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sample Mendelian randomization
study and mediation analysis
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University, Harbin, China, 3National Health Commission (NHC) Key Laboratory of Molecular Probes
and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China, 4College of
Bioinformatics Science and Technology, Harbin Medical University, Harbin, China, 5Department of
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Background: Obesity is a metabolic and chronic inflammatory disease involving

genetic and environmental factors. This study aimed to investigate the causal

relationship among gut microbiota abundance, plasmametabolomics, peripheral

cell (blood and immune cell) counts, inflammatory cytokines, and obesity.

Methods: Summary statistics of 191 gut microbiota traits (N = 18,340), 1,400

plasma metabolite traits (N = 8,299), 128 peripheral cell counts (blood cells,

N = 408,112; immune cells, N = 3,757), 41 inflammatory cytokine traits

(N = 8,293), and 6 obesity traits were obtained from publicly available

genome-wide association studies. Two-sample Mendelian randomization (MR)

analysis was applied to infer the causal links using inverse variance-weighted,

maximum likelihood, MR-Egger, weighted median, weighted mode, and Wald

ratio methods. Several sensitivity analyses were also utilized to ensure reliable MR

results. Finally, we used mediation analysis to identify the pathway from gut

microbiota to obesity mediated by plasma metabolites, peripheral cells, and

inflammatory cytokines.

Results: MR revealed a causal effect of 44 gut microbiota taxa, 281 plasma

metabolites, 27 peripheral cells, and 8 inflammatory cytokines on obesity. Among

them, five shared causal gut microbiota taxa belonged to the phylum

Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae, genus

Lachnospiraceae UCG008, and species Eubacterium nodatum group.

Furthermore, we screened 42 shared causal metabolites, 7 shared causal

peripheral cells, and 1 shared causal inflammatory cytokine. Based on known

causal metabolites, we observed that the metabolic pathways of D-arginine, D-

ornithine, linoleic acid, and glycerophospholipid metabolism were closely related

to obesity. Finally, mediation analysis revealed 20 mediation relationships,

including the causal pathway from gut microbiota to obesity, mediated by 17
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metabolites, 2 peripheral cells, and 1 inflammatory cytokine. Sensitivity analysis

represented no heterogeneity or pleiotropy in this study.

Conclusion: Our findings support a causal relationship among gut microbiota,

plasma metabolites, peripheral cells, inflammatory cytokines, and obesity. These

biomarkers provide new insights into the mechanisms underlying obesity and

contribute to its prevention, diagnosis, and treatment.
KEYWORDS

obesity, gut microbiota, plasma metabolites, peripheral cells, inflammatory cytokines,
Mendelian randomization, mediation analysis
1 Introduction

Obesity, a complex metabolic disease, arises from an imbalance

between energy intake and expenditure, leading to excess energy

storage in adipose tissues. Its etiology is multifaceted, involving both

genetic and environmental factors. Presently, approximately one-

third of the global population is overweight (defined as a body mass

index [BMI] between 25 and 29 kg/m²), with 10% classified as obese

(BMI ≥ 30 kg/m2) (1). This global epidemic poses significant risks to

physical and mental health, being a primary contributor to various

diseases, including cardiovascular issues, allergic conditions,

hypertension, type 2 diabetes (T2D), cancer, and mood-related

disorders (2–4). Thus, obesity is a serious public health concern.

In recent years, increasing evidence has shown that an imbalance

in the gut microbiota may play a major role in obesity (5). The gut

microbiota is a microbial community living in the human intestine

that plays an important role in human metabolic regulation and

immunomodulation via interactions with the host (6, 7). The

diversity and richness of the gut microbiota in obese patients are

reduced, and the composition of the gut microbiota changes to

varying degrees (8, 9). For example, an increased Firmicutes to

Bacteroidetes ratio may play a role in the development of obesity

(8, 10). A case-control study found that Enterobacteriaceae levels

were increased, whereas Desulfovibrio and Akkermansia muciniphila

levels were decreased in overweight and obese children (11).

Metabolomics can reveal correlations between metabolites or

metabolic pathways and physiological and pathological changes, thus

providing new information for research on disease mechanisms (12).

Multiple studies have shown that metabolites and metabolic pathways

are closely associated with obesity and that obese patients have

metabolic disorders (13, 14). For example, a study using targeted

serum metabolomics identified metabolites significantly associated

with obesity. In that study, serum concentrations of glycine,

glutamine, and glycero-phosphatidylcholine (Pcaa) 42:0 were

positively correlated, whereas those of PCaa 32:0, PCaa 32:1, and

PCaa 40:5 were negatively correlated with obesity (14). In addition,

plasma metabolites, such as branched-chain amino acids and
02
glutamate, may mediate the relationship between the gut microbiota

and obesity (15).

Obesity is a chronic inflammatory disease closely related to the

immune system and inflammatory responses (16). Adipose tissue

macrophages are key contributors to obesity-related inflammation,

accounting for less than 10% of the immune cells in lean individuals

and up to 50% in obese individuals (17). Additionally, a higher

white blood cell count may be associated with an increased risk

of obesity. After weight loss, total white blood cells, major

components, neutrophils, and lymphocytes significantly decrease

(18, 19). There is also an increasing number of reports on the

relationship between inflammatory cytokines and the risk of

obesity. Previous studies have shown that the increase in the

levels of pro-inflammatory cytokines interleukin (IL)-1, IL-6, and

tumor necrosis factor alpha is closely related to the occurrence and

development of obesity (20, 21). In addition, research has shown

decreased serum levels of IL-27 in obese individuals. IL-27 can act

directly on adipocytes and lead to adipocyte differentiation and

thermogenesis, thus reducing weight and improving metabolic

diseases, such as T2D (22).

