings, it becomes evident that the development of

AR is closely associated with the inflammatory response. Therefore,

our study aims to delve deeper into the role of IRGGs in AR,

shedding light on their significance in this process.
Functional enrichment analysis

Enrichment analysis was performed on the overlapping genes

between DEGs and IRRGs. In this study, we identified a total of 22
FIGURE 1

The workflow diagram of our study.
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DIRRGs, as shown in Figure 3A. Our findings demonstrated that

the majority of these DIRRGs, such as PLAUR, NFKBIA, RGS16,

GPR132, PTGIR, HIF1A, CXCR6, CDKN1A, LIF, CD55, PDE4B,

GNA15, PTGER4, NAMPT, NLRP3, CCRL2, ICOSLG, and CCL20,

exhibited a significant decrease in samples from AR patients

compared to those from HC, as illustrated in Supplementary

Figure S1. According to the data presented in Figures 3B, C, the

results of the GO analysis revealed that these genes were

significantly associated with BP, including response to

lipopolysaccharide, cellular response to chemokine, and

chemokine-mediated signaling pathway. Additionally, in terms of

CC ontology, these genes were found to be involved in the

inflammasome complex. Moreover, the MF analysis identified C-

C chemokine binding, C-C chemokine receptor activity, and

icosanoid receptor activity as significant terms for these genes.

Furthermore, the KEGG analysis demonstrated that these genes

were associated with pathways such as NOD-like receptor signaling

pathway, chemokine signaling pathway, TNF signaling pathway,

etc. We have also identified key players involved in the development

of chronic myeloid leukaemia - CDKN1A, MYC and NFKBIA.

These genes also intersect with key signaling pathways that control

inflammatory responses and cell communication. In particular, the

genes MEFV, NAMPT, NFKBIA and NLRP3 were involved in the

NOD-like receptor signaling pathway, which orchestrates the

body’s innate immunity. Meanwhile, CCL20, LIF and NFKBIA

emerged as components of the TNF signalling pathway, a key
Frontiers in Immunology 05
mediator of inflammation and apoptosis. Similarly, the JAK-

STAT pathway, a conduit for a variety of cytokines and growth

factors, was influenced by the activities of CDKN1A, LIF and MYC.

Finally, the chemokine signaling pathway, a key player in directing

immune cell traffic, involves CCL20, CXCR6 and NFKBIA. Each of

these pathways, shown in Figure 3C, reveals a complex tapestry of

genetic interactions that are critical to our understanding of the

mechanisms of AR.
Employing machine learning algorithms to
detect the potential biomarkers

A PPI network was established, illustrating the interaction

between 19 different genes (Figure 4A). The ranking of these genes

based on their MCC score can be observed in Figure 4B. To identify

signature genes in patients with AR, two machine algorithms were

employed. The random forest analysis successfully identified 9

signature genes with a relative importance exceeding 1, as

demonstrated in Figure 4C. Additionally, the LASSO analysis

specifically selected 8 signature genes, as illustrated in Figure 4D.

Figure 4E displayed aVenndiagramdepicting the overlap between the

top 10 genes identified using MCC, the 8 significant genes identified

using RF, and the 8 potential candidate genes identified using LASSO.

For analysis and validation purposes, four signature genes (NFKBIA,

HIF1A, MYC, CCRL2) were identified from this intersection.
B

C

D

A

FIGURE 2

Identification of DEGs in AR. (A) Diagrams of the DEGs between the HC and AR groups are represented by volcano plots. (B) Heatmap plots are used
to visualize the top 50 DEGs between the HC and AR groups. (C) GSEA showed inflammatory response plays a vital role in the development of AR.
(D) Boxplots demonstrated variations in the inflammatory response score between the AR and HC groups. **p < 0.01. These results showed that the
development of AR is closely linked to the inflammatory response.
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Development of the nomogram and
evaluation of its diagnostic value

In the AR group, the levels of NFKBIA, HIF1A, and CCRL2

expression were lower compared to the HC group. Conversely, the

mRNA expression of MYC was higher in the AR group than in the

HC group (Figure 5A). In order to improve the accuracy of

predicting the development of AR patients, a nomogram has been

created which incorporates the analysis of four specific genes
Frontiers in Immunology 06
(Figure 5B). By analyzing the receiver operating characteristic

(ROC) curve, it was observed that the model performed

exceptionally well, with a significant area under the curve (AUC)

value of 0.931 (Figure 5C). The results from the calibration curve

(Figure 5D) further validated the remarkable precision of the

nomogram model in predicting outcomes for patients with AR.

