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Novel adjuvants in allergen-
specific immunotherapy:
where do we stand?
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(ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated

immune responses directed against otherwise harmless environmental antigens.

Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying

treatment with the potential to re-establish clinical tolerance towards the

corresponding allergen(s). However, conventional AIT has certain drawbacks,

including long treatment durations, the risk of inducing allergic side effects, and

the fact that allergens by themselves have a rather low immunogenicity. To

improve AIT, adjuvants can be a powerful tool not only to increase the

immunogenicity of co-applied allergens but also to induce the desired

immune activation, such as promoting allergen-specific Th1- or regulatory

responses. This review summarizes the knowledge on adjuvants currently

approved for use in human AIT: aluminum hydroxide, calcium phosphate,

microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been

studied in recent years: oil-in-water emulsions, virus-like particles, viral

components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and

TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct

properties, such as prolonging allergen release at the injection site, inducing

allergen-specific IgG production while also reducing IgE levels, as well as

promoting differentiation and activation of different immune cells. In the

future, better understanding of the immunological mechanisms underlying the

effects of these adjuvants in clinical settings may help us to improve AIT.
KEYWORDS

type I hypersensitivity, allergen-specific immunotherapy, adjuvant, CpG, virus-like
particle, mannan, flagellin, Th1/Th2 responses
1 Introduction

Allergic reactions are an increasing health and economic problem in developed

countries (1–4). Type I allergies, the most common form of allergies, are caused by

exaggerated immune responses directed against otherwise harmless antigens from our

environment (so-called allergens). Immunologically, these immune responses are
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characterized by the induction of allergen-specific Th2 cells and IgE

antibodies, which trigger IgE-dependent mast cell degranulation

with the associated allergic symptoms.

Currently, the only treatment affecting the underlying disease

with disease-modifying potential is allergen-specific immunotherapy

(AIT). In this form of treatment, patients are confronted with

increasing amounts of allergen(s) by either oral, subcutaneous

(s.c.), or sublingual (s.l.) routes over long periods of time. If

successful, AIT results in the re-establishment of clinical tolerance

towards the offending allergen(s) and is associated with (I) a late

decline in allergen-specific IgE, (II) an early increase in allergen-

specific IgG subclasses, and (III) the induction of regulatory T- and B

cell subsets (5).

One of the major obstacles in achieving efficient allergen-

specific immune modulation is the fact that most pure allergen

molecules only display a low degree of immunogenicity (6). Here,

adding adjuvants to the low-immunogenic allergen(s) is a

promising strategy to either enhance or modify the overall

immune responses induced by the allergen(s).

Adjuvants increase the magnitude of immune responses

directed against the co-applied antigen(s), allowing for both the

application of lower antigen doses (which may reduce side effects)

and the induction of robust immune responses against otherwise

non/low-immunogenic antigens (7, 8). Furthermore, adjuvants can

change the overall type of immune response as the co-applied

antigens are taken up, processed, and presented in the context of the

adjuvant-induced immune cell activation.

Depending on their mode of action, adjuvants can be further

distinguished into first- and second-generation adjuvants

(Figure 1). First-generation adjuvants used in AIT, such as

aluminum salts, calcium phosphate, or microcrystalline tyrosine

(MCT) serve as carriers, adsorbing antigens and forming insoluble,

micron-sized adjuvant-antigen aggregates (9). The adjuvant-

antigen aggregates activate immune cells, leading to the secretion

of cytokines and chemokines as well as the formation of nucleotide

oligomerization domain (NOD)-, leucine rich repeat (LRR)- and

pyrin domain-containing protein 3 (NLRP3) inflammasomes.

Subsequently, antigen-presenting cells (APCs) are recruited and

activated by the production of strongly pro-inflammatory, bioactive

IL-1b and IL-18, cell death, and the release of damage-associated

molecular patterns (DAMPs) such as uric acid and self-DNA

(Figure 1) (10–12). In addition, adjuvant-antigen aggregates can

not only be directly taken up by APCs, but also act as depots,

causing a slow release and effective presentation of the incorporated

antigen(s) to APCs (Figure 1) (12). Despite the fact that first-

generation adjuvants efficiently boost immune responses, especially

antibody production, their application has a number of drawbacks

for AIT. For example, aluminum hydroxide (alum)-based adjuvants

may induce Th2 responses and IgE-production depending on the

co-applied antigen, and lack the ability to induce CD8+ T cell

responses (13, 14).

To improve first-generation adjuvants, recent studies have

taken advantage of the discovery of pathogen recognition

receptors (PRRs) (15). These receptors are abundantly expressed

both on the surface and in the cytosolic compartments of APCs and
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other immune cells (B cells, T cells, neutrophils, mast cells,

eosinophils, NK cells, innate-like lymphocytes), where they can

promote immune responses by recognizing pathogen-associated

molecular patterns (PAMPs) (15). Consequently, it was

demonstrated that the use of different PAMPs (e.g., bacterial

components, viral DNA/RNA) as second-generation adjuvants in

combination with antigens could induce large-scale transcriptional

changes in target cells, allowing them to alter their phenotype and

function, e.g., by expressing co-inhibitory or co-stimulatory

molecules, secreting cytokines, chemokines, and anti-microbial

molecules; while also efficiently presenting antigens to T cells and

thereby modulating T cell activation (Figure 1) (16).

Currently, adjuvant research is a topic of great interest not only

for improving allergy treatment but also for the development of other

vaccines. In this review, we shortly summarize the adjuvants already

in use in human AIT and subsequently focus on those adjuvants

currently under investigation for further improving AIT (see also

Figure 2 for a general overview). The current state of clinical

investigation of the discussed adjuvants is summarized in Table 1.
2 Adjuvants approved for human use
in AIT

2.1 Aluminum hydroxide

Since Glenny et al. reported that alum could be used as an

adjuvant in 1926 (23), it has become the most widely used adjuvant

for different licensed human vaccines to prevent infectious diseases,

such as diphtheria, tetanus, pertussis, hepatitis B, anthrax, and

influenza (24). Alum adsorbs proteins via electrostatic interaction

between alum and the proteins hydroxyl groups, thereby reducing

allergen diffusion (lowering the chance of anaphylactic reactions)

and prolonging the exposure of immune cells to these antigens at

the injection site. Accordingly, alum has been included in most

subcutaneous allergy immunotherapy (SCIT) products (25) in

order to increase immune responses (12).

Recently, alum crystals were reported to also directly activate

the NLRP3 inflammasome in mouse and human dendritic cells

(DCs) and macrophages in vitro, resulting in secretion of the

strongly pro-inflammatory and pyrogenic cytokines IL-1b and IL-

18 [reviewed in (24)]. While mouse and human alum-stimulated

DCs were shown to promote CD4+ T cell differentiation, especially

towards Th2 cells via a prostaglandin E2-dependent mechanism

[reviewed in (24, 26)], accumulated evidence from human

application suggests alum to induce a more balanced Th1/Th2

immune profile depending on the formulation and the co-applied

antigen (27, 28).

However, the use of alum is not without disadvantages. Alum

frequently induces acute and chronic inflammation at the injection

site, has a low biodegradability resulting in its accumulation upon

repeated application (26, 29), and may have toxic effects; therefore,

the application of alum as an adjuvant for type I allergy treatment is

under ongoing investigation (30, 31).
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2.2 Calcium phosphate

Calcium phosphate was first described as an adjuvant by

Relyveld and colleagues in the 1960s (32–34). Although it is less

commonly used than alum (35), it was used in AIT against seasonal

rhinoconjunctivitis (36) as well as in vaccines against diphtheria,

tetanus, pertussis, and poliomyelitis (37). Currently, because of

reasons unknown to us, calcium phosphate adjuvanted AIT

products are no longer used in the European market (Stallergenes

Greer, personal communication).

Calcium phosphate is a natural component of the body with a

better biodegradability and biocompatibility compared to alum,

preventing its accumulation in the body upon repeated application

(38, 39). While calcium phosphate displays a lower adjuvant activity

than alum, it may still induce local adverse reactions, although of

shorter duration (40). Upon subcutaneous injection, calcium

phosphate induces active inflammation, involving the infiltration
Frontiers in Immunology 03
of neutrophils and macrophages (40). Earlier studies reported the

induction of a similar IgG production in both animals and humans

compared to alum (41, 42). However, the major advantage of

calcium phosphate is its inability to induce the production of IgE

in booster vaccinations (43) and immunotherapy (44).