While previous studies have identified associations between the

gut microbiome, metabolome, immune inflammation, and obesity,

the precise causal relationships and their respective mediation

proportions remain unclear. Mendelian randomization (MR)

analysis is an effective method that uses genetic variation as an

instrumental variable (IV) to evaluate the potential causal

relationship between exposures and outcomes (23). This

minimizes the impact of confounding factors on causal

estimation, as genetic variations are randomly assigned at

conception. Mediation analysis is used to evaluate the effects of

an exposure on an outcome through a mediator (24). Therefore, we

conducted MR analyses based on publicly available genome-wide

association study (GWAS) summary data to evaluate the causal

relationship among the gut microbiota, plasma metabolites,

peripheral cells, inflammatory cytokines, and obesity, and to

identify pathways from the gut microbiota to obesity mediated by

plasma metabolites, peripheral cells, and inflammatory cytokines.
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2 Methods

2.1 Study design

The study flowchart is illustrated in Figure 1. First, we obtained

published GWAS summary data that included traits such as gut

microbiota, plasma metabolites, peripheral cells, inflammatory

cytokines, and obesity (Supplementary Table S1). Second, two-

sample MR analyses were used to evaluate the causal relationship

among gut microbiota, plasma metabolites, peripheral cells,

inflammatory cytokines, and obesity. Finally, two-step and
Frontiers in Immunology 03
multivariable MR (MVMR) analyses were used to identify the

mediation effect of plasma metabolites, peripheral cells, and

inflammatory cytokines on the relationship between gut microbiota

and obesity. Our MR study was conducted in accordance with the

STROBE-MR guidelines (Supplementary Table S2) (25).
2.2 Data sources

The summary statistics of gut microbiota were retrieved from

the largest multi-ethnic GWAS meta-analysis exploring the host
FIGURE 1

Flow chart of the study. Mendelian randomization study rationale: assumption 1, genetic instruments are associated with exposure; assumption 2,
genetic instruments are not associated with confounders; assumption 3, genetic instruments are not associated with outcome, and genetic
instruments act on outcome only through exposure. BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, WHR adjusted for BMI; Obc1,
Obesity class 1; Obc2, Obesity class 2; obc3, Obesity class 3; MR, Mendelian randomization.
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genetic impact on gut microbiota, which was based on the

MiBioGen consortium (https://mibiogen.gcc.rug.nl/), including

18,340 individuals from 24 cohorts (26). The gut microbiota was

identified using 16S rRNA sequencing, and the patients were

genotyped using a genome-wide single nucleotide polymorphism

(SNP) microarray to determine the genetic locus affecting the

relative abundance of the gut microbiota. The GWAS summary

data of 191 gut microbiome components (including 9 phyla, 16

classes, 19 orders, 30 families, 102 genera, and 15 species) were

included in this study for subsequent MR analyses.

Summary statistics of plasma metabolomics were acquired on

the GWAS Catalog (https://www.ebi.ac.uk/gwas/) under the study

accession numbers GCST90199621–GCST90201020, which

included 1,091 plasma metabolites and 309 metabolite ratios from

8,299 European individuals (27). In that study, there were 850

known metabolites among 1,091 plasma metabolites, which could

be divided into 8 broad metabolic groups: lipid (395), amino acid

(210), xenobiotics (130), nucleotides (33), cofactors and vitamins

(31), carbohydrates (22), peptides (21), and energy (8); the

remaining metabolites were partially characterized molecules (21)

and unknown (220).

Summary statistics for blood cell traits included 408,112

European participants (28); summary statistics for peripheral

immune cells included that of 3,757 European individuals

analyzed using flow cytometry (29). The GWAS data were

downloaded from the GWAS Catalog, and we selected 10 blood

cell count traits and 118 immune cell absolute count traits for

subsequent analyses (accession numbers for each trait can be found

in Supplementary Table S1). GWAS data for 41 inflammatory

cytokines were collected from the University of Bristol (https://

data.bris.ac.uk/data/dataset), including three Finnish cohort studies

(N = 8,293): the Cardiovascular Risk in Young Finns Study,

FINRISK1997, and FINRISK2002 (30, 31).

GWAS summary data for obesity-related traits were collected from

large-scale GWAS or the corresponding meta-analyses. Obesity-related

traits included BMI, waist-to-hip ratio (WHR), WHR adjusted for BMI

(WHRadjBMI), andObesity classes 1, 2, and3.GWASsummarydataon

BMI (32), WHR (33), and WHRadjBMI (33) were obtained from the

meta-analysis of UK Biobank and Genetic Investigation of

Anthropometric Traits (GIANT) consort ium (https: //

portals.broadinstitute.org/collaboration/giant/index.php/

GIANT_consortium_data_files), which contained approximately

700,000 European individuals. Three obesity clinical classification

datasets were downloaded at the IEU OpenGWAS database (https://

gwas.mrcieu.ac.uk/) and obtained from a genome-wide meta-analysis

(34), which contained 263,407 European individuals: Obesity class 1

(BMI≥30kg/m2) contained32,858patients and65,839 controls;Obesity

class 2 (BMI ≥ 35 kg/m2) included 9,889 patients and 62,657 controls;

andObesity class 3 (BMI≥ 40 kg/m2) included 2,896 patients and 47,468

controls. Control was defined as an individual with a BMI < 25 kg/m2.
2.3 Instrumental variable selection

To estimate causal effects using genetic variation, three basic

assumptions of IVs must be satisfied: 1) IVs are related to exposure
Frontiers in Immunology 04
factors; 2) IVs are not associated with confounding factors; and 3) IVs

are not related to outcome variables and only act on outcome variables

through exposure factors. Specifically, the IVs included in this study

were screened tomeet the following conditions: 1) The SNP obtained at

the locus-wide significance threshold of P < 1 × 10-5 is used when there

are too few whole-genome significance loci in the original GWAS

results (35), or the genome-wide significance threshold of P < 5 × 10-8

is used as a potential tool variable related to each exposure trait. 2)

SNPs related to outcome variables were excluded (P < 0.05). 3) The

clumping process was performed to avoid the impact of linkage

disequilibrium (r2 < 0.01, window size = 500 kb; or r2 < 0.001,

window size = 10,000 kb). 4) The MR pleiotropy residual sum and

outlier (MR-PRESSO) test was applied to detect horizontal pleiotropy,

and the pleiotropy effect was eliminated by removing the outliers (36).