Moreover, the decision curve analysis demonstrated the potential

advantages of employing the nomogram model in patients with AR,

as shown in Figure 5E. Moreover, the model’s reliability was
B

C

A

FIGURE 3

Functional enrichment analysis. (A) The shared genes between the DEGs and IRRGs were represented in the Venn diagram. GO and KEGG results are
presented as bubble plots (B) and heat maps (C). The Venn diagram, bubble chart, and heatmap provide a comprehensive view of the potential
biological functions and pathways associated with the genes at the intersection of DEGs and IRRGs, offering insights into their roles in
AR pathogenesis.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1348391
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2024.1348391
assessed by using an external validation dataset (GSE50223)

(Supplementary Figure S2). The results demonstrated that the

nomogram achieved a remarkable diagnostic accuracy for AR,

highlighting its efficacy.

To further validate the diagnostic value of the four markers in

diagnosing AR, we gathered clinical blood samples. With these

samples, we aimed to confirm the effectiveness of these markers in

accurately identifying AR cases. In Figures 6A–D, the AR group had

lower expression of NFKBIA, HIF1A, and CCRL2 compared to HC,

while the AR group had higher expression of MYC (p < 0.05 or p <

0.01 or p < 0.001). Based on our research, we discovered that the

above-mentioned genes associated with the inflammatory response

exhibit a strong diagnostic capability, making them potential

biomarkers for diagnosing AR.
Frontiers in Immunology 07
Exploring possible biological roles of
diagnostic DIRRGs

We conducted a detailed examination of potential signaling

pathways linked to signature genes using GSEA. The results

obtained from single gene GSEA indicated that the NFKBIA

high-expressed phenotype was enriched with MAPK signaling

pathway, NOD like receptor signaling pathway, B cell receptor

signaling pathway, chemokine signaling pathway, endocytosis, and

apoptosis (Figure 7A); the HIF1A high-expressed phenotype was

enriched with T cell receptor signaling pathway, B receptor

signaling pathway, chemokine signaling pathway, chronic myeloid

leukemia, TGF beta signaling pathway (Figure 7B); the MYC low-

expressed phenotype was enriched with chemokine signaling
B

C D

E

A

FIGURE 4

Utilizing machine learning algorithms for the identification of markers. (A) The interaction of 19 genes can be observed in the PPI network. (B) The
top 10 genes with highest MCC scores were selected as hub genes for further investigation. (C) In the random forest model, genes exhibit a level of
importance that exceeds zero. (D) The LASSO model has successfully identified key genes, with a total of 8 genes that are highly suitable for
diagnostic purposes. (E) The Venn diagram showed 4 diagnostic genes identified using the mentioned machine learning techniques and MCC. The
machine learning algorithms could pinpoint crucial genes implicated in inflammatory response, laying the groundwork for potential biomarker
identification and targeted therapeutic strategies.
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pathway, toll like receptor signaling pathway, and MAPK signaling

pathway (Figure 7C); the CCRL2 low-expressed phenotype was

enriched with alpha linolenic acid metabolism, primary bile acid

biosynthesis, linoleic acid metabolism, and sulfur metabolism

(Figure 7D). These findings provided additional evidence that the

NFKBIA, HIF1A, and MYC genes are all intricately connected to

the immune system and the body’s response to inflammation.
The outcomes of the infiltration of
immune cells

In addition, we employed the ssGSEA algorithm to quantify the

enrichment scores of immune cells in the blood of AR. The results

showed a notable disparity in immune cell infiltration between the

HC and AR groups, with the HC group exhibiting significantly

higher levels of Treg and TFH cells (Figure 8A). By analyzing the

correlation between immune cells, we have identified certain genes

that may be involved in the progression of AR. These genes exert

their influence by regulating immune cells like CD8 T cells, mast
Frontiers in Immunology 08
cells, neutrophils, B cells, and THF (Figures 8B-E). In conclusion,

our study provided valuable insights into the underlying

mechanisms of AR and the role of immune cell infiltration in its

progression. The identification of signature genes associated with

specific immune cells not only enhances our understanding of the

AR but also opens up new avenues for targeted therapeutic

interventions. Further research is needed to validate these

findings and explore the potential clinical applications in the

management of AR.
Identifying subtypes of inflammation with
different molecular mechanisms