Furthermore, Wang et al. could show the induction of a cellular

and humoral immune response as well as anti-cancer immunity

upon the use of calcium phosphate-containing nanoparticles for

vaccination purposes (45).
2.3 Microcrystalline tyrosine

MCT, the crystalline form of the non-essential amino acid L-

tyrosine (46), is used as an adjuvant for AIT (47). Although MCT is

less commonly used than alum (35), MCT has been shown to be

both safe and effective for use in humans (46). It is a biodegradable
FIGURE 2

Adjuvants currently studied to improve AIT. The types of adjuvants can be classified based on their carrier or immunostimulatory capabilities. Here,
liposomes serve as carriers, while virus-like particles, alum, and O/W emulsions have both carrier function and immune stimulatory characteristics.
Besides viral components (the T-cell epitope derived from the hepatitis B virus PreS or the HIV-trans-activator of transcription (TAT)), TLR-ligands
(flagellin, CpG, and MPLA), and carbohydrate-based adjuvants (QS-21, glycan, and mannan) have immunomodulatory properties triggering different
kinds of immune responses. The described properties of these adjuvants to induce either Th1 or Th2 responses are indicated below the respective
adjuvant. For more information, see text. AS, adjuvant system, alum: aluminum hydroxide; O/W, oil-in-water; Pres, HBV-derived T-cell epitope; TAT,
HIV type 1 trans-activating regulatory protein; TLR, “Toll”-like receptor; MPLA, monophosphoryl lipid A. Figure modified after (17).
BA

FIGURE 1

Boosting of immune responses by first- and second-generation adjuvants. First-generation adjuvants can adsorb soluble allergens through
electrostatic interactions with the allergens hydroxyl groups to form insoluble aggregates (A). Micron-sized adjuvant-allergen aggregates can (I)
induce activation of immune cells, which further recruit and activate APCs, (II) be directly taken up by APCs, or (III) act as depots to effectively
enhance allergen-specific antibody production. In contrast, second-generation adjuvants activate immune cells by triggering the activation of APCs
via their PRRs (B). Here, the binding of PAMPs (as second-generation adjuvants) to PRRs can induce transcriptional changes in APCs, leading to
increased expression of co-stimulatory molecules and cytokine secretion. In addition, combining second-generation adjuvants with allergens can
induce effective allergen uptake by APCs which then present allergen-derived peptides in the context of the adjuvant-induced APC activation. This
results in effective T cell activation, thus triggering adaptive immune responses. For more information, see text. OH, hydroxyl group; MCT,
microcrystalline tyrosine; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; PAMPs, pathogen-associated molecular patterns; DAMPs,
damage-associated molecular patterns; APC, antigen-presenting cells; PRR, pathogen recognition receptor; Ag, antigen.
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depot adjuvant with a short half-life of 48 h (48), used in ultra-short

course AIT for seasonal rhinitis (49, 50). The depot effect results in

the slow release of the respective allergen(s), thereby prolonging

their exposure to the immune system at the injection site (51).

Co-application of MCT with ovalbumin (OVA), a low

immunogenic antigen, induces a B cell response leading to the

production of antigen-specific IgG1, IgG2a, IgG2b, and IgG3

antibodies in mice that is comparable to alum, while inducing

lower levels of both IgE and IL-4 (47). It induces lower levels of Th2

polarization compared to alum, which facilitates its use in AIT (52).

Despite its more Th1-promoting adjuvant effects, MCT may induce

both immediate and late local adverse reactions in patients

undergoing AIT (53) and causes fewer, but still detectable,

anaphylactic reactions in mice compared to alum (47). As was

reported for alum, MCT was shown to induce caspase-dependent

IL-1ß secretion in vitro , whereas the activation of the

inflammasome was not essential for MCT-induced T or B cell

response in vivo (47). In contrast to the TLR4-ligand

monophosphoryl lipid A (MPLA) (see below), the promotion of

T and B cell responses by either MCT or alum is independent of

Toll-like receptor (TLR) signaling (47).

In AIT, MCT-adjuvanted native allergens or modified allergens

(allergoids) are frequently used in combination with the TLR4-

agonist MPLA, e.g. in the allergen therapeutic Pollinex® Quattro

(PQ, Bencard Allergy GmbH, Munich, Germany) for the treatment

of seasonal allergic rhinoconjunctivitis (49, 54). The combination

of MCT as a Th1 promoting, first-generation adjuvant and
Frontiers in Immunology 04
MPLA as a Th1-promoting second-generation adjuvant in AIT

has promoted dose reductions (55). Since MCT boosts T-cell

mediated responses (47), its use in vaccination against different

infectious diseases is currently investigated (56–58). Here, MCT-

adjuvanted nanoparticles induced enhanced B and T cell responses

in pre-clinical models of malaria (57, 58) and cancer (59).
2.4 Monophosphoryl lipid A

MPLA is a carbohydrate-based adjuvant that activates TLR4

(60). It was developed by removing phosphate and fatty acid groups

from the lipopolysaccharide (LPS) of Salmonella minnesota R595 by

a series of organic extractions followed by mild acid and alkaline

treatments (61). Although the TLR4-ligand LPS efficiently promotes

immune responses when combined with antigens, its applicability

as an adjuvant is strongly limited by its high toxicity (62). In

contrast, MPLA maintains the adjuvant effect observed for LPS

combined with a lower toxicity on human CD4+ T cells in vitro (63),

and did not cause dangerous adverse effects in a human clinical trial

(64). Therefore, several vaccines containing MPLA have either been

tested in clinical trials or are already approved for human use like

Fendrix® (vaccination against hepatitis B virus), Cervarix® (human

papillomavirus-16 and -18), RTS,S® (Malaria), and Pollinex®

Quattro (grass pollen allergy, in Germany only marketable

according to therapy allergen ordinance but no marketing

authorization) (50, 65–67). The overall immunological effects of
TABLE 1 Current state of clinical investigation of the discussed adjuvants.

Adjuvant/
Product
name

Target Most recent clinical study/
current state of clinical investigation

Year Reference

MPLA/
Pollinex®

Quattro

Grass-, tree-,
olive-, and
weed allergy

Reduction of symptoms and increased production of allergen-
specific IgG antibodies

2001 (18)

VLPs
(QbG10)/
CYT003

HDM- &
ragweed
allergy

Phase IIb study, CYT003 was well tolerated and safe, but there
was no significant improvement compared to the placebo group,

the study was prematurely terminated
2015 (19)

VLPs
displaying
Ara h 2

Peanut allergy Phase I, on-going 2022 https://clinicaltrials.gov/study/NCT05476497

Viral
components
(PreS)/BM32

Grass
pollen allergy

Phase II, patients had increased production of allergen-specific
IgG4 without enhanced IgE responses

2019 (20)

Superfine
dispersed b-
(1,3)-glucan

Japanese cedar
pollen allergy

Phase IV, patients showed reduction of clinical symptoms with
lower pollen-specific IgE antibody levels

2007 (21)

Mannan HDM allergy
Phase II, patients had no moderate or severe adverse reactions

paralleled by induction of HDM-specific IgG4 antibodies
2022 (22)

Mannan
HDM- &
birch

pollen- allergy
Phase III, on-going 2022 NCT05400811, EudraCT: 2021-002252-36

CpG-
ODN/

TOLAMBA

Ragweed
allergy

Phase IIb, no statistical significance between the treatment and
placebo groups, termination of clinical development

2008
https://investors.dynavax.com/news-releases/news-
release-details/dynavax-tolambatm-chamber-study-

misses-primary-endpoint-company
MPLA, monophosphoryl lipid A; VLP, virus-like particle(s); HDM, house dust mite; PreS, T-cell epitope derived from the hepatitis B virus; CpG-ODN, CpG Oligodeoxynucleotides.
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MPLA are relatively well studied. It is known that MPLA can induce

Th1-biased immune responses and promote both IgG1- and IgG4-

dominated humoral immune responses without boosting IgE

production (68, 69) and without the capacity to directly activate

murine or human mast cells (70), making MPLA an attractive

adjuvant for improving AIT. In vitro, MPLA was also shown to

induce a pronounced, c-Jun N-terminal kinase mitogen-activated

protein kinase (JNK-MAPK)- and mammalian target of rapamycin

(mTOR)-dependent activation of glucose metabolism, IL-10

secretion, and CCL2 production in mDCs (71).

PQ is an allergen therapeutic containing glutaraldehyde-

crosslinked pollen allergoids adsorbed to MCT that are further

adjuvanted with MPLA (72). PQ was first developed in the 1970s for

the treatment of grass pollen allergy, followed by the Pollinex-R,

which included ragweed allergens (72). PQ was launched on the

market in 1999 as named patient products for the treatment of

allergic rhinitis (AR) caused by grass-, tree-, olive-, and weed

allergens but so far has not received marketing authorization in

Germany (72). Compared to traditional AIT approaches that

normally require months to years of treatment, PQ is based on a

“short-term specific immunotherapy (ST-SIT)” consisting of only

four pre-seasonal injections with increasing allergen dosages (18).

Clinical studies showed, that PQ treatment significantly reduced

nasal and ocular clinical symptoms, while also shifting immune

responses from allergic Th2- toward Th1-biased responses

characterized by higher grass-pollen-specific IgG antibody

production (18). Moreover, pre-clinical in vivo studies in rats and

dogs showed no toxicological findings, and no significant local and

systemic adverse events were reported in human clinical trials

(18, 73).

Our own work demonstrated that both PQ and two commercial

vaccines adjuvanted with MPLA could activate mDC metabolism

(74). Activation of mDCs by PQ was mediated by a pronounced

mTOR- and JNK-MAPK-dependent activation of glucose

metabolism that regulated mDC-derived cytokine secretion (74).

Finally, mDC glucose metabolism was also critical for the (Th1-

biased) T cell priming capacity of PQ-stimulated mDCs (74).

Taken together, the available data for PQ show that combining

allergen(s) with the adjuvants MPLA and MCT may improve major

disadvantages of traditional AIT regarding long treatment periods,

low patient adherence, and occurrence of side effects. However, so

far, sufficient clinical human data fully supporting marketing

authorization in Germany have not been reported. Moreover, as

of January 2024, PQ has not been approved for marketing in any

other European state (Bencard, personal communication).
3 Adjuvants currently investigated for
use in human AIT

3.1 Liposomes

Liposomes are biodegradable nanoparticles (see (75) for a

review of nanoparticles in AIT) that have been considered as

adjuvants combining immune cell activation with effective

packaging and delivering water-soluble antigens to target cells
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(76). Despite their potent immune-stimulatory capacity,

liposomes may also cause severe side effects such as toxicity to

cells of the mononuclear phagocyte system (monocytes,

macrophages, and DCs), reducing the secretion of immune

effector molecules by these cells, complement activation-related

pseudoallergy, and organ damage to liver and spleen upon

intravenous (i.v.) application [reviewed in (77–79)].