In summary, the SNPs were sorted in ascending order according to

the P-values of the MR-PRESSO outlier test, and the remaining

were eliminated one by one until there was no pleiotropy (MR-

PRESSO global test P-value > 0.05). 5) The strength of the selected

SNPs was evaluated using F-statistic, where SNPs with F-statistic < 10

were excluded to avoid weak instrument bias in the MR analysis (37).

The F statistic formula is F = [R2 × (n − k − 1)] / [k × (1 − R2)], where

R2 is the portion of the exposure variance explained by the IVs, n is the

sample size, and k represents the number of IVs (37). 6) IVs with a

stronger association with the outcome than exposure were removed by

Steiger filtering.
2.4 Statistical analysis

2.4.1 Two-sample Mendelian randomization
The MR method was used to evaluate the causal relationship

among the gut microbiota, plasma metabolites, peripheral cells,

inflammatory cytokines, and obesity. The Wald ratio was used to

infer the causality for exposure, which included only one IV. For

exposure comprising multiple IVs, inverse variance-weighted

(IVW), maximum likelihood, MR-Egger, weighted median, and

weighted mode methods were used to infer causality. IVW usually

provides the highest statistical power (38); therefore, it is preferred,

whereas other methods are used as supplements. IVW uses a meta-

analysis to combine the Wald ratio estimates of each IV, where the

intercept is limited to zero (38). In the absence of horizontal

pleiotropy, IVW can provide an unbiased causal estimate (39).

When there was heterogeneity, the random-effect IVW test

provided more conservative and robust estimates; otherwise, a

fixed-effect model was used. Similar to IVW, the maximum

likelihood method assumes a linear relationship between exposure

and outcome (40). MR-Egger verifies the existence of multiple

horizontal effects; when pleiotropy exists, it can provide an

effective causal estimation (41). Even when up to 50% of the IVs

are ineffective, the weighted median can provide effective causal

estimates (42). The weighted mode approach is still valid if most IVs

with similar causal estimates are valid instruments, even if other IVs

do not meet the requirements of the MR analysis (43).

Sensitivity analysis was performed to assess the robustness of

causality. MR-Egger regression and MR-PRESSO were used to

assess the horizontal pleiotropy. The non-zero intercept of the
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MR-Egger regression suggested directional pleiotropy (41).

Cochran’s Q test was used to assess the heterogeneity among the

IVs. Additionally, leave-one-out sensitivity analysis was used to

assess whether a single SNP drove the causal estimation. MR Steiger

analysis was used to assess the direction of the potential causal

association between exposure and outcomes. Only causal microbial

characteristics, plasma metabolites, peripheral cells, and

inflammatory cytokines with no heterogeneity or pleiotropy were

included in the subsequent analysis when the IVW MR method

results reached a significance threshold of P < 0.05.

Furthermore, considering the potential chance to increase the

overall type I error during multiple comparisons, we implemented

the false discovery rate (FDR) correction using the Benjamini–

Hochberg procedure (44) on the primary IVW results. A

significance threshold of FDR < 0.1 indicates a significant

association, whereas PIVW < 0.05 but FDR > 0.1 implies a

suggestive association.

All MR analyses were performed in R (version 4.3.1) software,

using the “TwoSampleMR” (version 0.5.7) (https://github.com/

MRCIEU/TwoSampleMR) (39) and “MR-PRESSO” (version 1.0)

(https://github.com/rondolab/MR-PRESSO) (36) packages.

2.4.2 Reverse Mendelian randomization analysis
To explore whether obesity had a causal effect on the identified

gut microbiota (PIVW < 0.05), a reverse MR analysis was performed.

In this scenario, obesity-related SNPs were regarded as IVs, obesity

as the exposure, and gut microbiota taxa as the outcomes. The

reverse MR analysis procedure was similar to that used for the

MR analysis.

2.4.3 Metabolic pathway analysis
For identified known plasma metabolites (PIVW < 0.05), we

used MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) (45) to

conduct metabolic pathway analysis to identify potential metabolic

pathways that may be related to the biological processes of obesity.

This study used two libraries: the Small Molecule Pathway Database

(SMPDB) (46) and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (47).

2.4.4 Mediation analysis
Mediation analysis aims to evaluate the pathway from exposure

to outcome through a mediator, which helps explore the potential

mechanisms by which exposure affects outcome (24). The

mediation analysis in this study focused on obesity-related gut

microbiota, plasma metabolites, peripheral cells, and inflammatory

cytokines. First, the causal relationship between gut microbiota and

plasma metabolites, peripheral cells, and inflammatory cytokines

was evaluated using two-sample MR methods to obtain beta (A).

