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SWIFT clustering analysis of
intracellular cytokine staining
flow cytometry data of the HVTN
105 vaccine trial reveals high
frequencies of HIV-specific
CD4+ T cell responses and
associations with
humoral responses
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Lawrence Corey2, James J. Kobie7 and Juilee Thakar8
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Medicine & Dentistry, Rochester, NY, United States, 4Hope Clinic of the Emory Vaccine Center,
Division of Infectious Diseases, Emory University, Atlanta, GA, United States, 5Service of Immunology
and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne,
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Rochester Medical Center, Rochester, NY, United States
Introduction: The HVTN 105 vaccine clinical trial tested four combinations of

two immunogens - the DNA vaccine DNA-HIV-PT123, and the protein vaccine

AIDSVAX B/E. All combinations induced substantial antibody and CD4+ T cell

responses in many participants. We have now re-examined the intracellular

cytokine staining flow cytometry data using the high-resolution SWIFT

clustering algorithm, which is very effective for enumerating rare populations

such as antigen-responsive T cells, and also determined correlations between

the antibody and T cell responses.

Methods: Flow cytometry samples across all the analysis batches were registered

using the swiftReg registration tool, which reduces batch variation without

compromising biological variation. Registered data were clustered using the

SWIFT algorithm, and cluster template competition was used to identify clusters

of antigen-responsive T cells and to separate these from constitutive cytokine

producing cell clusters.

Results: Registration strongly reduced batch variation among batches analyzed

across several months. This in-depth clustering analysis identified a greater

proportion of responders than the original analysis. A subset of antigen-

responsive clusters producing IL-21 was identified. The cytokine patterns in
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each vaccine group were related to the type of vaccine– protein antigens tended

to inducemore cells producing IL-2 but not IFN-g, whereas DNA vaccines tended

to induce more IL-2+ IFN-g+ CD4 T cells. Several significant correlations were

identified between specific antibody responses and antigen-responsive T cell

clusters. The best correlations were not necessarily observed with the strongest

antibody or T cell responses.

Conclusion: In the complex HVTN105 dataset, alternative analysis methods

increased sensitivity of the detection of antigen-specific T cells; increased the

number of identified vaccine responders; identified a small IL-21-producing

T cell population; and demonstrated significant correlations between specific

T cell populations and serum antibody responses. Multiple analysis strategies may

be valuable for extracting the most information from large, complex studies.
KEYWORDS

HIV - human immunodeficiency virus, vaccine trial, reanalysis, algorithmic flow
cytometry analysis, T cell response, T cell antibody correlation
Introduction

The HIV Vaccine Trials Network (HVTN) 105 phase I trial

(ClinicalTrials.gov NCT02207920) was designed to build on the

encouraging results of the RV144 “Thai Trial” HIV vaccine efficacy

trial which demonstrated modest protection from HIV infection

(1). RV144 immunization included AIDSVAX B/E consisting of

clade B MN gp120 and clade E A244 gp120 proteins in alum given

following priming immunizations with a canarypox vector vaccine.

HVTN 105 investigated the preventative vaccine strategy of

priming with DNA-HIV-PT123 which consisted of 3 plasmids

encoding clade C ZM96 gag, clade C ZM96 gp140, and clade C

CN54 pol-nef followed by boosting with AIDSVAX B/E in four

treatment groups of healthy HIV-1 negative individuals at low risk

of HIV acquisition to determine which strategy would best elicit

favorable HIV-specific antibody and T cell responses (2). DNA

vaccines are thermostable, are relatively straightforward to

manufacture, and provide more flexibility for vaccine design

through formulation of multiple plasmids containing different

HIV components and/or adjuvants in a single injection.

The HVTN 105 trial administered intramuscular injections at 0,

1, 3, and 6 months (M). T1 received protein at M0 and M1 and

DNA at M3 andM6; T2 received DNA at M0 andM1 and protein at

M3 and M6; T3 received DNA at M0, M1, M3, and M6 with protein

co-administered at M3 and M6; and T4 received protein and DNA

co-administered at each vaccination visit (Figure 1).

The primary immunogenicity analysis was conducted 2 weeks

following the final vaccination and evaluation of durability of the

immune response was conducted at 6 months following the final

vaccination. The previous analysis of humoral responses showed

the groups receiving protein at M0 and M1, T1 and T4 had a >85%

IgG response rate for ZM96.C and A244.AE after the second
02
vaccination, however, the response rate for T1 was not sustained

after subsequent vaccinations, likely a consequence of boosting with

DNA only (2). After the final vaccination there was an 80%

response rate for T2 and 100% for T3 and T4. Importantly, 2

weeks following the final vaccination, binding-IgG responses to the

HIV V1V2 antigens that were identified as potential inverse

correlates of risk (A244.AE V1V2 and 1086.C V1V2) from

RV144 (3) were observed in 96% or more vaccinees in groups T2,

T3, and T4. Over time geometric mean response magnitudes were

similar across HIV antigens (vaccine-matched vs. consensus HIV

envelopes, V1V2 antigens).
FIGURE 1

HVTN105 protocol. 26 participants per group were immunized with
the indicated vaccines in the left (upper) and right (lower) deltoid
muscles, at each of the time points indicated. Black arrows indicate
PBMC sampling times.
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HIV-1–specific CD4+ and CD8+ T cell responses were

examined by flow cytometry, using a validated 17-color

intracellular cytokine staining (ICS) assay, two weeks after each

boost as well as 12 months after enrollment. The peptide pools

evaluated were vaccine matched (ZM96 gp140-Env1, ZM96 gp140-

Env2, 92TH023-Env, and ZM96 Gag), covering Env and Gag. In the

previous analysis, which was done with rigorous manual templated

gating of the T cell populations, vaccine-induced CD4+ T cell

responses were detected in all groups. There were minimal

differences found across groups, although a trend of higher CD4+

responses in T3 was observed. However, this trend of higher CD4+

responses was significant when the polyfunctionality score was

assessed (4). The two prominent polyfunctional CD4+

populations were the four-function IFN-g+IL-2+TNF-a+CD40L+

and the three function IL-2+TNF-a+CD40L+.