We also classified AR patients into different inflammatory

phenotypes using unsupervised cluster analysis. This allows us to

better understand the variation and characteristics within the

patient population. Based on the expression profiling of 22

DIRGGs, a consensus clustering approach was used to cluster AR

patients. The results revealed that the optimal number of subtypes
B C

D E

A

FIGURE 5

Development and validation of the nomogram. (A) The expression of four diagnostic genes in the GSE75011 dataset. (B) Nomogram used to assess
AR development potential. (C) Nomogram’s ROC curve for diagnosing AR. (D) Nomogram’s calibration curve. (E) Decision curve analysis with
nomogram model. These findings showed the potential utility of the selected genes as biomarkers for AR and underscore the efficacy of the
proposed predictive model in clinical diagnosis. **p < 0.01, ***p < 0.001.
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B

C D

A

FIGURE 6

Validation of NFKBIA (A), HIF1A (B), MYC (C), and CCRL2 (D) by collected clinical samples. *p < 0.05, **p < 0.01, ***p < 0.001.
B

C D

A

FIGURE 7

GSEA revealed the potential pathways linked to the diagnostic genes. Single gene GSEA of NFKBIA (A), HIF1A (B), MYC (C), CCRL2 (D) in AR. These
findings provided insights into the biological processes and pathways that may be modulated by the expression of these key genes, potentially
unveiling their mechanistic roles in AR pathogenesis or progression.
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was determined to be 2 (Figure 9A). Notably, significant

heterogeneity in gene expression was observed between these two

subtypes. A comparative analysis of samples from subgroups C1

and C2 found a total of 1463 differentially expressed genes. Among

these, 463 genes were observed to be upregulated, while 1000 genes

were observed to be downregulated (Figures 9B, C). Furthermore,

the results of KEGG and GO analysis indicated that these

differentially expressed genes were predominantly enriched in

pathways related to immune and inflammatory processes. These

pathways encompassed autophagy, infection by human T cell

leukemia virus 1, chronic myeloid leukemia, proteolysis, cytokine

production involved in immune response, myeloid cell
Frontiers in Immunology 10
development, T helper 2 cell differentiation, and other related

pathways (Figures 9D, E).

We also performedGSEA analysis on the entire set of genes linked

to two distinct inflammatory patterns. Our results demonstrated

notable variations in certain pathways, particularly in the TGF beta

signaling,TNFAsignalingviaNFKB,P53pathway, etc (Figure10A). In

addition, GSVA results revealed that growth hormone receptor

signaling via JAK-STAT, negative regulation of autophagy, acute

myeloid leukemia, cell growth, TGF beta signaling, positive

regulation of inflammatory response to antigenic stimulus and P53

pathwaywere activated in theC2 subgroup,whichwere consistentwith

the results of KEGG and GSEA (Figures 10B, C). Collectively, our
B

C

D E

A

FIGURE 8

Analysis of immune cell infiltration. (A) Evaluation of the presence of immune cells in the AR and HC groups. (B) Assessment of the correlation
between immune cells and the expression of signature genes. *p < 0.05, **p < 0.01. These correlation analyses provided insight into the potential
regulatory roles of NFKBIA, HIF1A, MYC, and CCR2L in shaping the immune landscape in AR, offering opportunities for novel therapeutic targets and
diagnostic markers. ns, no statistical difference.
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findings from both GSEA and GSVA analysis, along with the

functional enrichment analysis, provide comprehensive evidence

supporting the activation of specific pathways in the C2 subgroup.

Thesefindings shed light on themolecularmechanismsunderlying the

inflammatory patterns observed in this subgroup and may pave the

way for the development of targeted therapeutic approaches for AR

associated with these activated pathways.

Therapeutic target prediction

Through the utilization of CMap analysis, we aim to uncover

potential therapeutic drugs that target AR inflammation-related
Frontiers in Immunology 11
subtypes. A small molecule compound with a lower CMap score is

more likely to possess the capability to treat the AR. As shown in

Supplementary Table S2, Levetiracetam, oxybutynin, metyrapone,

idebenone, and LM-1685 emerged as the five small-molecule drugs

with the most favorable CMap score for the C1 subtype

(Figure 11A). Conversely, triptolide, daunorubicin, dactinomycin,

tipifarnib, and atorvastatin ranked as the top five small-molecule

drugs with the lowest CMap score for the C2 subtype (Figure 12A).