The potential of liposomes to carry allergens was first tested in

1991 by Audera’s group (80). In their experiments, house dust mite

(HDM)- (Dermatophagoides pteronyssinus), grass- (Lolium

perenne, Phleum pratense, Parietaria judaica, and Artemisia

vulgaris), and cat dander-allergen extracts with or without

liposome encapsulation were injected into BALB/c mice (80).

Their results showed that liposome-encapsulated allergen extracts

could induce higher levels of allergen-specific IgG paralleled by a

lower IgE production (80). One disadvantage when using liposomes

is their lack of inherent immune-activating capacity, which can be

overcome by combining liposomes with additional adjuvants. For

this, one liposome-based formulation, the commercial adjuvant

system 01 (AS01), which additionally contains the TLR4-ligand

MPLA (see above) and the natural saponin product QS-21 (see

below) has already been approved for use in malaria-

(MosquirixTM) and shingles (Shingrix(R)) vaccines (81). Besides, a

recent in vivo study also encapsulated CpG oligodeoxynucleotides

(CpG-ODN), a synthetic TLR9-agonist, together with OVA in

liposomes to evaluate their potential for allergy treatment (82).

Their results showed that OVA encapsulated in liposomes could

significantly reduce cutaneous anaphylactic reactions in an in vivo

OVA-induced asthma mouse model (82). Moreover, liposomes

encapsulating OVA and CpG-ODN, but not the OVA plus CpG-

ODN mixture alone, reversed OVA-induced allergic lung

inflammation in a mouse model (82). The inflammation-

suppressing effect of the liposomes was shown to be myeloid

differentiation primary response protein 88 (MyD88)-dependent,

and mediated by CD11c+ DCs (82). Therefore, liposomes may have

potential as carriers that encapsulate allergens and other adjuvants

to improve allergy treatment.
3.2 Oil-in-water emulsions

Besides alum and liposome-based AS01, two oil-in-water (O/

W) emulsion adjuvants AS03 (containing squalene, alpha-

tocopherol, and polysorbate 80) and MF59 (consisting of

squalene and the non-toxic emulsifiers Tween 20 and Span 85),

have also been licensed for clinical use, especially for various

influenza vaccines (83). Mechanistically, O/W emulsions have the

advantage of gradually releasing the combined antigen at the

injection site, which reduces the chance of anaphylactic reactions

while at the same time stimulating the activation of plasma cells

producing antigen-specific antibodies and generating mixed Th1/

Th2 responses (84, 85). Moreover, MF59 was also shown to induce

DC recruitment and increase their antigen uptake activity in vivo

(86). Potential safety risks concerning AS03 were raised after the use

of the influenza vaccine Pandemrix(R) (adjuvanted with AS03)

during the global indluenza A H1N1 pandemic in 2009.
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Pandemrix(R) was later found to be associated with increased

frequencies of narcolepsy in patients with an HLA-DQB1*0602

haplotype (reviewed in (87)). Mechanistically, the vaccine was

suggested to increase the frequency of antibodies to the

hypocretin (HCRT) receptor 2 that both cause sleep dysregulation

via a loss of HCRT-producing neurons and cross-react with a

particular fragment of influenza nucleoprotein (reviewed in (87)).

Currently, there are limited studies regarding the use of O/W as

adjuvants to improve AIT. Recently, O’Konek and Baker, Jr.

described nanoscale O/W emulsions (NE), which induced potent

Th1- and Th17-polarized immune responses (88). In vivo,

treatment of mice with NE-formulated peanut allergens (PN-NE)

suppressed allergic responses after both oral or systemic peanut

allergen challenge (88). Furthermore, a decreased production of the

Th2 cytokines IL-4 and IL-13, as well as a higher production of the

Th1 cytokine IFN-g and the anti-inflammatory cytokine IL-10, were

observed in PN-NE-treated & peanut-allergic mice (88).
3.3 Virus-like particles and
viral components

Virus-like particles (VLPs) are multimeric entities that have the

morphology of a native virus but do not contain viral genomic

material and are therefore unable to replicate in vivo. Consequently,

VLP-based vaccines have shown an improved safety profile

compared to either live-attenuated or inactivated vaccines (89).

They can serve as effective delivery carriers while offering strong

immune-modulating capacity due to their highly repetitive and

ordered structure (90). Several VLPs have already been licensed for

clinical use: Cervarix®, Gardasil®, and Gardasil9® for the

prevention of human papillomavirus (HPV) infection, Hecolin®

for the prevention of hepatitis E, Recombivax HB® and Sci-B-

Vac™ for hepatitis B, and Mosquirix™ for malaria (90, 91). VLPs

have also been studied for allergy treatment and the current

strategies for using VLPs are reviewed in other publications (90).

In brief, VLPs can be applied (I) alone, (II) packaging immune-

stimulatory CpG-motifs, (III) display either cytokines or (IV)

allergen(s) on their surface, (V) co-display both allergen(s) and

immune-modulating proteins on their surface, (VI) package

allergen(s) inside the VLPs, or (VII) mixed with allergen(s) to

improve AIT (Figure 3) (90). Up to now, several studies applying

different VLPs (except for VLPs displaying transforming growth

factor beta 1 (TGF-b1) (95)) showed potential to improve allergic

responses in allergic animal models in vivo, including reduced mast

cell activation, suppressed Th2- while promoting Th1 responses,

and upregulation of neutralizing antibody production [Figure 3 and

reviewed in (90)].

The largest number of clinical studies on VLPs in the field of

allergology have been performed on VLPs derived from the

bacteriophage Q beta (QbG10, al l financed by Cytos

Biotechnology AG, Schlieren, Switzerland). These form particles

of approximately 30 nm in size that were used to encapsulate

approximately 60 molecules of immune-stimulating A-type CpG

ODN (96). In contrast to B-type CpGs ODNs, A-type CpG ODNs

were described to be less stable and induce the secretion of
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interferon alpha (IFN-a) from plasmacytoid DCs (pDCs) rather

than IL-12 (96).

In an open-label phase I pilot trial 20 patients with HDM allergy

were treated for 10 weeks with a mixture of QbG10 (termed

CYT003) and an alum-adsorbed HDM extract (96). Here, the

combination of QbG10, alum and allergens resulted in a 10-fold

reduction in self-reported symptoms while at the same time

increasing HDM-specific IgG1, IgG2, and IgG4 antibody

product ion compared to before the treatment (96) .

These observations encouraged larger placebo-controlled trials,

the first of which was published in 2011 by Klimek and

coauthors. In a double-blind, randomized, placebo-controlled

clinical trial enrolling 299 patients with HDM allergy, patients

were treated for two months with either 0.5 or 1 mg of QbG10
alone. The authors reported QbG10 to dose-dependently reduce the
average combined symptom medication score, while the dose of 1

mg QbG10 also resulted in a higher number of patients with

increased allergen tolerance (97). Therefore, the authors suggested

QbG10 to be an “allergen-independent treatment with favorable

safety profile and therapeutic treatment benefit within 2 months”

(97). In the second reported parallel-group, double-blind,

randomized trial, 63 asthmatic patients undergoing steroid

withdrawal were treated with 0.9 mg QbG10 (without additional

allergen) (98). Also in this patient collective, QbG10 was reported to
reduce asthma-related symptom scores while increasing the

number of patients with well-controlled asthma (98). However, in

a final double-blind phase IIb study with 365 patients with not

sufficiently controlled, persistent moderate-to-severe allergic

asthma, Casale et al. reported both no significant difference

between the QbG10 treatment and placebo groups at week 12

and no significant differences in secondary outcomes (19).

Therefore, the study was prematurely terminated due to a lack of

efficacy compared to patients receiving standard inhaled

glucocorticosteroid therapy with or without long-acting beta-

agonists (19). It was stated by the authors that “continued clinical

development of CYT003 in this indication is unlikely, but these

results should not preclude further exploration of immune-

modifying therapies in allergic asthma” (19).

In a related approach, Storni et al. under participation of Allergy

Therapeutics Ltd, (Worthing, UK), recently published data on

optimized cucumber mosaic virus (CuMV)-derived VLPs

displaying allergen(s) (99). These VLPs encapsulate immune-

stimulatory E. coli RNA while at the same time co-displaying

tetanus toxin-derived epitopes (as universal antigens inducing

recall responses in formerly tetanus-vaccinated individuals) as

well as either the major peanut allergens Ara h 1, Ara h 2, or

roasted peanut extract (99). In BALB/c mice sensitized with peanut

extract plus alum intraperitoneal (i.p.), vaccinated with CuMV-

VLPs s.c., and challenged with peanut extract i.v., CuMV-VLP

treatment strongly reduced the peanut-induced temperature drop

(99). Here, CuMV-VLPs displaying either Ara h 1, Ara h 2, or

roasted peanut extract showed a similar efficacy, suggesting that

vaccination against a single allergen was able to protect against

challenge with the whole extract (99). In mechanistical studies, the

CuMV-VLPs displaying Ara h 1 were shown to mediate their

protective effects via a strong induction of peanut-specific IgG2a
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and IgG2b antibodies that down-regulated mast cell activation via

FcgRIIB-dependent inhibitory signaling (99).

Finally, a phase I clinical trial sponsored by Allergy

Therapeutics Ltd was initiated in January 2022 to analyze VLPs

that display the major peanut allergen Ara h 2 for treating peanut-

allergic patients (https://clinicaltrials.gov/ct2/show/NCT05476497).

This trial may provide more insights in the potential of VLPs for

allergy treatment.

Besides VLPs, viral components which have immune-activating

capacity have also been proposed as adjuvants for allergy treatment.