The massive size and dimensionality of flow cytometry data is

challenging for comprehensive manual analysis approaches,

including its subjective and time-consuming nature, and the

concern that novel and overlapping cell populations may be

underappreciated with a priori gating strategies. Even at peak,

there was an overall modest CD4+ T cell response rate to HIV

Env (36%-60%) and low response to HIV Gag (0%-40%). We

therefore re-analyzed the HVTN flow cytometry data, using the

high-resolution SWIFT clustering algorithm (5, 6) that was

originally developed to resolve rare cytokine-producing T cell

subsets. We included batch registration (7) to reduce differences

between batches that might obscure biological differences. Our goal

was to increase the resolution of the heterogeneity of the T cell

response, and to define responders more clearly.

It is anticipated that an effective HIV vaccine will require both

optimal T cell and humoral immunity to confer protection. Given

the inter-dependence of CD4+ T cell and antibody responses, we

conducted correlative analysis of the clustered antigen-responsive T

cell subsets with existing plasma antibody data sets to identify

possible novel associations.

The re-analysis of flow data was consistent with the previous

analysis, but yielded further discoveries of increased frequencies of

participants with T cell responses; T cell sub-populations expressing

IL-21; qualitatively different responses induced by DNA vs protein

vaccines; and correlations between particular T cell subsets and

subsequent antibody responses.

Methods

Data source

FCS files and de-identified metadata from intracellular cytokine

staining (ICS) analysis of CD4+ and CD8+ T cell responses was

provided from the HVTN from HVTN 105 a Phase 1 preventative

vaccine trial (ClinicalTrials.gov NCT02207920). Primary ICS

analysis was previously reported (2). Details regarding the study

design, participants, sample and data acquisition are included in the

primary study manuscript (2). Briefly, participants were randomly

assigned to 1 of 4 groups with an allocation ratio of 1:1:1:1

(Figure 1). Participants received different combinations of
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AIDSVAX B/E, DNA-HIV-PT123, and placebo, administered

intramuscularly. AIDSVAX B/E consisted of 300 mg of subtype B

(MN) HIV gp120 glycoprotein and 300 mg of subtype A/E (A244)

HIV gp120 glycoprotein adsorbed onto aluminum hydroxide gel

adjuvant and administered into the right deltoid muscle. DNA-

HIV-PT123 contained a mixture of 3 DNA plasmids: (a) clade C

ZM96 gag, (b) clade C ZM96 gp140, and (c) clade C CN54 pol-nef,

delivered at a total dose of 4 mg administered into the deltoid

muscle via needle and syringe. Serum for humoral assays was

obtained from serum-separating tubes (SSTs) and frozen at –80°C.

Peripheral blood mononuclear cells (PBMCs) for cellular assays were

isolated and cryopreserved from within 6 hours of venipuncture, as

described previously (8). Flow cytometry was used to examine HIV-

1–specific T cell responses using a validated intracellular cytokine

staining (ICS) assay. The peptide pools evaluated were vaccine

matched (ZM96 gp140-Env1, ZM96 gp140-Env2, 92TH023-Env,

and ZM96 Gag), covering Env and Gag. Previously cryopreserved

PBMCs were stimulated with the synthetic peptide pools. As a

negative control, cells were not stimulated. Serum HIV-1–specific

IgG, IgG3, IgG4, and IgA responses were measured with a custom

HIV-1–binding antibody multiplex assay (BAMA) as previously

described (9, 10) using gp120 proteins and V1V2 antigens detailed

previously (11).
Data transformation

The set of fluorescent dimensions F in zC were transformed

using the “log-like” inverse hyperbolic sine, sinh-1, in conjunction

with a set of F-dimensional cofactors [a1, a2,…,aF] for each

dimension j ∈ F . Each vector zCj was div ided by i t s

corresponding cofactor aj prior to transformation, which

effectively removed the artifactual bimodality introduced by the

raw sinh-1 transformation.

To determine a suitable set of cofactors, each vector zCj was first

transformed by sinh-1 (Equation 1) and its intensity histogram was

examined.

sinh−1 zCj = ln zCj +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + zCj 2

q� �
(1)

Each aj was defined as the hyperbolic sine, sinh, of half the

magnitude of the distance between the positive P+ and negative P-

peaks (Equation 2) nearest zero in the intensity histogram of each

sinh−1 zCj ,

aT
j = P+−P−

2 + 1

aj = sinh  aT
j = e

aT
j −e

−aT
j

2

(2)

and because P+ and P- were defined in the transformed space, sinh

was required to convert values back to the raw data space. The

cofactors were then applied as follows (Equation 3),

zT = ln
zCij
aj

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + (

zCij
aj

)2

s0
@

1
A (3)
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Note that scatter dimensions are typically not sinh-1

transformed, but for convenience we refer to the full data (scatter

included) after sinh-1 transformation simply as zT .
Removal of saturated events

To identify saturated events, all raw data vectors Zj were

transformed by (Equation 3) with aj = 100 to yield zTj . Then each

zTj was allocated to 1024 uniformly-spaced bins, denoted s_bin.