Second, MVMR was used to screen plasma metabolites, peripheral

cells, and inflammatory cytokines that still had a causal relationship

with obesity after correction for gut microbiota to obtain beta (B)

and ensure that the mediating effects on outcomes are independent

of exposure (24). The mediation effect was calculated using a two-

step MR: mediation effect = beta (A) × beta (B). The total effect of

the gut microbiota on obesity was obtained in the previous two-
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sample MR, and direct effect = (total effect − mediation effect). The

mediation proportion used the following formula: mediation

proportion = (mediation effect / total effect) × 100%. The 95%

confidence intervals (CI) for the mediation effects and proportions

mediated were estimated using the delta method (24). Based on the

results, we categorized the identified mediators into different levels

of evidence. When only a triangular relationship existed,

representing that exposure was causally associated with outcome,

mediator was causally associated with outcome, and exposure was

causally associated with mediator. The identified metabolites,

peripheral cells, or cytokines were considered to have potential

mediation effects in the pathway from gut microbiota to obesity. If

the identified metabolites, peripheral cells, or cytokines did not only

exist in a triangular relationship but also had mediation effects

significantly different from 0, they were considered as mediators

with strong evidence.
3 Results

3.1 Causal effects of gut microbiota
on obesity

Using two-sample MR, we identified 50 suggestive associations

between gut microbiota and obesity (PIVW < 0.05, FDR > 0.1;

corresponding to 44 unique gut microbiota taxa). The causal

microbial counts of the obesity traits BMI, WHR, WHRadjBMI,

Obesity classes 1, 2, and 3 were 13, 12, 9, 9, 4, and 3, respectively

(Figure 2; Supplementary Table S3). Five bacterial features were

associated with more than one obesity trait, which may be a

common molecular mechanism in the GWAS datasets of different

obesity phenotypes. The phylum Actinobacteria (BMI; Obesity

class 3), order Bifidobacteriales (BMI; WHR), and family

Bifidobacteriaceae (BMI; WHR) had a negative causal relationship

with obesity. In contrast the genus Lachnospiraceae UCG008

(WHR; WHRadjBMI) and species Eubacterium nodatum (BMI;

WHR; WHRadjBMI) had a positive causal relationship with obesity

(Supplementary Figure S1). Lachnospiraceae is closely related to

obesity, and we found that the genus Lachnospiraceae FCS020

may increase the risk of obesity (BMI), whereas the family

Lachnospiraceae and genus Lachnospiraceae NK4A136 may

reduce the risk (WHRadjBMI). Moreover, the family belonged to

the order subcategory; therefore, SNP sets included in families and

their relevant orders might heavily overlap. These include SNPs of

the family Bifidobacteriales and order Bifidobacteriaceae when

applying MR analysis between the gut microbiota and obesity.

Sensitivity analysis further verified the robustness of the MR

results (Supplementary Table S4). The Q statistics showed no

evidence of heterogeneity. Furthermore, the results of MR-Egger

regression and MR-PRESSO analyses suggested no evidence of

horizontal pleiotropy. Based on the MR-Steiger test, we did not

find any reverse causality.

For causal associations between gut microbiota and obesity

identified above, we conducted reverse MR and found a negative

causal relationship between WHR and the genus Ruminococcaceae
frontiersin.org
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UCG005 (odds ratio [OR] = 0.877, 95% CI [0.776–0.992],

P = 0.037) (Figure 2; Supplementary Tables S5, S6).
3.2 Causal effects of plasma metabolites
on obesity

Based on the IVW method, the results suggested 327 causal

relationships between plasma metabolomics and obesity (PIVW <

0.05, corresponding to 281 unique plasma metabolites, 229 unique

plasma metabolite levels, and 52 unique metabolic ratios). Among

BMI, WHR, WHRadjBMI, Obesity classes 1, 2, and 3, there were 84

(73 metabolites and 11 ratios), 82 (67 metabolites and 15 ratios), 54

(44 metabolites and 10 ratios), 41 (34 metabolites and 7 ratios), 29 (20

metabolites and 9 ratios), and 37 (27 metabolites and 10 ratios)

associations detected, respectively (Figure 3; Supplementary Table

S7). Additionally, we observed 32 shared causal metabolites and 10

shared causal ratios for different obesity traits. Among them, plasma

metabolites included lipids (13), amino acids (7), xenobiotics (2),

nucleotide (1), cofactor and vitamins (1), carbohydrates (1), peptide

(21), energy (1), partially characterized molecules (1), and unknown

(4) (Figure 3). For example, 2-oxoarginine* had a positive causal

relationship with WHR (OR = 1.0145, 95% CI [1.0035–1.0256], P =

0.0093), WHRadjBMI (OR = 1.0113, 95% CI [1.0001–1.0.225], P =

0.0471), and Obesity class 1 (OR = 1.1374, 95% CI [1.0190–1.2696],

P = 0.0217). However, following FDR correction, only 1-(1-enyl-

palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)* maintained a significant

negative causal relationship with BMI (OR = 0.9744, 95% CI

[0.9619–0.9870], P = 0.0001, FDR = 0.0874) (Supplementary Table

S7). These results were validated no heterogeneity and horizontal

pleiotropy using sensitivity analyses (Supplementary Table S8).
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The metabolic pathway analysis identified 17 significant

metabolic pathways (12 unique pathways) (Supplementary Figure

S2). We discovered metabolic pathways shared between different

obesity phenotypes: “D-Arginine and D-ornithine metabolism” for

WHR (P = 0.0332), WHRadjBMI (P = 0.0154), and Obesity class

1 (P = 0.0205); “Linoleic acid metabolism” for BMI (P = 0.0382),

Obesity classes 1 (P = 0.0256), and 3 (P = 0.0192);

“Glycerophospholipid metabolism” for BMI (P = 0.0299) and

WHR (P = 0.0348) (Supplementary Table S9).
3.3 Causal effects of blood cells, peripheral
immune cells, and inflammatory cytokines
on obesity