For example, the hepatitis B virus (HBV)-derived PreS T-cell

epitope fused with different allergens was tested both in vivo (in

mice and rabbits) (100, 101) and in a human phase II clinical trial

sponsored by Biomay AG (Vienna, Austria) (20, 102). Two non-

allergenic rFel d 1 (the major cat allergen)-derived peptides fused

with PreS strongly suppressed basophil activation while inducing

production of Fel d 1-specific IgG antibodies after injection into

either mice or rabbits (101). Moreover, a fusion protein consisting

of major birch pollen allergen Bet v 1-derived peptides and PreS

(rBetv1:PreS) also induced higher production of Bet v 1-specific IgG

antibodies from rabbits (100). More detailed in vitro analyses

demonstrated rBetv1:PreS to reduce T cell activation in PBMCs

from allergic patients, which was paralleled by both higher anti-

inflammatory IL-10- and Th1 cytokine IFN-g production (100).

Moreover, BM32, a vaccine candidate fusing PreS with

hypoallergenic peptides derived from several major timothy grass

pollen allergens adsorbed to alum induced allergen-specific IgG4

responses in a two-year AIT approach (phase II study, sponsored by

Biomay AG) (20, 102). BM32 also demonstrated a good safety

profile with no reported anaphylactic reactions and T cell-mediated

side effects while reducing both IgE reactivity and allergen-specific

Th2 cytokine secretion during the two years of treatment (20).

In addition to PreS, there are also two more pre-clinical mouse

studies that generated fusion proteins combining viral proteins and
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allergen-derived peptides: Salari et al. used the HIV type 1 (HIV-1)

trans-activating regulatory protein (TAT) fused with Chenopodium

album pollen allergen Che a 3 (rTAT-Che a 3) (103), and Edlmayr

et al. used rhinovirus viral protein 1 (VP1) fused with the major grass

pollen allergen Phl p 1 peptide P5 (rVP1-P5) (104). Both approaches

demonstrated the induction of higher allergen-specific IgG antibody

production in mice by the respective fusion proteins (103, 104).

Moreover, rTAT-Che a 3 was shown to enhance Treg-mediated

immune responses, including lower production of the Th2 cytokine

IL-4 as well as enhanced secretion of the Th1 cytokine IFN-g (103).
On the other hand, rVP1-P5 induced grass pollen-specific Th1-

biased immune responses with reduced Th2 activation were

observed in in vitro splenocyte cultures (104). Both studies were

pre-clinical not reporting potential side effects, but Edlmayr and

colleagues reported rVP1-P5 to not react with IgE antibodies from

grass pollen allergic patients, to lack allergenic activity upon contact

with basophils from allergic patients, and to induce protective IgG

antibodies in mice or rabbits that blocked both IgE reactivity to Phl p

1 and Phl p 1-induced basophil degranulation (104).

In summary, these findings show that VPLs and certain viral

proteins may be used as adjuvants for generating allergy vaccines.
3.4 Carbohydrate-based adjuvants

Carbohydrates are the most common type of biomolecule that

can be found in nature. Accordingly, they have an important role in

modulating both innate and adaptive immune responses (105).

Carbohydrates combine a high biocompatibility with low toxicity,

making them interesting novel adjuvant candidates. Currently, two

carbohydrate-based adjuvants, QS-21 and MPLA (already discussed

above), have already been licensed for clinical use. Moreover,

several different other compounds have been investigated. The

current state of knowledge is briefly summarized below.
FIGURE 3

Types of VLPs investigated pre-clinically in AIT and their immunological effects. VLPs have been applied in pre-clinical studies to improve the
treatment of allergies either as empty particles, packaging immune-stimulatory CpG-motifs, displaying either cytokines or allergen(s) on their
surface, co-displaying both allergen(s) and immune-modulating proteins on their surface, packaging allergen(s) inside the VLPs, or mixed with
allergen(s). VLPs were shown to thymus-independently activate naïve B cells, resulting in production of potentially neutralizing antibodies while also
promoting the activation of plasmacytoid DCs (pDCs) (92–94). These APCs in turn favor the induction of regulatory- and Th1 cells which suppress
the allergy-causing Th2 cells. Together these effects of VLPs may result in reduced mast cell activation and allergic inflammation [reviewed in (90)].
(p)DC, (plasmacytoid) dendritic cell; VLP, virus-like particle; IgG/A/E, immunoglobulin G/A/E.
frontiersin.org

https://clinicaltrials.gov/ct2/show/NCT05476497
https://doi.org/10.3389/fimmu.2024.1348305
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1348305
3.4.1 Saponin-based adjuvants (QS-21)
QS-21 is a triterpene glycoside that can be purified from the

soap bark tree (Quillaja saponaria) (106). It has been tested as a

therapeutic vaccine adjuvant in clinical trials against cancer

(lymphoma, leukemia, melanoma, breast-, prostate-, ovary-, or

lung cancer) and infectious diseases (HIV-1 and hepatitis B)

(81, 107).

The mechanisms underlying the adjuvant effects of QS-21 are

not extensively studied. We know that induction of immune

responses by QS-21 is mediated by a pronounced activation of

innate immune cells: upon injection, QS-21 activates subcapsular

CD11b+CD169+ macrophages in draining lymph nodes that in turn

recruit neutrophils and DCs (108, 109). In DCs, QS-21 in turn

triggers a MyD88-dependent inflammasome activation that

involves a partial activation of the high-mobility group protein

B1-TLR4 (109) and cathepsin B (shown for QS-21 in AS01), an

inflammasome-dependent release of IL-1b, and the activation of

both CD4+ and CD8+ T cells, and production of antibodies ((109)

and reviewed in (110)). While QS-21 did not bind to either TLR2 or

TLR4 (111), both lysosomal destabilization and spleen tyrosine

kinase (Syk) activation were shown to be essential for both QS-21-

mediated activation of monocyte-derived DCs (108), antigen

cleavage, and subsequent presentation to CD8+ T cells (81)

However, there are several drawbacks that limit the application

of QS-21, including (I) strong side effects when using high-dosages

(e.g. local erythema, induration, and flu-like symptoms); (II) its

chemical instability, especially in warm temperatures and pH values

higher than 7.4; and (III) limited supplies due to difficulties

extracting highly pure QS-21 from its natural source (107).

Therefore, in current clinical usage, QS-21 needs to be co-applied

with other adjuvants and is most commonly applied packaged in

liposomes in combination with MPLA (a TLR4-ligand, see above) as

AS01. A study from Welsby et al. compared the effects of either QS-

21 or MPLA on human DCs in culture, which were both packaged

independently of each other in liposomes (108). Their results showed,

that both QS-21- and MPLA-liposomes could induce higher IL-6,

TNF-a, and IL-8 secretion, as well as CD86 expression (108).

Interestingly these two liposome-packaged adjuvants showed

different kinetics on cytokine production: MPLA-liposomes

induced fast DC activation (two to four hours post-stimulation)

while for QS-21-liposomes DC activation was observed at later time

points (six hours post-stimulation) (108). Using microarray analysis

the authors found, that QS-21- and MPLA-liposomes activated

similar pathways such as cytokine-, NLR, and G-protein-couple

receptor-signaling in human DCs (108). In contrast, the activation

of the activator protein 1 (AP-1) and activating transcription factor 2

(ATF2)-transcription factor networks were found to be specific for

QS-21-liposomes, while MPLA-liposomes specifically induced TLR-

and IL-1-signaling in human DCs (108). The observed DC-activation

by QS-21-liposomes was shown to depend on cholesterol-mediated

endocytosis followed by lysosomal destabilization (108), which was

different from MPLA since it is known to activate TLR4-

signaling (60).

Although QS-21 is a strong adjuvant, it is well tolerated in

clinical trials with systemic side effects being infrequent: Compared
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to placebo, QS-21 increased injection site pain and occurrence of

diarrhea in two Pfizer-sponsored Alzheimer studies (NCT00479557

and NCT00498602) (meta-analysis in (112)). QS-21-mediated

injection site pain was also reported in three phase I trials by

Waite and colleagues (113) and upon intra-muscular application of

QS-21 mixed with HIV-1 glycoprotein 120 (114). Also Gilewski

reported local skin reactions at the injection site (duration 4 to 5

days) and mild flu-like symptoms (duration 1 to 2 days) upon

application of a QS-21-adjuvanted vaccine to prevent breast

cancer (115).

Although there is currently no study testing QS-21 as an

adjuvant for allergy treatment, QS-21 was shown to induce Th1-

biased immune responses with high titers of IgG2a and IgG2b

antibodies (81), making it an attractive candidate for

future research.

3.4.2 Glucans
Glucans are polysaccharides derived from either plants or

microorganisms (such as bacteria, algae, or fungi) that are

composed of D-glucose units linked by different glycosidic bonds

(Figure 4) (116). Glucans encompass several different a-glucans
(e.g., dextran, glycogen, pullulan, and starch) and b-glucans (e.g.,
cellulose, curdlan, laminarin, chrysolaminarin, lentinan, lichenin,

pleuran, and zymosan) (116). The different glucan families

considerably vary in structure, type of linkage, and length of the

macromolecules. The mechanisms by which glucans activate

immune cells are not fully understood. However, some glucans

were reported to bind to either carbohydrate receptors or TLRs

expressed on the surface of APCs, suggesting these molecules to

have adjuvant potential (116). For example, Dillon et al.

demonstrated that yeast zymosan could bind to both the Dectin-1

receptor and TLR2 on human and murine DCs, which induced

higher secretion of IL-12(p70), IL-6, and IL-10 in vitro (117).

Moreover, two studies used b-glucans chemically conjugated with

either the detoxified diphtheria toxin CRM197 or the cancer-

associated mucus protein mucin 1 as novel vaccines against either

diphtheria or cancer (118, 119). Their results showed that, as

adjuvants, b-glucans can serve as both carriers and immune

activators promoting immune responses in vitro and in vivo,

which enhanced the delivery of antigens by binding to APCs and

enforced antigen-specific antibody production (118, 119).