Each minimum bin was defined by (Equation 4),

s _ bin1j = sinh−1
−2½log2 Rj

2 + 2�
100

 !
(4)

and each maximum bin was defined by (Equation 5),

s _ bin1024j = sinh−1
Rj

80

� �
(5)

where Rj was the channel-specific keyword-value range parameter

($PnR) from the TEXT section of the FCS file. To determine the

saturated event threshold hj, we first examined a window wj of the

top-most 61 bins (Equation 6),

wj = s _ bin½964,965,…,1024�j (6)

Then the median and robust standard deviation of the

differences between consecutive bins were used to identify bins

that contained extreme differences (Equation 7),

wD
j = diff (wj)

wM
j = median(wD

j )

ws
j = 1:4826�median( ∣wD

j − wM
j ∣ )

wX
j = wD

j > (wM
j + 2ws

j )

(7)

where wD was the difference between consecutive bins wb – wb-1 for

b ∈ 2, 3,…, 61f g, wM was the median difference, ws was the robust

standard deviation of differences, and wX was a vector of 1’s and 0’s

that indicated the presence or absence (respectively) of extreme

differences. If no extreme differences were found, the examination

window was shifted by -1 bin, w = s_bin[963,964,…,1023], and re-

examined. This process was performed iteratively until at least 1

extreme difference was found. Then the lowest s_binXj that

contained an extreme difference was identified by (Equation 8),

Xj = min(argmax(wD
j ∘wX

j )) (8)

and its corresponding histogram value vTj was inverse-transformed

back to a raw intensity by (Equation 9),

vTj = histogram _ value(s _ binXj)

vj = 100� sinh vTj
(9)

The saturated event threshold hj was set to the raw intensity vj
(or 80% of the maximum data range, whichever was higher) as

follows (Equation 10),
Frontiers in Immunology 04
hj = max(vj,   0:8� Rj) (10)

Finally, all events with raw intensities above the saturated event

threshold were removed.
Removal of time defects

To identify time defect events, corrected fluorescence data were

sorted by time. Then each zCj was allocated to B non-uniformly-

spaced bins, denoted t_bin, and each contained the same bin_size

number of events as follows (Equation 11),

bin _ size =

1000,  N < 100, 000

10, 000,  N > 1, 000, 000  

N
100 ,   otherwise

8>><
>>:
B = ½ N

bin _ size�

(11)

Then the median event value m was determined for each bin.

The vector of bin median event values within each dimension j were

Z-score standardized by (Equation 12),

~mj =
1
BoB

b=1mbj

ms
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B−1oB
b=1 ∣mbj − ~mj ∣

q
mZ

j =
mj−~mj

ms
j

(12)

Then any bins containing time defects were defined by

(Equation 13),

Dj = mZ
j

�� �� > 3 (13)

and all events within each t _ binDj were removed.
Censored saturated events and
time defects

The censoring process (described above) identified and removed:

1. raw fluorescent events that saturated above the limits of

detection (saturated events).

2. corrected fluorescent events that contributed to inconsistent

signals over time (time defects).

Following the removal of saturated events and time defects, new

FCS files were generated from the remaining data. Supplementary

Figure 1 shows the number of cells per sample before and after

censoring for all samples.
New compensation matrices

The quality of compensation matrices was assessed in FlowJo,

and any sub-optimal compensation values were manually corrected.

The optimized compensation matrices were inserted into the

FCS files.
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Modified channel names

All marker-fluor combinations were consistent across the entire

dataset. However, some FCS files contained channel names that did

not match other files. Any mismatched channel names were

corrected, and new FCS files were generated.
Batch registration

To remove variation due to experimental batches, while

maintaining as much biological variation as possible, swiftReg (7)

was used to register batches. This approach first registered each

batch separately to the same reference batch, then applied the

resulting batch-specific shifts to all individual samples in that batch.

To do this, first a SWIFT cluster template was produced from a

concatenate of antigen-stimulated samples from a single reference

batch, and similar concatenates from each of the other batches were

registered by NDCR to the reference template. The resulting batch

registration template contained batch-specific maps of cluster

movement vectors that specify the value-adjustments necessary to

bring that batch’s clusters into alignment with reference clusters. All

individual samples in each batch were then registered using these

batch-specific cluster movement vectors. This process generated

new batch-registered FCS files.
Debris removal

To enhance detection of rare, biologically-significant

populations and reduce computational burden, all batch-

registered samples were randomly sub-sampled and combined

into a single concatenated FCS file that was then clustered by

SWIFT. The resulting SWIFT cluster template was used to identify

debris clusters in FSC-A and SSC-A, as well as non-CD4 T cells.