For the molecular docking, we selected five drug candidates and

identified the signature genes as NFKBIA, HIF1A, MYC, and

CCRL2. The molecular docking results were presented in

Figures 11B, 12B. Among these small molecules, LM-1685 and
B

C

D

E

A

FIGURE 9

Identify and analyze subtypes of diseases related to inflammation. (A) Unsupervised cluster analysis. (B) The Volcano diagram and (C) Heatmap
diagram represent the DEGs between the C1 and C2 subgroups. The results of KEGG (D) and GO (E) analysis between the two subtypes. These
analyses enabled the visualization of distinct molecular characteristics and biological processes associated with the defined subgroups, providing
insights into the mechanistic differences underlying these classifications.
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dactinomycin exhibited the strongest binding affinity to the target

proteins. Subsequently, we utilized PyMOL software to visualize the

molecular docking results, as shown in Figures 11C–F, 12C–F.
Discussion

AR is a prevalent and persistent respiratory condition that

afflicts individuals worldwide. Extensive research conducted by

the Global Burden of Disease study has revealed its substantial

impact on the well-being of millions, leading to a decline in their

quality of life over the past century (31). However, despite

significant efforts, the exact causes of AR remain largely unknown
Frontiers in Immunology 12
and require further investigation. Recently, high-throughput

microarray tech and bioinformatics have transformed the study of

complex diseases, like allergies. Microarrays have identified many

genes in immunotherapy for AR, providing treatment targets (32).

The role of the inflammatory response in the development of AR

has been suggested (13). To our understanding, this study is the first

to investigate and analyze the role of inflammation in the

development of AR by identifying and examining IRRGs.

In this research, four primary DIRRGs strongly linked to AR,

namely NFKBIA, HIF1A, MYC, and CCRL2, were discovered by

machine learning. All these genes are responsible for encoding

proteins. NF-kB inhibitor-a (NFKBIA) inhibits the activation of

NF-kB and subsequently, signaling in both the NF-kB and EGFR
B

C

A

FIGURE 10

Enrichment analysis between the two subtypes. (A) The outcomes of GSEA were depicted. The results of GSVA were visualized through a heatmap
(B) and a histogram (C). *p < 0.05, **p < 0.01. These findings facilitated the understanding of the differential pathway between molecular subgroups
C1 and C2, contributing to the identification of distinct biological mechanisms and potential therapeutic targets within the subgroups.
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pathways (33). The identification of NFKBIA gene mutations,

combined with studies showing an increased occurrence of

certain single-nucleotide polymorphisms and haplotypes in

different types of cancers, strongly suggests that NFKBIA acts as a

tumor suppressor gene (34). At present, there is a lack of reports on

the role of NFKBIA in rhinitis. However, the findings from our

study are groundbreaking as they demonstrate for the first time a
Frontiers in Immunology 13
substantial decrease in NFKBIA expression in blood samples from

patients with AR. Tumor microenvironments in various types of

cancers often experience hypoxia, which leads to the impairment of

cytotoxic T cells and facilitates the recruitment of regulatory T cells.

Research indicates that hypoxia-inducible factor 1 alpha (HIF1A) is

involved in the evasion of the immune system by tumors (35). At

the transcriptional level, hypoxia and stabilization of HIF1A are
B

C D

E F

A

FIGURE 11

Screening of potential drugs for patients with C1 subtype. (A) The chemical structure of the potential small molecule compounds. (B) Heat map
presenting the lowest binding energy for molecular docking. Molecular docking results of LM-1685 with NFKBIA (C), HIF1A (D), MYC (E), CCRL2
(F) targets.
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linked to the activation of multiple pathways that regulate

inflammation, cell survival, angiogenesis, and metabolism (36).