The potential of glucans for allergen-specific immunotherapy is

still controversial. Some researchers demonstrated b-(1,3)-glucans,
which can be found in either HDM feces or pollen grains derived

from several plant species, to exacerbate allergic inflammation by

activating DCs in vitro and enhancing allergen-specific IgE

antibody as well as Th2 cytokine production in vivo (120, 121).

However, in another in vivo OVA-based food allergy mouse model,

the authors applied either the low-molecular-weight b-(1,3)- or a
50–80% branched b-(1,6)-glucan (purified from Aureobasidium

pullulans). Here, these two b-glucans were shown to suppress

OVA-specific IgE production (122). In a non-industry-sponsored,

multicenter open split-body study enrolling 105 patients with atopic

dermatitis, regular topical application of a 0.25% b-glucan-based
cream (Imunoglukan P4H® cream) over a period of 24 weeks
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reduced pruritus and severity of atopic dermatitis while increasing

the number of days without exacerbation (123). The b-glucan-
containing cream was well tolerated with only mild local side effects

(contact dermatitis and other undisclosed skin side effects) that

disappeared during regular application (123). In a randomized,

double-blind, parallel group, placebo-controlled study without

industry sponsorship 26 patients with seasonal AR sensitized to

olive pollen were treated orally with 10 mg b-(1,3–1,6)-glucan twice

a day for 12 weeks (124). b-glucan treatment significantly reduced

levels of Th2 cytokines and eosinophils in nasal lavage fluid while

increasing levels of IL-12 (124). Recently, a b-(1,3)-glucan and a b-
(1,3-1,6)-glucan both derived from Saccharomyces cerevisiae were

investigated in an OVA-based mouse intestinal allergy model: Here,

oral treatment with b-(1,3)-glucan (but not b-(1,3-1,6)-glucan) was
shown to further promote intestinal inflammation and allergic

responses (125), suggesting that this b-(1,3)-glucan might not be
Frontiers in Immunology 09
suitable for immunotherapy purposes. Gut microbiome analysis in

the allergen-sensitized and b-(1,3)-glucan fed group showed an

increased ratio of Firmicutes to Bacteroidetes, a potential indication

of dysbiosis (125). In a phase IV clinical study (sponsored by the

Meiji University of Oriental Medicine, Kyoto, Japan) oral-

administration of superfine dispersed b-(1,3)-glucan (particle-size:

0.08 mm), instead of non-dispersed shiitake extract (particle-size:

288 mm), was shown to alleviate allergic symptoms like rhinorrhea,

sneezing, nasal congestion, and itchy watery eyes otherwise induced

by Japanese cedar pollen in allergic patients (21). Along with the

reduction of the aforementioned clinical symptoms, the superfine

dispersed b-(1,3)-glucan treatment group also displayed lower

pollen-specific IgE antibody levels (21). Based on these findings

the authors speculated, that differences in size, structure, and

purification method of carbohydrates derived from natural

sources might lead to distinct immune responses (21, 122).
FIGURE 4

Structure of alpha- and beta-glucans. Depicted the difference between alpha- and beta-(D)-glucose, the different types of glycosidic bonds, and
some simplified exemplary alpha- and beta-glucan structures.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1348305
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1348305
Therefore, more detailed studies are needed to understand the

adjuvant potential and potential side effects of glucans.

3.4.3 Mannan
Mannan is a b-(1,4)-mannose polysaccharide which can be

found in the cell walls of both plant and fungal cells (81). Mannan

can modulate immune responses towards both Th1 and Th2

responses (depending on its oxidation status, reduced mannan:

Th2, oxidized mannan: Th1) by binding to both mannan- and C-

type lectin receptors (DC-SIGN) expressed e.g., by APCs (116),

which leads to activation of complement pathways (116), the

NLRP3 inflammasome, as well as increased phagocytosis and

cytokine secretion in APCs (81, 116). The first study using

mannan as a vaccine adjuvant in mice was reported in 1992.

Okawa et al. conjugated mannan with the HBV 139-147 peptide

(126). The mannan:HBV peptide conjugate was shown to induce

higher IgG titers in mice than corresponding dextran:HBV peptide-

conjugates (126). So far, either native, oxidized, or reduced forms of

mannan have been conjugated to different antigens to be tested as

adjuvants for targeting APCs (reviewed in (81)). The results

demonstrated both higher antigen uptake and presentation by

human monocyte-derived DCs (127) coupled with the induction

of distinct antigen-specific Th1- or Th2-responses in mice

(128, 129).

There are some studies investigating mannan as an adjuvant for

improving allergen immunotherapy. Weinberger and colleagues

used oxidized mannan derived from the yeast Saccharomyces

cerevisiae to generate reactive aldehyde groups for covalent

attachment of OVA via amine-containing amino acid residues

(MN–Ova) (130). Compared to OVA alone, MN–Ova was taken

up more strongly by mouse DCs both in vitro and in vivo, while also

inducing higher IgG antibody production in mice at the injection

site (130).

In a second set of studies, the native form of Saccharomyces

cerevisae mannan was conjugated to defatted grass pollen grain-

based allergoids from Phleum pratense (PM) (127, 131, 132). PM

reduced skin prick test reactivity compared to either grass pollen

allergens or grass pollen-based allergoids in a phase II trial

(sponsored by Inmunotek SL, Madrid Spain)(Figure 5) (127).

Immunologically, in vitro stimulation of human monocyte-

derived DCs (hmoDCs) with PM induced higher secretion of IL-6

and IL-10 paralleled by a lower production of the Th2 cytokine IL-4.

PM additionally promoted a mTOR-dependent increase in hmoDC

glycolysis, and was more efficiently taken up compared to either

pollen extracts or pollen allergoids (Figure 5) (127, 131, 132). In

vivo, PM promoted tolerogenic immune responses characterized by

the differentiation of CD4+CD25highFOXP3+ Treg cells and

increased pollen-specific IgG2a/IgE ratios in mice (Figure 5) (127).

These immune-modulating properties were strongly dependent on

the intact structure of the mannan, as conjugates containing

oxidized mannan showed a strongly reduced uptake, IL-10

secretion, programmed death-ligand 1 (PD-L1) expression, and

frequency of induced Tregs (127).

In a follow-up pre-clinical study, Benito-Villalvilla et al. could

show non-oxidized mannan conjugated to allergoids to induce the
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differentiation of tolerogenic DCs from monocytes (133). In the

presence of IL-4, GM-CSF, and the mannan:allergoid conjugates,

monocytes from both non-atopic and allergic donors differentiated

into tolerogenic DCs with an increased mitochondrial oxidative

phosphorylation (OXPHOS) and epigenetic reprogramming

characterized by an open chromatin structure with both increased

histone 3 lysine 4 (H3K4) trimethylation at the promotors of IL-10,

PD-L1, suppressor of cytokine signaling 3 (SOCS3), and increased

histone 3 lysine 27 (H3K27) acetylation at the promotor regions of

PD-L1 and SOCS1 (133). Furthermore, monocyte-derived

tolerogenic DCs expressed higher amounts of the microRNAs

146 a and b while having reduced levels of miR-155 and

histone deacetylases (133). These tolerogenic DCs secreted IL-6

and IL-10 and promoted the differentiation of IL-10-producing

CD4+CD25+FOXP3+ Tregs (133). These results suggest mannan,

besides its direct immune activating effects, to also trigger extensive

epigenetic modifications in the stimulated DCs that may (if also

happening in their bone marrow progenitors) potentially result in

long-term modification of the respective cells reactivity towards

either mannan or the conjugated antigens (so called “trained

immune responses”).

In a first multicenter, prospective, randomized, double-blind,

double-dummy, placebo-controlled, phase II study encompassing

196 patients with HDM allergic rhinitis with or without asthma

(financed by Inmunotek SL, Madrid, Spain), patients and healthy

controls were treated with a HDM extract consisting of a mixture of

50% Der p and 50% Der f allergoids conjugated to non-oxidized

mannan either sublingually or subcutaneously (22). Here, both s.c.

and s.l. application of the mannan:allergoid conjugates increased

the percentage of patients showing an improved nasal provocation

test up to 50% and reduced combined symptom medication scores

by 45 to 70%, depending on the dose and application route (22).

Interestingly, s.l. application of the mannan conjugates induced

lower levels of HDM-specific IgG4 antibodies than the s.c.

application route (22). Reported side effects were grade I and II

reactions (mostly delayed) with all grade II reactions occurring in

the 1000 mTU/ml s.c. group (but not in groups receiving higher

concentrations) (22). No grade III or IV systemic reaction were

reported upon application of the mannan:allergoid conjugates (22).

The majority of local reactions (observed in the s.c. treatment

group) were mild and occurred after the first injections. However,

six delayed reactions were described as severe and led to withdrawal

of the respective patients from the trial (22).

Currently, three more phase II clinical trials (EudraCT nos.

2014-005471-88, 2018-002522-23, and 2020-004126-32) as well as

two phase III clinical trials for allergoid-mannan conjugates for the

treatment of patients with mild to moderate HDM-induced asthma

and rhinitis/rhinoconjunctivitis (NCT05400811) or birch pollen-

induced allergic rhinitis/rhinoconjunctivitis (EudraCT: 2021-

002252-36) are either ongoing or finished. All studies are

financed by Inmunotek SL (Madrid, Spain).