New FCS files were generated from non-debris CD4+ events.
Expanded select channel data

Detection of positive markers was selectively enhanced by

smoothly increasing intensity values about a user-specified

inflection point. The smooth increase was achieved by

multiplying intensity values within a channel by a sigmoid

function (Supplementary Figure 2) as follows (Equation 14),

r = ½−3:00, −3:01,−3:02,…, 3:00�

x = (r + 1)� L

y = normcdf 6
P r
� 	

� (10w − 1) + 1

sj = interp1(x, y, zCj , option)

zEj = sj ∘ zCj

(14)

where r was a 1×601 vector of values between -3.00 and 3.00 with

intervals of size 0.01, P was the degree of overlap in the expanded

region (default P = 0.5), L was the user-specified inflection point
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where expansion occurred in that channel,W was the width of the

expanded region in decades (default W = 1), sj was a vector of

scaling values that were multiplied with zCj element-wise to

produce expanded data zEj , normcdf is a MATLAB function that

returned a cumulative standard normal distribution, and interp1

is a MATLAB function that returned interpolated values of the

function y = f(x) at specific query points zCj by spline interpolation

(option = 'spline').
Aggregation of data

Because the Env-1-ZM96 and Env-2-ZM96 peptide pools

constituted the non-overlapping peptides covering the Env-ZM96

Env sequence, the total Env-ZM96 response for each sample was

calculated by combining Env-1-ZM96 + Env-2-ZM96 and

subtracting negctrl1. Note that Negctrl1 was subtracted here once

to account for the additional background contribution of

combining raw Env-1-ZM96 + Env-2-ZM96 counts. The

92TH023-ENV samples were stimulated with peptides covering

the whole 92TH023-ENV sequence (2).

The cell counts for AnyEnvNeg1 were then defined as the

maximum of the cell counts for 92TH023-ENV or Env-ZM96 +

Env-2-ZM96, minus the background from negctrl1. Because the

92TH023-ENV and ZM96 ENV sequences have some homology, it

is very likely that some peptides, presented by the MHC alleles of

some participants, will be cross-reactive between the two ENV

peptide sets. However, the extent of cross-reaction cannot be

estimated from this dataset, and so we used a conservative

definition of the “Any-Env” response as the larger of the response

against either ENV sequence. This uses the conservative assumption

that all T cells cross-reacted, and therefore the total response is

revealed by the higher of the two anti-Env responses.

The number of CD4+ T cells producing IL-2+ and/or IFNg+
was expressed as a percentage of the total live cells in the

corresponding sample. Percentages below 0.005 were thresholded

to a minimum of 0.005.
Identification of responders

To identify responders, the variance of cell counts was first

stabilized across clusters. Cluster-specific scaling factors were

defined as half the median of cell counts across all negctrl

samples for each cluster, with low scaling factors thresholded to a

minimum of 10. All counts were then transformed by inverse

hyperbolic sine (asinh) after division by the cluster-specific

scaling factor. Transformed stimulated counts (TSC) were

obtained by subtracting each cluster’s transformed background

count from its pairwise transformed stimulated count (for values

above the threshold, this is analogous to a log ratio).

For each sample group defined by Treatment, Stimulation,

Visit, and Cluster, the standardized pairwise background

variances (SPBV) between Negctrl1 and Negctrl2 were defined as

the square root of the sample-mean of the squares of their

pairwise differences.
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Then for each sample, the p-values (with a Null hypothesis of

“no difference”) were determined by applying the normal

distribution survival function (https://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.norm.html) to the ratio of TSC

over SPBV. This was performed separately for the stimulated

sample with each background (Neg1 or Neg2). The final reported

probability of a sample being a responder was then 1 minus the

mean of its two p-values. All samples with a final probability of

≥98% were considered to be responders.
Evaluation of antibody responses
associated with T cell responses

Antibody levels measured by binding antibody multiplex assay

(BAMA) for HVTN 105 were obtained from HVTN. To compare

the CD4 responses to related antibody levels, the Spearman

correlation coefficients were calculated for related antigens using

log transformed antibody abundances. Specifically, CD4 responses

upon ZM96 gp140-Env1 and ZM96 gp140-Env2 stimulations were

compared with antibody responses to 96ZM651.D11gp120.avi,

gp41, gp70–96ZM651.02 V1v2 antigens. CD4 responses to

92TH023-Env were correlated with antibody response to A244

gp120 gDneg/293F/mon, AE.A244 V1V2 Tags/293F and gp41

antigens. Finally, CD4 responses to ZM96 gag were compared

with antibody responses to p24.
Results

Sample pre-processing

The HVTN 105 dataset comprised 3,200 .FCS files representing

24 batches, with accompanying compensation matrices for each

batch. In general, the Visit 5 (V5), V7 and V9 PBMC samples for

one participant were all analyzed in the same batch, whereas the

V11 PBMC samples were analyzed in separate sets of batches. As

described previously (2), if PBMC samples did not meet quality

control criteria, those samples were re-analyzed in a subsequent

batch, resulting in duplicate analyses. After curation according to

these rules, the complete dataset potentially comprised four vaccine

groups each containing 26 participants, eight in vitro antigen

stimulations, and four time points, for a total of 3,328 flow

cytometry samples. The study design did not include a placebo

group receiving no HIV antigens, and the T cell data did not include

a baseline sample, i.e. before vaccination. Therefore the important

negative controls are the pairs of “negctrl” samples that did not

receive in vitro stimulation with any antigens. Our re-analysis

focused on six of the eight antigen stimulations: two negative

control samples (negctrl2 and negctrl2); E92TH023_ENV;