The IVW method revealed 35 associations between peripheral

cells and obesity (PIVW < 0.05, corresponding to 27 unique

peripheral cells: 7 unique blood cells and 20 unique immune

cells), including BMI, WHR, WHRadjBMI, Obesity classes 1, 2,

and 3, with 6, 9, 9, 5, 3, and 3 associations, respectively (Figure 4;

Supplementary Table S10). We identified seven shared causal cells,

of which six cell traits had consistent causal effects among multiple

obesity traits. The risk of obesity may be increased by two blood cell

traits, high light scatter reticulocyte count (WHR, WHRadjBMI)

and platelet count (WHR, WHRadjBMI), and three immune cell

traits, CD14+ CD16– monocyte absolute count (BMI, WHR), CD28–

CD8+ T cell absolute count (Obesity classes 1 and 3), and monocytic

myeloid-derived suppressor cells absolute count (Obesity classes 1

and 2). One immune cell trait, effector memory CD4+ T cell

absolute count (WHR, WHRadjBMI), may reduce the risk of

obesity. Next, we performed FDR correction on the results of the
FIGURE 2

Causal estimates of bidirectional MR between gut microbiota and obesity. Top: Estimates from the IVW analysis of gut microbiota on obesity. Bottom:
Estimates from the IVW analysis of obesity on gut microbiota. The bacterial features underlined in red were related to more than one obesity traits.
BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, WHR adjusted for BMI; MR, Mendelian randomization; Not Sig, not significant.
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IVW method for blood cell and immune cell traits separately. The

results indicate that after correction, five blood cell traits still exhibit

a positive causal relationship with WHRadjBMI: high light

scatter reticulocyte count (OR = 1.0113, 95% CI [1.0018–

01.0209], P = 0.0194, FDR = 0.0484), neutrophil count (OR =

1.0159, 95% CI [1.0035–1.0285], P = 0.0119, FDR = 0.0396), platelet

count (OR = 1.0109, 95% CI [1.0025–1.0194], P = 0.0112, FDR =

0.0396), reticulocyte count (OR = 1.0137, 95% CI [1.0038–1.0236],

P = 0.0066, FDR = 0.0396), and white blood cell count (OR =

1.0116, 95% CI [1.0002–1.0232], P = 0.0469, FDR = 0.0938)

(Supplementary Table S10). Additionally, the findings indicate

that the immune cell trait IgD+ CD24– B cell absolute count

continues to demonstrate a negative causal relationship with BMI

(OR = 0.9774, 95% CI [0.9651–0.9899], P = 0.0004, FDR = 0.0477)

(Supplementary Table S10). The MR results remained stable in the

sensitivity analyses, suggesting the absence of significant

heterogeneity and horizontal pleiotropy (Supplementary Table S11).

Moreover, the causal relationship between cytokines and

obesity was evaluated using MR, and the results supported the

existence of nine suggestive associations between cytokines and

obesity (PIVW < 0.05, FDR > 0.1; corresponding to eight unique
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cytokines), including four, four, two, and one association of

BMI, WHR, Obesity classes 1, and 2, respectively (Figure 4;

Supplementary Table S12). We found that growth-regulated alpha

protein (GROA) (BMI: OR = 0.9929, 95% CI [0.9868–0.9990],

P = 0.0236; Obesity class 1: OR = 0.9506, 95% CI [0.9067–0.9965],

P = 0.0354) was the only shared causal cytokine that could reduce

the risk of obesity. The sensitivity analyses further indicated the

absence of heterogeneity and horizontal pleiotropy in these

MR analyses (Supplementary Table S13).
3.4 Mediation analysis results

To explore the potential mechanisms of obesity occurrence and

development, we conducted a mediation analysis to identify the

causal pathway from gut microbiota to obesity mediated by plasma

metabolites, peripheral cells, and inflammatory cytokines (please

refer to the Mediation analysis section of Methods for details). This

analysis focused on previously identified gut microbiota,

metabolites, cells, and cytokines associated with obesity in the

two-sample MR (Supplementary Tables S3, S7, S10, S12).
A B

D

E F

G

C

FIGURE 3

Causal estimates of plasma metabolites on obesity. (A–F) Volcano plots of the IVW MR for the associations between plasma metabolites and each
obesity trait. (G) Heatmap of the 42 shared plasma metabolites that showed a causal association with more than one obesity trait at nominal significance
(PIVW < 0.05). BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, WHR adjusted for BMI; OR, odds ratio; Not Sig, not significant.
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Firstly, the causal relationship among causal gut microbiota,

metabolites, cells, and cytokines was evaluated via two-sample

MR. We identified 95 associations of gut microbiota to

metabolites (BMI, 41; WHR, 31; WHRadjBMI, 9; Obesity class

1, 8; Obesity class 2, 5; Obesity class 3, 1), 10 associations to cells

(WHR, 2; WHRadjBMI, 4; Obesity class 1, 1; Obesity class 2, 1;

Obesity class 3, 2), and 2 associations to cytokines (WHR, 1;

Obesity class 1, 1) (Supplementary Table S14). Furthermore,

MVMR analysis was used to screen for metabolites, cells, and

cytokines that exhibit a causal relationship with obesity after

correcting for the gut microbiota. The results showed that after

microbial adjustment, there were 34 metabolite–obesity

associations (BMI, 14; WHR, 14; WHRadjBMI, 5; Obesity class

2, 1), 7 cell–obesity associations (WHR, 2; WHRadjBMI, 4;

Obesity class 2, 1), and 2 cytokine–obesity associations (WHR,

1; Obesity class 1, 1) (Supplementary Figure S3; Supplementary
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Table S15). These MR results were validated through the

sensitivity analysis, further suggesting the absence of

heterogeneity and horizontal pleiotropy (Supplementary Tables

S16, S17).