In summary, these studies demonstrated the potential of

mannan as an adjuvant to improve AIT, confirming its efficacy in

a first clinical study with more phase II and III studies

currently ongoing.
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3.5 Toll-like receptor agonists

Innate immune cells express a highly conserved set of PRRs (e.g.,

TLRs and NOD-like receptors (NLRs)) that directly recognize unique

structures exclusively associated with foreign microorganisms, so-

called PAMPs (134). After PAMPs bind to PRRs, innate immune cells

become activated, present pathogen-derived peptides to naïve T cells,

and initiate and regulate adaptive immune responses (134). In this

context, different PRR-ligands induce distinct activation programs in

APCs, resulting in the promotion of either Th1-, Th2-, and/or Th17-

immune responses (134). Due to their intrinsic immune activating

potential, PRR-ligands are highly interesting adjuvant candidates for

future vaccine development. Here, we will present two TLR-ligands in

more detail: the TLR5-ligand flagellin, and the TLR9-ligands CpG

oligodeoxynucleotides, which have been studied for their potential to

improve allergen immunotherapy.
3.5.1 Flagellin
The TLR5- and NLR family caspase activation and recruitment

domain (CARD) containing 4 protein (NLRC4)-ligand flagellin is a

bacterial motility protein forming the main body of the bacterial

flagellum (135). Vaccines adjuvanted with flagellin were reported to

be both safe and well-tolerated in clinical trials (136, 137) where

flagellin was demonstrated to be an effective mucosal adjuvant

triggering Th1-biased, protective immune responses in mice and

monkeys (138–140).

Flagellin has also been analyzed pre-clinically as an adjuvant for

improving traditional AIT. The available literature is divided into

investigating (I) the mixture of flagellin and different allergens or

(II) flagellin fused to allergens as part of fusion proteins. In this

context, flagellin-containing fusion proteins were suggested as

potential therapeutics combining the adjuvant activity of the

TLR5- and NLRC4-ligand and the cargo antigen into a single

molecule, allowing for the efficient targeting of antigens to, and

simultaneous activation of TLR5+ APCs (140–143).
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Lee et al. tested either intranasal or intralymphatic injection of

Vibrio vulnificus flagellin B (FlaB) mixed with OVA in an OVA-

based mouse model of airway inflammation (144, 145) where the

OVA/FlaB mixture reduced OVA-induced airway hyper-

responsiveness, inflammatory cell infiltration in lung tissue, as

well as both systemic (IL-4, IL-5, IL-6, IL-17, and IFN-g) and

local (IL-4 and IL-5) cytokine production; while increasing OVA-

specific IgA levels in serum (144, 145). Mechanistically, the ability

of the OVA/FlaB mixture to suppress allergic responses was found

to be dependent on TLR5 (146). Moreover, FlaB promoted the

differentiation of IL-10- and TGF-b-producing tolerogenic DCs

(tolDCs), which suppressed both Th1/Th2 responses and enhanced

the activation of Treg cells (146). Besides DCs and T cells, a recent

study demonstrated flagellin to stabilize OVA-induced eosinophil

activation (releasing major basic protein (MBP) and peroxidase

(EPX) in vitro and in vivo) and to reduce oxidative stress in OVA-

sensitized eosinophils which was correlated with decreased allergic

inflammation (147). Additionally, Zeng et al. found flagellin to

diminish allergen-induced oxidative stress in Bregs from both a food

allergy (FA) mouse model and patients’ blood samples (148). Here,

adding flagellin to OVA improved traditional AIT in an OVA-

induced food allergy model in vivo (148). These results showed that

flagellin can activate different cell types, changing both their

cytokine secretion and metabolic status, which correlated with

improved treatment outcomes in AIT in mice.

On the other hand, flagellin:allergen fusion proteins have

demonstrated an even higher potential to improve allergy

treatment than the mixture of flagellin and allergen. Tan et al.

generated a recombinant fusion protein consisting of FlaB fused to

the C-terminus of the HDM allergen Der p 2 (rDerp2:FlaB) (149).

Compared to the non-fused Der p 2 + FlaB mixture, rDerp2:FlaB

more efficiently suppressed airway hyper-responsiveness, serum IgE

levels, and secretion of Th2 cytokines into bronchoalveolar lavage

fluid in a HDM-induced mouse asthma model (149).

Moreover, Kitzmüller and colleagues also demonstrated that

Salmonella FliC (genetically modified to lack the middle
FIGURE 5

Immune modulatory properties of non-oxidized mannan:allergoid conjugates. Non-oxidized mannan:allergoid conjugates were shown to reduce
skin prick test reactivity compared to either grass pollen allergens or grass pollen-based allergoids (right side). Immunologically, the mannan:
allergoid conjugates taken up via DC-SIGN and mannose receptor induced higher secretion of IL-6 and IL-10 as well as surface expression of PD-L1
paralleled by an increase in mTOR-dependent glycolysis (left side). In in vivo analyses, mannan:allergoid conjugates stimulated the differentiation of
CD4+CD25highFOXP3+ Treg cells, paralleled by increased pollen-specific IgG2a/IgE ratios. In grass pollen allergic patients, the mannan allergoid
conjugates induced lower skin prick test reactivity compared to either non-modified allergens or the non-conjugated allergoids alone. Results
summarized according to (127). For more information see text. DC-SIGN, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
integrin; FOXP3, forkhead box protein 3; Mannose R, mannose receptor; mTOR, mammalian target of rapamycin.
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hypervariable domain of flagellin described to induce neutralizing

anti-flagellin antibody responses) fused to either the N- or C-

terminus of Bet v 1 (rFliC:Betv1 or rBetv1:FliC, respectively)

could activate monocyte-derived DCs from pollen-allergic

patients (150). Immunization of mice with either rFliC:Betv1 or

rBetv1:FliC fusion proteins induced lower serum levels of Bet v 1-

specific IgE paralleled by a higher production of IgG antibodies

(150), suggesting flagellin:allergen fusion proteins to be promising

novel treatment options for pollen allergy.

In own previous studies we generated fusion proteins

combining flagellin A (FlaA) from Listeria monocytogenes with

different allergens (141–143, 151). We demonstrated that

prophylactic vaccination with rFlaA:OVA, but not the mixture of

both proteins, induced higher production of allergen-specific IgG2a

antibodies paralleled with decreased levels of both IgE and Th2

cytokines (IL-5 and IL-13), resulting in the prevention of clinical

symptoms such as softness of faces, body weight loss, and drop in

core body temperature in an OVA-induced intestinal allergy mouse

model (142, 152).

More in-depth analyses showed, that all generated rFlaA:

allergen fusion proteins stimulated mDCs to secrete higher

amounts of both pro- (IL-6, IL-1b, TNF-a, and IL-12) and anti-

inflammatory (IL-10) cytokines (Figure 6) (141, 143, 151–153).

rFlaA:allergen fusion protein-treated mDCs also displayed an

activated phenotype with higher surface expression levels of the

maturation markers CD40, CD69, CD80, and CD86 (Figure 6) (141,

151). Mechanistically, the induced mDC activation was mediated by

intracellular MyD88-, MAPK-, and nuclear factor kappa-light-

chain-enhancer of activated B cells (NFkB)-pathways while being

largely TLR5-independent (143, 152, 153). The rFlaA:allergen

fusion protein-stimulated mDCs efficiently modulated allergen-

specific T cell responses, suppressing allergen-induced Th2

cytokine (IL-4, IL-5, and IL-13) production from ex vivo-isolated,

Th2-biased CD4+ T cells in an IL-10-dependent manner (Figure 6)

(142, 143, 151). The flagellin:antigen fusion proteins formed high-

molecular aggregates possibly due to self-assembly of flagellin

molecules into flagella-like structures, enabling the formation of

intermolecular cysteine bridges between the fused allergens (FlaA

itself does not contain cysteine residues) (143, 152). These

aggregates were both taken up more strongly by mDCs and

inhibition of aggregate uptake dose-dependently suppressed

fusion protein-induced cytokine secretion (143). Therefore, these

results suggest the strong activation of mDCs by the flagellin:

allergen fusion proteins, while being mostly TLR5-independent,

to be at least in part caused by aggregation-mediated enhanced

uptake and subsequent triggering of above-described intracellular

signaling cascades.

Interestingly, the tolerogenic phenotype of mDCs stimulated with

a flagellin fusion protein incorporating the major birch pollen

allergen Bet v 1 (rFlaA:Betv1) was shown to depend on a JNK-

MAPK-dependent activation of the mTOR pathway (143, 153).

mTOR is a conserved serine/threonine protein kinase that belongs

to the phosphatidylinositol 3-kinase-(PI3K) family. mTOR not only

integrates various nutritional and environmental stimuli, including

levels of growth factors, cellular energy reserves, and stress levels, but

is also a master regulator of cellular metabolism that affects innate
Frontiers in Immunology 12
and adaptive immune responses (154). mTOR activation in rFlaA:

Betv1-stimulated mDCs resulted in alterations of mDC metabolism

with increased rates of glycolysis, Warburg metabolism, and reduced

mitochondrial respiration (155). Inhibition of either glycolysis or

mTOR activation suppressed rFlaA:Betv1-induced IL-10 secretion

(143, 153, 155). In addition to glycolysis, fatty acid synthesis also

significantly contributed to rFlaA:Betv1-mediated cytokine secretion,

the production of antimicrobial molecules, and the modulation of T

cell responses (155).

In line with the results presented for mDCs, stimulation of

murine bone marrow-derived macrophages with rFlaA:Betv1 also

triggered a MyD88-dependent, but only partly TLR5-dependent,

cytokine production, stronger activation of hypoxia inducible factor

1 alpha (HIF-1a)-, MAPK-, NFkB-, and mTOR-signaling, and

increased glucose metabolism (156). Therefore, macrophages also

contribute to the strong immune-modulating effects of rFlaA:Betv1

previously observed in vivo and should be considered important

target cells contributing to the re-establishment of allergen

tolerance in AIT.