Env_1_ZM96; Env_2_ZM96; and Gag_ZM96. This resulted in a

total of 2,496 potential samples. Due to some dropouts and missing

negctrl replicates, the final number offlow cytometry samples in our

re-analysis was 2,393. The samples, batches, repeated samples and

final analyzed samples are shown in detail in Supplementary

Figure S3.
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A consensus .FCS file was produced by concatenating sub-

samples of all HIV Ag-stimulated samples from all batches at the V9

time point. V9 was chosen because Visit 9 was the pre-determined

immunogenicity time point for the HVTN105 trial, and for most

groups and antigen stimulations in vitro, this was also the strongest

response (see below). V9 samples were therefore enriched for the

rare, activated T cells, facilitating capture of these cell populations in

the cluster template. Because this concatenate included samples

representing all HIV antigen stimulations, this is an objective way to

include potential cell phenotypes induced by any of the HIV

antigens in any treatment group.

This concatenate was clustered using SWIFT to establish a high-

resolution cluster template of all cell sub-populations. All samples

were assigned to the resulting cluster template, establishing the

number of cells in each cluster, in each sample. All cluster

membership information was then condensed to two dimensions

using UMAP (Uniform Manifold Approximation and Projection)

(12). The results in Figure 2A show batches encoded by colors,

stimulations by symbols, and visit number by symbol size. The

strongest contribution to diversity was clearly the batch - most

members of each batch are clustered together, and the batches are

substantially resolved. This is particularly true for the V11 batches

on the right, that were analyzed in a different set of batches from V5,

V7 and V9. The presence of batch effects is not surprising in

samples analyzed over a period of months - we have seen batch

effects in all such datasets that we have examined. The HVTN105

batch effects were relatively minor, and so registration could be used

to reduce batch effects and improve the comparison of the

vaccine groups.
Batch registration

We have previously developed swiftReg (7), an automated

registration tool that builds on the SWIFT clustering algorithm to

perform high-resolution alignment of samples at the single-cluster

level. The HVTN 105 batches were registered by producing a

SWIFT cluster template from Batch 2204, producing consensus

samples from each batch, and then registering each batch consensus

sample to the Batch 2204 consensus cluster template. This

generated, for each batch, a map of registration shifts that were

then applied to each individual sample in the respective batch. This

procedure registers the overall batch trends, without altering the

differences between individual samples within each batch that

might carry biological information.

A new SWIFT cluster template was generated from a consensus

of all registered V9 HIV antigen-stimulated samples. After

assignment of all registered samples to the resulting cluster

template, the cell numbers per cluster were reduced to two

dimensions by UMAP, and Figure 2B shows that the registered

batches were intermingled. ‘Micro-aggregates’ of samples from the

same batch were still visible - focusing on just 15 participants for

clarity, each micro-aggregate comprised samples from a single

participant (including different stimulations and time points).

These tended to group in close proximity on the UMAP

projection (Figure 2C), even though the Visit 11 samples were
frontiersin.org
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analyzed in different batches from the Visit 5, 7, 9 samples. Overall,

the samples included time points spanning 18 months. Thus, most

individuals are sufficiently diverse for SWIFT analysis of flow

cytometry data to identify a unique ‘fingerprint’ of cell

populations in different participants. We have observed this

pattern in other studies (unpublished). The proximity of the

registered V11 data points to the V5, V7 and V9 points from the

same participant reinforces the interpretation that the HVTN 105

batch effects have been substantially reduced by the registration

process. Examination of individual parameters by the same

approach identified parameters, e.g., CD4 and CD8, that

contributed to these batch differences (Figures 2D–G). Interestingly,

the groupings of similar batches were variable between different

parameters (Figure 2; Supplementary Figure 4).
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Further pre-processing

We then used the model-based SWIFT multidimensional

clustering algorithm (5, 6) to generate an unbiased cluster map

from a sample constructed by concatenating a random subset of

events from samples across all batches. The SWIFT algorithm is

particularly useful for detecting rare populations (13), possibly

because these were the type of samples used during SWIFT

development (5, 6). Preliminary analysis of the cluster map

indicated that the antigen-specific responses in many samples

were small, consistent with the previous analysis (2). To

maximize the sensitivity of detecting all cytokine producing sub-

populations, we produced a new SWIFT cluster template from a

concatenate of random subset of events from all antigen-stimulated
B C

D E

F G

A

FIGURE 2

Registration minimizes batch variation and emphasizes individual stability. PBMC from the HVTN 105 vaccine trial from V5, V7, V9 and V11 (42, 98,
182 and 364 days) were analyzed by antigen stimulation, intracellular cytokine staining, and flow cytometry. A SWIFT cluster template was produced
from a concatenate of HIV antigen-stimulated V9 (182 days) samples, then all individual samples were assigned to this template. All batches were
then registered using swiftReg, and the registered samples were similarly analyzed by SWIFT clustering and individual sample assignment. For each
of the original and registered datasets, all cluster information (sizes or MFI of individual parameters) was then condensed to two dimensions by
UMAP. Each symbol represents one sample (one participant, one time point, one stimulation). Symbols: Circles, negctrl; triangles,E92TH023_ENV;
stars, Env_1_ZM96; squares, Env_2_ZM96; and diamonds, Gag_ZM96. Symbol size, in increasing order, V5, V7, V9, V11. (A-C) UMAP plots represent
all the numbers of cells/cluster information condensed down to two dimensions. (A) Unregistered, cluster sizes, batches colored. (B) Registered,
cluster sizes, batches colored. (C) Registered, cluster sizes, 15 participants colored. (D-G) UMAP plots represent the UMAP condensation of the mean
fluorescence intensities for each cluster of a specified marker. (D, E) CD4. (F, G) CD8. (D, F) Non-registered. (E, G): Registered.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347926
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mosmann et al. 10.3389/fimmu.2024.1347926
samples, using only the scatter, live/dead, and CD4 parameters. All