In summary, we identified 20 mediating relationships (1 with

strong evidence, 19 with potential evidence), including 17, 2, and 1 gut

microbiota–obesity causal pathways mediated bymetabolites, cells, and

cytokines, respectively (Table 1). The mediation analysis reveals that

only 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (p-16:0/18:1) levels exhibit

significant negative mediation effects (beta = −0.0043, 95% CI

[−0.0085, −0.0001], P = 0.0462) on phylum Actinobacteria and BMI

with 13.55% (95% CI: 0.23%, 26.87%) proportion. The pathway from

phylum Actinobacteria to BMI was also potentially mediated by 1-(1-

enyl palmitoyl)-2-palmitoyl-GPC (P-16:0/16:1) levels with 4.97%

proportion. Additionally, three additional microbial features

exhibited more than one mediator. The mediation ratios from class
FIGURE 4

Forest plots for causal effects of peripheral cells and inflammatory cytokines on obesity. The horizontal bars correspond to the estimated OR with
95% CI using the IVW method for peripheral cells and inflammatory cytokines on obesity. Causal relationships that remain statistically significant after
FDR correction were emphasized using red font and lines. FDR, false discovery rate; BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI,
WHR adjusted for BMI; OR, odds ratio; CI, confidence interval.
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Actinobacteria to WHR through methionine sulfone and X-16935 (an

unknownmetabolite) levels were 12.29% and 15.06%, respectively. The

mediating ratios of genus Lachnospiraceae UCG008 to WHR through

1-palmitoyl-2-oleoyl-GPE (16:0/18:1) and 1,2-dilinoleoyl-GPE (18:2/

18:2) levels were 7.21% and 8.24%, respectively. Themediating ratios of

family Alcaliginaceae to WHRadjBMI through gamma-glutamylvaline

levels and high light scatter reticulocyte count were 12.89% and 2.15%,

respectively. Two mediators mediated more than one relationship:

metabolite 3-hydroxybutyrate levels mediated class Metanobacteria,

order Metanobacteriales, and family Metanobacteriaceae to BMI, all

with a mediation ratio of 10.74%. The ratios of myo-inositol levels

mediated order Bifidobacteriaceae and family Bifidobacteriaceae to

WHR (both 8.14%). White cells are a very important type of

immune cell in human blood. The white blood cell counts mediated
Frontiers in Immunology 09
genus Anaerofilum to WHRadjBMI, with 1.87% proportion. GROA is

a typical inflammatory chemokine with a mediating ratio of 8.64%

between the genus Ruminococcaceae UCG010 and Obesity class 1.

These results showed the consistent direction of the total, indirect, and

direct effects, and that the leave-one-out analysis supported the reliable

causal relationship in the two-sample MR study of exposure to

outcome, exposure to mediator, and mediator to outcome (Table 1;

Supplementary Figure S4; Supplementary Table S18).
4 Discussion

This study comprehensively evaluated the causal relationship

among gut microbiota, plasma metabolome, blood cells, peripheral
TABLE 1 Mediation effect of gut microbiota on obesity via plasma metabolites, peripheral cells and inflammatory cytokines.

Exposure Mediator Outcome
Total
effect

Direct
effect

Mediation effect
(95% CI)

P-value
Mediation
Proportion
(95% CI) #

p_Actinobacteria
1-(1-enyl-palmitoyl)-2-oleoyl-
GPC (P-16:0/18:1)*

BMI -0.0318 -0.0275 -0.0043 (-0.0085, -0.0001) 0.0462
13.55%
(0.23%,
26.87%)

p_Actinobacteria 1-(1-enyl-palmitoyl)-2-
palmitoleoyl-GPC (P-16:0/16:1)*

BMI -0.0318 -0.0302 -0.0016 (-0.0036, 0.0004) 0.1171 4.97%

c_Methanobacteria 3-hydroxybutyrate BMI -0.0149 -0.0133 -0.0016 (-0.0039, 0.0007) 0.1696 10.74%

o_Methanobacteriales 3-hydroxybutyrate BMI -0.0149 -0.0133 -0.0016 (-0.0039, 0.0007) 0.1696 10.74%

f_Methanobacteriaceae 3-hydroxybutyrate BMI -0.0149 -0.0133 -0.0016 (-0.0039, 0.0007) 0.1696 10.74%

c_Actinobacteria methionine sulfone WHR -0.0189 -0.0166 -0.0023 (-0.005, 0.0004) 0.0896 12.29%

c_Actinobacteria X-16935 WHR -0.0189 -0.0161 -0.0028 (-0.006, 0.0003) 0.0784 15.06%

o_Bifidobacteriales myo-inositol WHR -0.0196 -0.018 -0.0016 (-0.0039, 0.0007) 0.1783 8.14%

f_Bifidobacteriaceae myo-inositol WHR -0.0196 -0.018 -0.0016 (-0.0039, 0.0007) 0.1783 8.14%

f_Lachnospiraceae deoxycarnitine WHR -0.0215 -0.0198 -0.0017 (-0.0038, 0.0004) 0.1175 7.85%

g_Lachnospiraceae
UCG008

1-palmitoyl-2-oleoyl-GPE
(16:0/18:1)

WHR 0.016 0.0148 0.0012 (-0.0005, 0.0028) 0.1592 7.21%

g_Lachnospiraceae
UCG008

1,2-dilinoleoyl-GPE (18:2/18:2)* WHR 0.016 0.0147 0.0013 (-0.0006, 0.0032) 0.1765 8.24%

g_Subdoligranulum docosapentaenoate (n3
DPA; 22:5n3)