Moreover, the murine lung epithelial cell line LA-4 was shown

to be activated by rFlaA:Betv1. Here, the fusion protein was shown

to be taken up more strongly, triggering a MAPK-, NFkB-, and
cyclo oxygenase 2 (COX2)-dependent activation of epithelial cells,

characterized by a pronounced secretion of the cytokine IL-6, the

myeloid chemo-attractants CCL2 and CCL20, as well as production

of prostaglandin E2 (Figure 6) (157). rFlaA:Betv1-stimulated LA-4

cells modulated the activation of mDCs in a COX-2-dependent

manner, resulting in lower secretion of the pro-inflammatory

cytokines IL-12 and TNF-a, while the levels of the IL-1b and IL-

10 remained unchanged (157). Therefore, epithelial cells also

contribute to the immune modulating properties of potential

allergen therapeutics and should be kept in mind as potential

target cells for AIT approaches.

Finally, rFlaA:Betv1 was shown to induce a MyD88- and

mTOR-dependent, but thymus-independent activation of ex vivo-

isolated B cells, inducing a regulatory B cell phenotype

(CD19+CD1d+CD24+CD38+IgM+) characterized by: (I) the

secretion of the anti-inflammatory cytokine IL-10, (II) the

production of antigen-binding IgG(1&3) and non-antigen-

binding IgA antibodies, and (III) the capacity to suppress Bet v 1-

induced Th2-responses (Figure 6) (158). To our knowledge, this is

the first report showing the induction of Bregs by a potential

therapeutic candidate for the treatment of allergic diseases.

So far Flagellin:antigen fusion proteins have not been

investigated clinically for allergy treatment, but they were tested

in several phase II clinical trials for the prevention of influenza

infection (136, 137, 159–161). In these studies, the vaccines were

well tolerated with lower doses (up to 3 µg) resulting in mild side

effects (injection site pain, headache, fatigue, and myalgia)

paralleled by increased serum CRP levels (136, 137, 159–161).

Higher doses (10 µg) increased severity of fatigue, headache,

myalgia, joint pain, fever, and gastrointestinal symptoms (nausea,

vomiting, diarrhea) (136, 160). Symptoms resolved within 24 h of

vaccination (136).

In summary, both flagellin and especially flagellin-containing

fusion proteins incorporating different allergens were shown to
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1348305
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1348305
efficiently activate many types of immune cells and thereby

modulate immune responses, making these allergen-adjuvant

conjugates interesting candidates for further development in

AIT treatment.

3.5.2 CpG oligodeoxynucleotides
Bacterial DNA contains a high frequency of unmethylated CpG

motifs that can bind to TLR9 and trigger immune responses (162).

Therefore, synthetic immunostimulatory oligodeoxynucleotides

containing unmethylated CpG motifs (CpG ODN) have been

investigated to either mimic natural bacterial infection or as

vaccine adjuvants (162). So far, several different types of CpG

ODNs have been tested in clinical phase I/II trials as vaccine

adjuvants against either infectious diseases (hepatitis B, malaria,

and pneumonia) or cancer (melanoma, breast cancer, sarcoma,

ovarian cancer, glioblastoma, and lymphoma) (162). The overall

results showed that CpG ODN adjuvants only induced short-term

mild-to-moderate adverse effects, while inducing Th1-biased

immune responses and promoting CD8+ T cell activation (162).

The proposed advantages of using CpG ODN for allergen-

specific immunotherapy include: (I) CpG ODN can activate DCs

and macrophages via TLR9, promoting especially pDCs, to increase

allergen uptake and produce IL-10, TGF-b, and indoleamine 2,3-

dioxygenase (IDO) (Figure 7). This in turn drives differentiation

and activation of Treg responses while also inducing DC-derived
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secretion of IFN, IL-6, IL-12, and IL-18 that promote the

differentiation of IFN-g producing Th1 cells and isotype-switch

towards IgG2a (Figure 7) (162). (II) Since B cells express high levels

of TLR9, CpG ODN can also directly activate B cells (Figure 7). An

in vivo study that used ragweed pollen-sensitized mice

demonstrated that combining CpG ODN with ragweed pollen

could induce higher frequencies of IL-10-producing Breg

(B220+CD19+CD23+IgM+CD40+MHCIIhi), which contribute to

the suppression of allergen-induced inflammatory responses

(163). However, CpG ODN application was also reported to

result in increased serum levels of TNF-a that were associated

with toxic shock in mice (Figure 7) (164, 165).

In a ragweed allergen-induced mouse asthma model, CpGODN

was shown to induce IFN-g-dependent Th1-responses while

suppressing allergic lung inflammation (166). As an approach to

treat ragweed allergy, the immune-stimulating sequence 1018 (ISS-

1018, 5’-TGACTGTGAACGTTCGAGATGA-3’) was chemically

conjugated to the major ragweed allergen Amb a 1, resulting in

an Amb a 1:CpG conjugate with a mean conjugation rate of 1 to 4

(167). This conjugate was termed TOLAMBA. In BALB/c mice,

TOLAMBA induced Th1-biased immune responses characterized

by the production of IFN-g, IgG1- (also observed in rabbits and

cynomolgus monkeys) and IgG2a-antibodies, while the non-

conjugated mixture of Amb a 1 and ISS 1018 predominantly

induced Th2-biased immune responses (167). In Amb a 1-
FIGURE 6

Immune modulating properties of flagellin:allergen fusion proteins. Flagellin:allergen fusion proteins combining the TLR5- and NLRC4-ligand
flagellin and different allergens into a single molecule were shown to strongly activate both myeloid DCs and macrophages, resulting in the
secretion of both pro- and anti-inflammatory cytokines and the expression of co-stimulatory molecules. The activated APCs promoted the
induction of Th1 responses both in vitro and in vivo while also efficiently suppressing Th2 responses in an IL-10-dependent manner. This pro-
tolerogenic phenotype of the APCs was critically dependent on a metabolic shift towards increased glycolytic activity termed the Warburg effect.
The fusion protein consisting of flagellin A and the major birch pollen allergen Bet v 1 was also shown to strongly activate epithelial cells, resulting in
the secretion of IL-6 and the chemokines CCL2 and CCL20. The activated epithelial cells furthermore produced prostaglandin E2 (PGE2) which was
shown to modulate DC responses towards the fusion protein. Finally, B cells stimulated with the fusion protein were shown to form a
CD19+CD1d+CD24+CD38+IgM+ subpopulation with regulatory properties that secreted anti-inflammatory IL-10, produced allergen-binding IgG1&3

antibodies and suppressed allergen-specific Th2 responses. For more information see text. PGE2, Prostaglandin E2.
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sensitized and -challenged BALB/c mice, TOLAMBA reduced the

production of IgG1 and IgE antibodies while boosting production of

IgG2a (167). Similar results were described for Amb a 1-ISS-1080 by

both Marshall et al. and Santeliz et al. (168, 169) as well as OVA-

CpG ODN (1826) by Shirota et al. (170).

In 2006 Creticos and coworkers reported the results of a

randomized, double-blind, placebo-controlled phase II trial

testing TOLAMBA in 25 ragweed allergic patients (sponsored by

the Johns Hopkins University School of Medicine, Baltimore, USA

under participation of Dynavax Technologies, Berkeley, California,

USA) (171). Patients were treated with six weekly injections of

increasing doses of TOLAMBA (0.06, 0.3, 1.2, 3, 6, and 12 µg) and

monitored during the following two ragweed seasons (171).

Compared to placebo, TOLAMBA reduced rhinitis visual

analogue scores by two thirds in both ragweed seasons, and also

Amb a 1-specific IgE levels were lower during the first ragweed

season (171). While the authors reported no vaccine-associated

systemic adverse events or clinically significant abnormalities, also

no effect on the primary endpoint (nasal vascular permeability as

assessed by nasal-lavage albumin) was achieved (171).

To follow up on these results, a phase IIb study with

TOLAMBA in 738 ragweed allergic patients was conducted

(sponsored by Dynavax Technologies). It was initially reported in

a conference abstract, that treatment during the first ragweed season

was well tolerated in all groups without TOLAMBA-related serious

adverse events (172). However, later on, the company reported

problems with the study as they observed no measurable disease in

any of the study groups during the ragweed season (http://

investors.dynavax.com/releasedetail.cfm?releaseid=231013). In

May 2008 the company reported, that although TOLAMBA

showed a trend towards a reduction of the symptoms of ragweed

allergic individuals relative to placebo, no statistical significance was
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achieved (https://investors.dynavax.com/news-releases/news-

release-details/dynavax-tolambatm-chamber-study-misses-

primary-endpoint-company). With no original paper published on

the study so far, the company referred to “an unexpectedly high

degree of variability in the data set possibly due to the subjective

nature of symptom scoring used to assess efficacy” and decided to

discontinue clinical development of TOLAMBA (https://

investors.dynavax.com/news-releases/news-release-details/

dynavax- to l amba tm-chambe r - s tudy-mi s s e s -p r imary -

endpoint-company).

As an approach to treat food allergy, Rodriguez et al. treated

BALB/c mice sensitized to the major peach allergen Pru p 3 with a

mixture of Pru p 3 peptides and CpG ODNs (173). In their

experimental model, treatment with Pru p 3 peptides plus CpG

ODNs suppressed the temperature drop induced by i.p. challenge

with the allergen and strongly reduced Pru p 3-specific IgE levels

(173). This CpG ODN-mediated immune modulation was

accompanied by an increased production of Pru p 3-specific

IgG2a antibodies as well as an increase in IL-10-producing

CD4+CD25+ Tregs and IFN-g-producing Th1 cells (173).

Interestingly, the tolerance was maintained even after stopping

the treatment for three weeks (173).