samples were assigned to the resulting template. As described

previously (2), the non-replicating vaccines induced almost no

CD8 T cell responses, and so further analysis focused on CD4 T

cells. Clusters containing CD4 T cells were selected, and all the

events in this set of clusters were saved, for each flow cytometry

sample, as reduced-size .FCS files for further analysis. This “cluster

gating” (6) allowed subsequent analysis to focus more clearly on the

cells of interest, because clustering could then be performed on a full

concatenate of the entire dataset. The resulting .FCS files are more

amenable to analysis by SWIFT, other automated algorithms, and

manual analysis.
High-resolution clustering

A large concatenate was then produced from all cluster-gated

events in all samples stimulated with HIV antigens (Env, Gag), from

all groups at Visit 9, which was the time point that showed the

highest responses overall. A second concatenate was produced from

the corresponding negative control samples. SWIFT cluster

templates were created from each of these two large concatenates,

using all parameters for high-resolution clustering. The two

resulting cluster templates were combined, and all individual

samples from all groups, all visits, all stimulations were assigned

to the resulting combined template (total clusters 2,246). This

cluster competition approach (7) sharpens the differences between

the two groups represented by the two templates, in this case

stimulated and unstimulated cell populations. Note that each

concatenate included samples from all vaccine groups, so the

competition process should not affect the resolution or statistical

analysis of any study group differences.

Cluster gating (6) was then used to narrow down the cell

populations of interest. During cluster gating, all cells are

assigned their cluster medians in all dimensions, so that the two-

dimensional gating shown in Figure 3A takes advantage of all the

information in all dimensions. Activated CD4 T cell clusters were

identified as live, singlet, CD3+ CD4+ CD154+ TNF+ clusters

(Figure 3A). Additional marker intensities for all parameters are

shown in Supplementary Figure S5. These activated CD4 T cell

clusters were then examined by testing the significance of

differences between antigen-stimulated and negative control

clusters in all participants at visit 9. A Wilcoxon test was followed

by the Benjamini-Hochberg correction for multiple measurements,

because of the number of clusters examined. Figure 3B shows the

ratios and magnitudes of differences between antigen-stimulated

and negative control cultures in a volcano plot. All clusters that

were significantly increased in the antigen-stimulated samples

(green shaded area) were chosen for further analysis. To facilitate

comparisons with previous analysis (2), the SWIFT clusters were

aggregated into four groups: IL-2+IFN-g+, +/-, -/+ and -/- cells (15,

5, 3 and 4 clusters, respectively). The heatmaps (Figure 3C) show

the marker characteristics of each cluster.
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Identification of vaccine responders

The samples showing significant responses to each antigen, at

each time point, were then evaluated as described in Methods, using

the aggregated cluster data for all clusters producing IL-2 and/or

IFN-g. Figure 4 shows the results for each time point, each vaccine

treatment, and five antigen stimulations, or combinations of

stimulations: AnyEnv (Env92 or Env1/2), Env92 (Env92TH023

only), Env1/2 (Env1 plus Env2), GAG-ZM96, and the negctrl2.

Background values (negctrl1) were subtracted from all antigen-

stimulated values (similar conclusions were obtained if the negative

controls were reversed). All samples with >98% probability of being

genuine responders are shown in red. As expected, very few negctrl

samples were evaluated as responders (at a confidence level of 98%,

a small number of false positives are expected). As Gag antigen was

only included in the DNA vaccine, Treatment 1 uniquely lacks

immunization with Gag for the first blood sample evaluated, at Visit

5. Consistent with this, only Treatment group 1 lacks a response to

Gag at Visit 5. At a very high confidence level of 99.9%, there were

still high rates of responders (up to 88%) but no responders in any

negative controls (Supplementary Figure S6). Supplementary Figure

S7 shows an alternative layout of the responder data to emphasize

the time course within each group.

Several combinations of vaccine treatments and times induced

responses in the great majority of participants, particularly in

Treatment group 3 at Visits 7 and 9. The numbers of responders

were generally higher than evaluated previously (2), possibly

because the extensive pre-processing and the competitive cluster

templates used in our analysis provided sharper distinction between

antigen-stimulated versus background cells producing cytokines.