WHR -0.0292 -0.0259 -0.0032 (-0.0072, 0.0008) 0.1121 11.11%

g_Victivallis X-13431 WHR -0.0169 -0.0162 -0.0008 (-0.0016, 0.0001) 0.0761 4.51%

f_Alcaligenaceae gamma-glutamylvaline WHRadjBMI 0.0192 0.0168 0.0025 (-0.0008, 0.0058) 0.1443 12.89%

f_Alcaligenaceae high light scatter
reticulocyte count

WHRadjBMI 0.0192 0.0188 0.0004 (-4.52E-05, 0.0009) 0.0773 2.15%

g_Lachnospiraceae
NK4A136

pimeloylcarnitine/3-
methyladipoylcarnitine (C7-DC)

WHRadjBMI -0.0165 -0.0147 -0.0018 (-0.0041, 0.0005) 0.1289 10.88%

s_Eubacterium nodatum glycosyl-N-palmitoyl-
sphingosine (d18:1/16:0)

WHRadjBMI 0.011 0.0096 0.0013 (-0.0004, 0.0030) 0.1261 12.14%

g_Anaerofilum white blood cell count WHRadjBMI -0.0147 -0.0144 -0.0003 (-0.0006, 1.30E-05) 0.0613 1.87%

g_Ruminococcaceae
UCG010

GROA Obesity
class 1

0.2152 0.1966 0.0186 (-0.0054, 0.0425) 0.1280 8.64%
#When the 95% CI of the mediation effect spans 0, the 95% CI for mediation proportion is not calculated, as the direction of the upper or lower limit of the mediation effect is opposite to the total
effect. Bold formatting indicates that the P-value is less than 0.05. BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, WHR adjusted for BMI; CI, confidence interval.
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immune cells, inflammatory cytokines, and obesity using MR

analysis. We found potential causal associations between 44

bacterial features, 281 plasma metabolites (229 metabolites and 52

ratios), 27 peripheral cells (7 blood and 20 immune cells), and 8

inflammatory cytokines and obesity. Pathway analysis of known

plasma metabolites indicated that D-arginine, D-ornithine, linoleic

acid, and glycerophospholipid metabolism play important roles in

the occurrence and development of obesity. In addition, the

mediation analysis results supported the mediating effects of

plasma metabolites, peripheral cells, and inflammatory cytokines

on the gut microbiota in obesity pathogenesis.

Ourfindings suggest thathigherbacterial abundancewithinphylum

Actinobacteria, order Bifidobacteriales (the subcategory of phylum

Actinobacteria), and family Bifidobacteriaceae (the subcategory of

order Bifidobacteriales), may confer protection against obesity (48, 49).

The abundance of Bifidobacterium (a subcategory of the family

Bifidobacteriaceae) decreased significantly in individuals with

increased visceral adipose tissue, BMI, blood triglycerides, and fatty

liver (49). Obese patients can reduce their total blood sugar after short-

term Bifidobacterium-based probiotic treatment and adjust the gut

microbiota structure by increasing beneficial and decreasing

pathogenic or opportunistic bacteria (50). In addition, many studies

have shown that some strains of Bifidobacterium can function as

probiotics to protect against obesity (51), such as Bifidobacterium

animalis subsp. Lactis GCL2505, Bifidobacterium breve strain B-3,

Bifidobacterium breve BR03, and Bifidobacterium breve B632 strains

(52–54). Bifidobacterium can absorb sugars and produce short-chain

fatty acids, especially acetate, which modulates host energy metabolism

(e.g., inhibits fat accumulation in adipose tissue, increases insulin

sensitivity, and enhances fatty acid / glucose metabolism) via the

short-chain fatty acid receptor, G protein-coupled receptor 43, which

is a common mechanism of probiotic activity (52).

The family Lachnospiraceae (phylum Firmicutes, class

Clostridia) is one of the most important families of the intestinal

microbiota in healthy adults, including 58 genera and several

unclassified strains with complex functions and controversial

roles in diseases (55, 56). Most human and mouse studies have

revealed that an increased abundance of Lachnospiraceae is

associated with metabolic diseases (57); however, certain

controversies remain. For instance, some reports indicate positive

and negative correlations between Lachnospiraceae ND3007,

Lachnospiraceae NK4A136, and obesity, respectively (58).

Lachnospiraceae bacterium 3_1_57FAA_cT1 is a potentially

beneficial microorganism that is inversely proportional to

homeostatic model assessment of insulin resistance (HOMA-IR)

and fasting insulin levels and may mediate the impact of obesity on

insulin resistance (59). The beneficial effects of Lachnospiraceae

NK4A136 and Lachnospiraceae bacterium 3_1_57FAA_cT1 can be

explained by the production of butyrate in the intestine (56, 58, 59).

The genus Lachnospiraceae UCG008 emerged as a shared-risk

bacterium across multiple obesity-related traits, consistent with its

association with an elevated risk of various diseases, such as

hemorrhagic stroke and periodontitis (60–62). Our findings
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suggest that genera Lachnospirace UG008 and Lachnospirace

FCS020 may increase the risk of obesity, while the family

Lachnospiraceae and genus Lachnospiraceae NK4A136 may

reduce this risk.

Contrary to a previous study highlighting statistical associations

between Enterobacteriaceae, Desulfovibrio, and Akkermansia with

obesity (11), our MR results did not support these findings. This

disparity in interpretation may be partly attributed to residual

confounding and reverse causation observed in observational

studies, rather than a validated causal correlation. It’s worth

noting that the gut microbiota encompasses not only the

bacteriome but also the mycobiome and virome, both of which

contribute to obesity pathogenesis (63, 64). While our present study

solely focuses on the gut bacteriome, future research will explore the

relationship between fungi, viruses, and obesity. Nonetheless,

controversies persist regarding the relationship between gut

microbiota and obesity (65).