In a recent review article Montamat and colleagues

recapitulated the development of CpG ODN adjuvants for allergy

treatment in more detail (174). When analyzing the complex

immune-stimulating properties of CpG ODN adjuvants, they

concluded that the detrimental inflammation and Th1 responses

observed upon application of CpG ODN adjuvants may be either

preferentially triggered by low doses of CpG ODNs or be the

byproduct of LPS potentially contaminating the used CPG ODN

preparations (174). They concluded, that application of higher

doses of CpG ODN may reliably induce the desired, pro-
FIGURE 7

Immunological effects of CpG ODNs as adjuvants in mice and men. CpG ODNs can activate DCs and macrophages via TLR9, resulting in increased
uptake of co-applied allergens and the differentiation of both allergen-specific Th1 and Treg cells. In mice the mixture of Bet v 1 and CpG ODN was
shown to predominantly induce IFN-g secreting Th1 cells and the production of Bet v 1-specific IgG2a antibodies. Furthermore, CpG ODNs can
thymus-independently activate either B-1 or marginal zone B cells, promoting the secretion of antibodies and pro-inflammatory cytokines. Likely
because of this strong capacity of CpG ODNs to activate multiple immune cells they were also reported to increase serum levels of TNF-a that were
associated with toxic shock in mice. For more information see text. IDO, indoleamine 2,3-dioxygenase.
frontiersin.org

http://investors.dynavax.com/releasedetail.cfm?releaseid=231013
http://investors.dynavax.com/releasedetail.cfm?releaseid=231013
https://investors.dynavax.com/news-releases/news-release-details/dynavax-tolambatm-chamber-study-misses-primary-endpoint-company
https://investors.dynavax.com/news-releases/news-release-details/dynavax-tolambatm-chamber-study-misses-primary-endpoint-company
https://investors.dynavax.com/news-releases/news-release-details/dynavax-tolambatm-chamber-study-misses-primary-endpoint-company
https://investors.dynavax.com/news-releases/news-release-details/dynavax-tolambatm-chamber-study-misses-primary-endpoint-company
https://investors.dynavax.com/news-releases/news-release-details/dynavax-tolambatm-chamber-study-misses-primary-endpoint-company
https://investors.dynavax.com/news-releases/news-release-details/dynavax-tolambatm-chamber-study-misses-primary-endpoint-company
https://investors.dynavax.com/news-releases/news-release-details/dynavax-tolambatm-chamber-study-misses-primary-endpoint-company
https://doi.org/10.3389/fimmu.2024.1348305
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1348305
tolerogenic Treg responses (174). They proposed, that “doses

between 0.5 and 1.5 mg/kg, dependent on the administration

route, should induce the desired immune tolerance toward the

allergen with a minimal risk of adverse reactions” (174).

In theory, the immune-activating properties of CpG ODNs are

of interest in allergy treatment and initial mouse studies showed

promising immune-modulating effects [induction of Th1 responses

paralleled by suppression of Th2 responses (167)]. However,

currently there are no clinical trials demonstrating a clear benefit

of CpG ODNs in allergic patients. As neither an optimal dose nor

application route of CpG ODNs are established, further studies

improving on the published protocols should investigate the

potential of CpG ODNs as adjuvants for advanced AIT treatment.
4 Summary and conclusion

Adjuvants have the potential to improve AIT by increasing the

immunogenicity of isolated allergen(s), while at the same time

reducing the number of injections and (cumulative) amounts of

allergen(s) that need to be applied. Furthermore, adjuvants can

reduce the probability of anaphylactic reactions by adsorbing the

allergen(s) and modulate allergen-specific immune responses

towards either predominantly tolerogenic or Th1-biassed

immune responses.

The adjuvants currently approved for use in humans

(aluminum hydroxide, calcium phosphate, MCT, and MPLA)

show advantages for improving AIT, such as prolonging the

contact time of immune cells with the allergen(s) at the injection

site and inducing allergen-specific IgG production. However, some

of them also show disadvantages, for example, the use of aluminum

hydroxide can induce unwanted Th2 responses and IgE production.

Therefore, several different adjuvants (liposomes, O/W

emulsions, VLPs, viral components, carbohydrate-based

adjuvants, flagellin, and CpG ODN) have been tested in recent

years not only in vitro and in vivo in respective animal models, but

also in clinical trials. Liposomes, while usually lacking pronounced

intrinsic immune-activating capacity, can both reduce cutaneous

anaphylactic reactions and lung inflammation in mouse models

when combined with other adjuvants (e.g. with QS-21 andMPLA in

AS01). Similarly, O/W emulsions reduce the chance of anaphylactic

reactions by slowly releasing the allergen, while generating mixed

Th1/Th2 responses by increased APC recruitment and antigen

uptake. So far, O/W emulsions have not seen widespread

investigation for allergy treatment. VLPs are potent activators of

DCs and B cells that have repeatedly shown promising results in

pre-clinical trials. However, the only candidate so far tested in

multiple clinical trials (QbG10) did not progress in clinical

development after failing to show significant differences between

the QbG10 treatment and placebo groups in a phase IIb study.

However, there are currently several VLP-based therapeutics in

different stages of pre-clinical and clinical development.

Carbohydrate-based adjuvants like QS-21, glucans, and mannan

induce a robust immune system activation with a tendency towards
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Th1-biassed immune responses. Here, especially mannan:allergoid

conjugates have shown promising tolerogenic properties and are

currently undergoing clinical evaluation in multiple trials. The

TLR5-ligand flagellin fused to different allergens has shown

promising pre-clinical results inducing the differentiation of

tolerogenic DCs and macrophages and regulatory B cells.

However, so far flagellin-containing therapeutics have not

progressed to clinical trials in the field of allergology. Finally,

TLR9-activating CpG oligodeoxynucleotides have shown

promising immune-modulating effects in mice (induction of Th1

responses paralleled by suppression of Th2 responses), but so far

there are no clinical trials demonstrating a clear benefit in

allergic patients.

In summary, these adjuvants showed the potential to improve

AIT by (I) inducing higher levels of allergen-specific IgG while

decreasing IgE production and (II) promoting the differentiation

and activation of different regulatory immune cells, such as Tregs,

tolerogenic DCs, macrophages, and Bregs. In the performed clinical

studies, some adjuvants failed to show clinical efficacy (e.g., CpG,

QbG10, Table 1), while some adjuvants have recently shown

promising results in first clinical studies and could be useful as

future adjuvants (e.g., VLPs displaying allergens, PreS, superfine

dispersed b-(1,3)-glucan, mannan, Table 1). However, up to now,

these results have not resulted in marketing authorization of novel

adjuvanted AIT products. With a number of clinical studies

currently ongoing to further test some of the described adjuvants,

we may be able to better assess the potential of some of these

adjuvants in the near future.
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AIT allergen-specific immunotherapy

alum aluminum hydroxide

AP-1 activator protein 1

APCs antigen-presenting cells

AR allergic rhinitis

AS01/03 adjuvant system 01/03

ATF2 activating transcription factor 2

CARD caspase activation and recruitment domain

COX2 cyclo oxygenase 2

CpG ODN CpG oligodeoxynucleotides

CRM197 detoxified diphtheria toxin

CuMV cucumber mosaic virus

CYT003 VLPs derived from the bacteriophage Q beta

DCs dendritic cells

DC-SIGN dendritic cell-specific ICAM-3-grabbing non-integrin

DAMPs damage-associated molecular patterns

EPX peroxidase

FA food allergy

FDA United States Food & Drug Administration

FlaA flagellin A from Listeria monocytogenes;

FlaB flagellin B from Vibrio vulnificus;

H3K4/27 histone 3 lysine 4/27

HBV hepatitis B virus

HCRT hypocretin

HDM house dust mite

HIF-1a hypoxia inducible factor 1 alpha

HIV(-1) human immunodeficiency virus type (1)

HIV-TAT HIV trans-activator of transcription

hmoDCs human monocyte-derived DCs

HPV human papillomavirus

IDO indoleamine 2,3-dioxygenase

i.v. intravenous

i.p. intraperitoneal

ISS-1018 immune-stimulating sequence 1018

JNK c-Jun N-terminal kinase

LPS lipopolysaccharide

LRR leucine rich repeats

MAPK mitogen activated protein kinase
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MBP major basic protein

MCT microcrystalline tyrosine

mDCs myeloid dendritic cells

MN–Ova oxidized mannan derived from Saccharomyces cerevisiae
conjugated to OVA

MPLA monophosphoryl lipid A

mTOR mammalian target of rapamycin

MyD88 myeloid differentiation primary response protein 88

NE nanoscale oil-in-water emulsions

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

NLR NOD-like receptor

NLRC4 NLR family CARD domain containing 4 protein

NLRP3 NOD-, LRR- and pyrin domain-containing protein 3

NOD nucleotide oligomerization domain

O/W oil-in-water

OVA ovalbumin

OXPHOS oxidative phosphorylation

PAMPs pathogen-associated molecular patterns

PD-L1 programmed death-ligand 1

pDCs plasmacytoid DCs

PGE2 prostaglandin E2

PI3K phosphatidylinositol 3-kinase

PM grass pollen grain-based allergoids from Phleum pretense; PN-NE,
NE-formulated peanut allergens

PN-NE NE-formulated peanut allergens

PQ Pollinex Quattro®

PreS T-cell epitope derived from the hepatitis B virus

PRRs pathogen recognition receptors

QbG10 bacteriophage Q beta

QS-21 Saponin-based adjuvants

rDerp2:
FlaB

flagellin B from Vibrio vulnificus fused to the C-terminus of the
HDM allergen Der p 2

s.c. subcutaneous

s.l. sublingual

SCIT subcutaneous allergy immunotherapy

SOCS3 suppressor of cytokine signaling 3

Syk spleen tyrosine kinase

ST-SIT short-term specific immunotherapy

TAT trans-activating regulatory protein

TGF-b(1) transforming growth factor beta (1)

TLR “Toll”-like receptor

(Continued)
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TOLAMBA Amb a 1:CpG ODN conjugate

tolDCs tolerogenic dendritic cells

VLP virus-like particles

VP1 viral protein 1
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