The magnitude of the net anti-HIV T cell responses was well-

correlated between the original analysis and the re-analysis

(Supplementary Figure S8). There is a general trend towards

higher magnitudes detected by SWIFT (compared to the 1:1

reference line), possibly due to the effectiveness of high-

dimensional definition of populations, as well as the sharper

signal:noise discrimination by focusing on the clusters that were

significantly increased by antigen stimulation.
Qualitatively different responses are
associated with different
vaccine modalities

The quality of the cytokine response to protein or DNA-derived

immunogens was assessed between the different vaccine treatments

by comparing the ratio of T cells producing IFN-g vs. T cells

producing IL-2 but not IFN-g. The anti-Gag response is easiest to

interpret, as this is induced only by the DNA vaccine. Figure 5A

shows that this response is biased towards IFN-g production,

consistent with a previous report (14). The response to the ZM96

clade C peptides, primed by DNA, also showed a tendency towards

an IFN-g-biased response. In contrast, the response to clade E
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92TH023 protein immunization was biased more towards IL-2-only

responses, consistent with our previous demonstration (15) that

viral infections tend to induce more Th1/IFNg responses, whereas
protein vaccines tend to produce responses biased towards IL-2-

producing central memory (16) cells. Figure 5B summarizes these

results, including the results for the minority IL-2- IFN-g- and IL-2-
IFN-g+ responses.
Minority cytokine responses

The flow cytometry panel included several cytokines, including

IL-21 (produced by Tfh and some other cells) and IL-4 (produced

by Th2 cells). Manual examination of the concatenated results

suggested that antigen stimulation appeared to induce a small IL-

21 response in a relatively low number of TNFa+ IL-2+ CD4 T cells.
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However, the IL-21 staining was weak, and did not result in a clearly

separated sub-population of positive cells. As the SWIFT clustering

algorithm uses a criterion of multidimensional unimodality to

define individual sub-populations (6), the putative IL-21+ cells

were initially difficult to identify by clustering. We therefore used

a ‘stretching’ modification that slightly broadened the cell

distribution across the expected junction between IL-21- and IL-

21+ cells. Clustering the resulting data in SWIFT allowed the

reproducible detection of IL-21+ clusters (Figure 6). In contrast,

applying the same stretching modification to the IL-4 channel did

not result in the detection of IL-4+ clusters, consistent with the

manual examination of the IL-4 data (Figure 6). The IL-21+ clusters

were activated memory CD4 T cells (CD154+ CD45RAlo CD4+),

but interestingly, did not express the CXCR5 chemokine receptor

that is characteristic of circulating T follicular helper (Tfh) cells

(Figure 6), perhaps due to down-regulation of CXCR5 on the in
B

C

A

FIGURE 3

Cluster gating of cytokine-producing antigen-specific T cells. SWIFT cluster templates were produced from concatenates of antigen-stimulated
samples, and control samples, and the two templates combined for competitive cluster assignment. All individual samples were assigned to the
combined template. (A) All cells were plotted at their cluster medians in each parameter for cluster gating on bivariate plots, to identify activated
CD4 T cells expressing CD154 and TNF. (B) For each cluster, the number of cells in a concatenate of ENV92-stimulated visit 9 samples was
compared by Wilcoxon to the matched negative control sample. Each symbol indicates one cluster, and the size of the symbol is proportional to the
mean number of cells per cluster. P values were adjusted according to the Benjamini-Hochberg method for multiple measures. The green shaded
area indicates the clusters that were significantly increased in size by antigen stimulation. (C) The heatmap shows the median fluorescence intensity
in each parameter (Z-scores) of the 27 significantly induced clusters from B (shaded area).
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B

A

FIGURE 4

Increased numbers of vaccine responders identified by detailed analysis pipeline. (A) For all V5, V7, V9 and V11 samples, responders were identified
as described in Methods, calculating the responses separately for 92TH023 Env; ZM96 pool 1 + pool 2 Env; ZM96 Gag; the negative control
negctrl2; and Any Env (the larger of the responses to either 92TH023 or ZM96 Env1 + Env2). The values from negctrl1 were subtracted from each of
these values. Red circles and blue triangles indicate responders and non-responders, respectively, and horizontal black bars indicate medians of all
samples in each treatment group. The percentage of positive responses is shown above each graph. Values less than 0.005% were plotted at
0.005%. (B) Responder rates from the present study compared to the equivalent responder rates from the original analysis (2).
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FIGURE 5

Different cytokine response patterns associated with DNA or protein vaccination. (A) IL-2+IFNg+ responses were compared with IL-2+IFNg-
responses in all participants, all visits and for ZM-96-Gag, ZM96-Env and 92TH023-Env. Dark symbols indicate samples with positive responses
(using the values for IL-2 and/or IFNg from Figure 4) and pale symbols indicate non-responders. P values indicate the significance of the deviation
from the 1:1 correlation line, with colors matching the data points. (B) The heatmap indicates the average number of antigen-responsive CD4 T cells
per million total live CD4 T cells, for each vaccination group. Each response is divided into all combinations of IL-2 and IFNg expression.
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vitro activated cells as we have observed previously (S. De Rosa,

unpublished). In contrast to the IL-2+ IFN-g+ versus IL-2+ IFN-g-
skewing described above, the IL-21+ cells were observed in all

treatment groups, and did not show obvious biases towards

particular antigens or immunization strategies (Figure 7).
Correlations of SWIFT CD4+ T cell
clusters with HIV-specific plasma
antibody responses

Binding antibody (Ab) responses were the major correlates of

risk (CoR) identified in the RV144 Trial (3). Subsequently, at V9, 2

weeks after the final immunization we assessed the relationship of

IL-2/IFN-g and IL-21 defined clusters with the contemporary HIV-

specific plasma Abs (Figure 8). Overall T1 (Figures 8E, J) had low

antibody responses at this timepoint compared to the other groups

as expected due to the boosting immunizations with DNA alone. T2

overall exhibited the greatest number of significant correlations
Frontiers in Immunology 12
with the IgG response, primarily associated with responses to

AE.A244 (Figure 8B) which most closely matches the protein

component of the vaccine regimen. T3 and T4 overall had

significant associations relatively balanced between AE.A244

(Figures 8C, D) and 96ZM651 (Figure 8H) Ab responses which

most closely matches the DNA component of the vaccine regimen,

and is consistent with T3 and T4 receiving 4 doses of DNA. T3 had

the greatest number of significant correlations between IL-21+ and

Ab responses (Figures 8C, H), consistent with T3 having the overall

greatest IL-21+ response. Supplementary Figure S9 shows the

magnitude of IgG responses for the T cell responders identified

by the original analysis or the new SWIFT analysis.