We found that D-arginine, D-ornithine, linoleic acid, and

glycophospholipid metabolism were key pathways associated with

obesity. Previous studies have shown that these metabolic pathways

are mainly affected by gestational diabetes (66) and that D-arginine

and D-ornithine metabolism are the main pathways associated with

perinatal obesity (67). Linoleic acid is an omega-6 polyunsaturated

fatty acid commonly found in the diet and is crucial for human

health. Moderate intake of linoleic acid has a positive effect on

maintaining cell membrane health and nervous system function.

However, a high intake of linoleic acid may contribute to the obesity

epidemic as the rich content of omega-6 fatty acids in modern diets is

generally imbalanced by the intake of omega-3 fatty acids. Moreover,

linoleic acid is converted into arachidonic acid in the body, which

plays a role in inducing inflammation and fat synthesis (68, 69).

Glycerophospholipid metabolism involves the synthesis, degradation,

and remodeling of glycerophospholipids. Glycerophospholipids are

the most abundant phospholipids inmammalian cell membranes and

can be divided into subcategories, such as phosphatidylcholine (PC),

phosphatidylethanolamine (PE), and phosphatidylserine. Animal

studies have shown that abnormal levels and proportions of PC

and PE can lead to dyslipidemia (70), obesity (71), and insulin

resistance (72). Human studies have also shown that PC and PE

are associated with T2D (73) and the risk of metabolic

syndrome (74).

Myo-inositol is a sugar alcohol containing six carbon atoms that

helps improve insulin sensitivity, and its deficiency may be related to

the pathogenesis of metabolic diseases, such as metabolic syndrome,

polycystic ovary syndrome, and diabetes (75). Myo-inositol has

potential therapeutic effects on metabolic diseases (76). Our study

supports a negative causal relationship between myo-inositol and

obesity. Additionally, the mediation ratio of the myo-inositol-

mediated order Bifidobacteriales and family Bifidobacteriaceae to

the obesity trait WHR was 8.14%. 3-Hydroxybutyrate is a normal

metabolic product of fatty acid oxidation and can be used as an

energy source without sufficient blood sugar. It is also an important

regulatory molecule that can affect gene expression, lipid metabolism,
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neuronal function, and the overall metabolic rate (77). The levels of 3-

hydroxybutyrate are high in obese patients and decrease after weight

loss surgery (78, 79). Our study supports a positive causal relationship

between 3-hydroxybutyrate and obesity. Mediation analysis showed

that the mediating proportion of the 3-hydroxybutyrate mediating

class Methanobacteria, order Methanobacteriales, and family

Methanobacteriaceae to the obesity trait BMI was 10.74%.

Obesity is a chronic inflammatory disease, and an increase in

the white blood cell count has been widely associated with these

diseases. Observational research has shown that the white blood cell

count is positively correlated with the incidence of diabetes,

hypertension, obesity, dyslipidemia, and metabolic syndrome

(19). White blood cell count is a marker of inflammation and an

indicator of whether obesity increases the risk of T2D. A high white

blood cell count is associated with reduced insulin sensitivity (80,

81). This study indicated a positive causal relationship between

white blood cell counts and obesity, and white blood cell counts

mediated 1.87% of the effect of genus Anaerofilum on obesity trait

WHRadjBMI. The pro-inflammatory cytokine GROA, also known

as C-X-C motif chemokine ligand 1 (CXCL1), is a CXC chemotactic

factor that helps in the recruitment and migration of various

immune cells and plays an important role in regulating immune

and inflammatory responses (82). Previous studies have shown that

an increase in serum CXCL1 is associated with obesity,

hyperglycemia, and pancreatic dysfunction (83). However, using

MR, we found that CXCL1 may reduce the risk of obesity. In

addition, a mediating ratio of 8.64% was observed for the CXCL1,

which mediated genus Ruminococcaceae UCG010 to the obesity

trait Obesity class 1.

This is the first time that a comprehensive MR framework has

been used to analyze the causal relationship among gut microbiota,

plasma metabolites, blood cells, peripheral immune cells,

inflammatory cytokines, and obesity. Furthermore, a pathway

from the gut microbiota to obesity was constructed through a

two-step MR and mediation analysis via plasma metabolites,

blood cells, peripheral immune cells, and inflammatory factors.

This study used a series of sensitivity analyses to maximize the

robustness of the MR results. However, this study has certain

limitations. First, the lack of demographic information, such as

age and sex, in the initial study hindered further subgroup analyses.

Second, the majority of people studied by the GWAS were of

European ancestry; therefore, the generalizability of the research

results to other populations is limited. In addition, although the MR

method is effective in evaluating the causal relationship between

exposure factors and outcomes, this result needs to be further

validated based on more experimental and clinical studies.
5 Conclusion

In summary, our MR study identified 44 gut microbiota taxa,

281 plasma metabolites, 27 peripheral cells, and 8 inflammatory

cytokines that were causally linked to obesity; among them, 5 shared

bacterial features, 42 shared metabolites, 7 shared cells, and 1 shared

cytokine. Pathway analysis revealed 12 obesity-related metabolic

pathways, with particular emphasis on D-arginine, D-ornithine,
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linoleic acid, and glycerophospholipid metabolism which were

closely related to obesity. Moreover, we found 20 mediating

relationships, including the causal pathways mediated by 17

metabolites, 2 peripheral cells, and 1 inflammatory cytokine from

gut microbiota to obesity.

This MR analysis supports the causal effects of the gut microbiota,

plasma metabolites, peripheral cells, and inflammatory cytokines on

obesity. In addition, mediation analysis revealed that plasma

metabolites, peripheral cells, and inflammatory cytokines mediate

the pathway from the gut microbiota to obesity. The identified gut

microbiota, plasma metabolites, and cellular and inflammatory

factors may serve as biomarkers for the diagnosis and treatment of

obesity and contribute to the study of obesity mechanisms.
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