Elevated expression of HIF1A is typically associated with

increased patient mortality in various cancer types (37). Previous

findings provided evidence that HIF-1a plays a direct role in the

onset of allergic airway inflammation (38). In addition, the role of

HIF-1a in AR and chronic sinusitis will be crucial, making it a

pivotal target for therapeutic interventions in these conditions (39).
Frontiers in Immunology 14
According to our research findings, the levels of HIF1A in AR blood

samples were notably reduced. This indicates a potential crucial role

of HIF1A in the development of AR. The MYC gene is a major

player in human cancer, making it a key driver in disease

development. With its widespread deregulation and significant

contribution to cancer initiation, perpetuation, and advancement,

targeting MYC is a compelling approach to combat this ailment

(40). Currently, there are few reports on MYC’s role in rhinitis. Yet,
B

C D

E F

A

FIGURE 12

Identification of potential medications for individuals with C2 subtype. (A) The chemical structure of the potential small molecule compounds.
(B) Heat map presenting the lowest binding energy for molecular docking. Molecular docking results of dactinomycin with NFKBIA (C), HIF1A (D),
MYC (E), CCRL2 (F) targets. These docking studies provided structural insights into the potential inhibitory mechanisms of the candidate compounds
against essential proteins involved in AR, and suggest possible therapeutic candidates for further investigation.
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our study’s findings are groundbreaking, showing a significant

increase in MYC expression in AR patients’ blood samples for the

first time. Chemokine receptor-like 2 (CCRL2), belonging to the C-

C motif chemokine receptor family, is a transmembrane receptor

composed of seven domains. It exhibits significant similarity to

other chemokine receptors such as CCR1, CCR2, CCR3, and CCR5

(41). The use of Ccrl2-deficient mice in inflammatory disease

models highlights the importance of CCRL2 in those conditions

(42). In an experiment involving OVA-induced airways

hypersensitivity, the removal of CCRL2 gene resulted in impaired

transportation of dendritic cells loaded with antigens from the lungs

to the mediastinal lymph nodes (43). Currently, few reports discuss

CCRL2’s role in rhinitis. Nevertheless, our study’s findings are

groundbreaking, revealing a significant decrease in CCRL2

expression in blood samples of AR patients. One of our

achievements is the development of a nomogram that combines

the four diagnostic markers mentioned above. This nomogram has

demonstrated high AUC values and excellent calibration, indicating

its accuracy and reliability in diagnosing AR. We anticipate that this

tool will be widely used in clinical settings, playing a crucial role in

the early detection of AR.

According to reports, there is a strong connection between

immune regulation and the occurrence and progression of AR (44,

45). In the present study, the infiltration of immune cells and the

results of single gene GSEA indicated that NFKBIA and HIF1A

were associated with immune cell infiltration and immune-related

pathways in the progression of AR. The development of AR is

influenced by an imbalance in the ratio of Tfh2 and regulatory B

cells (45). The imbalance of Th1 and Th2 cells has been identified as

a critical pathological mechanism in the development of AR (46).

The disease pathogenesis of AR may involve the interaction

between T and B cells, which is facilitated by the expression of

CD23, particularly on switched memory B cells (47). By priming T

cells and attracting eosinophils, activated neutrophils can

potentially play a role in the development of allergic

inflammation observed in AR (48). In our study, we observed a

correlation between the expression of NFKBIA and HIF1A and

various immune cell types (CD8 T cells, Th1 cells, T helper cells,

neutrophils, B cells, and Tcm). The GSEA analysis revealed that the

high expression phenotype of NFKBIA and HIF1A was significantly

enriched in the B cell receptor signaling pathway. This suggested

that NFKBIA and HIF1A may play a role in the regulation of

immune processes in AR.

Furthermore, our findings suggested that the identification and

characterization of these inflammatory subtypes could have

significant implications for the development of personalized

therapies for patients with AR. In the present study, the C2

subgroup, which exhibits active TGF beta signaling pathway and

P53 pathway, has been shown to play a crucial role in mediating

excessive inflammation (49–51). This finding is particularly relevant

as both pathways have been implicated in various inflammatory

diseases, including rhinitis (52, 53). The activation of these

pathways in the C2 subgroup suggested that they may be key

players in the development and progression of AR. These findings

provided valuable insights into the molecular mechanisms driving
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inflammation in AR and may have significant implications for the

development of personalized therapies. By targeting specific

inflammatory subgroups and understanding their unique

molecular profiles, we may be able to improve early detection and

treatment strategies, ultimately improving the overall management

and outcomes of patients with AR.
Conclusion

Our study underscored the noteworthy influence of the

inflammatory response on the progression of AR. We have

discovered four DIRRGs that hold promise as biomarkers and

therapeutic targets for individuals with AR. Furthermore, based

on these DIRRGs, we have identified two molecular subtypes of AR.

These findings provide valuable insights into the underlying

mechanisms of AR and have the potential to facilitate the

development of targeted drug screening and personalized

treatment approaches for AR patients.
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