Both total IgG specific for the V1V2 region of gp120 and IgG3

specific for V1V2 were inverse CoR in RV144 (3). IL-2-IFN-g+ cells

were significantly correlated with IgG AE.A244 V1V2 in T4

(Figure 8D), with IL-2+IFN-g+ and IL-2-IFN-g also significantly

correlating with IgG AE.A244 V1V2 in T2 (Figure 8B). IL-2+IFN-

g+ also, and IL-21+ also significantly correlated with IgG gp70–

96ZM51 V1V2 in T3 (Figure 8H). V1V2 responses of the specific
FIGURE 6

IL-21 responses after vaccination. A concatenate (10 million cells) of random samples of all HIV antigen stimulated samples at V9 was assigned to
the cluster template used in Figure 3, and cluster gating was used to identify all CD4+ CD154+ TNF+ T cells (center panel). Cluster gating was used
to further identify IL-2+ IL-4+ and IL-2+ IL-4- clusters (second row, left) and IL-2+ IL-21+ and IL-2+ IL-21- clusters (second row, right). In the top
and middle panels, each dot represents one cluster. The bottom row shows plots of individual cells in the four sets of clusters.
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IgG subclass, IgG3 which is known to be a potent mediator of Fc-

effector functions such as antibody dependent cellular cytotoxicity

were inverse CoR in RV144, and only IL-2+IFN-g+ in T1 was

significantly correlated with IgG3 gp70–96ZM51 V1V2 (Figure 8F).

IgA specific for gp120 overall as well as the V1V2 region was a CoR

in RV144, suggested to compete with the binding of protective IgG3

(3, 17). Only T2 and T3 had measurable IgA responses to AE.A244

gp120 or AE.A244 V1V2 (Figure 8E), with IL-2-IFN-g- in T2

significantly correlating with IgA AE.A244 gp120 and IgA

AE.A244V1V2 (Figure 8B). IL-21+ in T3 was significantly

correlated with both IgA AE.A244 gp120 and IgA AE.A244V1V2

(Figure 8C). Overall these results indicate subtleties in the
Frontiers in Immunology 13
association of CD4+ T cell responses and plasma Ab responses,

that are impacted by vaccine regimen and may provide insight into

efficacy outcomes.
Discussion

A substantial preventative vaccine trial such as HVTN 105

generates a large dataset of immunological results, which provides a

valuable resource for continued analysis using different approaches.

This trial was chosen for analysis, although a phase I trial, because it

reiterated the general prime-boost approach of the only preventive
FIGURE 7

IL-21 responses to different immunogens. CD4 T cells producing IL-2 (with or without IFN g) were compared with IL-21+ responses in all
participants, all visits and for ZM-96-Gag, ZM96-Env and 92TH023-Env antigen stimulations. Dark symbols indicate samples with positive responses
(using the values for IL-2 and/or IFNg from Figure 4) and pale symbols indicate non-responders.
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CD4 responses associated with antibody levels measured by binding antibody (BAMA) assay. The spider plots (A–D, F–I, K–N) show
IFNℽ+, pink: IL2+IFNℽ-, grey: IL2-IFNℽ- and aquamarine: IL21+) and antibody levels across four treatment groups. The spider plots
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vaccine trial to show any degree of efficacy, RV144 (“The Thai

Trial”), but with priming by a more flexible DNA vaccine platform.

We have re-analyzed the flow cytometry T cell response data using a

detailed clustering approach, and also evaluated the correlations

between different T cell responses and the levels of different isotypes

and specificities of antibodies. This resulted in the detection of

higher numbers of responders; revealed preferential induction of

central versus effector T cell responses by different immunogens;

and showed that the best correlations between T cell and antibody

responses did not necessarily match the strongest responses.

The SWIFT clustering algorithm is highly effective for detecting

small cell sub-populations in flow cytometry data (6, 18). This

sensitivity may be related to the extensive use of antigen-stimulated

PBMC datasets during SWIFT development, resulting in an

algorithm that is well-suited to the detection of small cytokine-

producing T cell responses of human PBMC, e.g., in the HVTN

105 dataset.

An additional advantage of the SWIFT analysis pipeline is the

registration tool swiftReg (7), which can register batches of data to

minimize batch effects while preserving biological variation and

group differences. The HVTN 105 trial was large, and the flow

cytometry data analysis was performed in many batches. Although

stringent protocols ensured that the batch variation was smaller

than in many other studies, it is almost impossible to completely

prevent batch effects in experiments conducted over several

months, and so the swiftReg tool was helpful in minimizing batch

variation to allow the analysis to focus more sharply on the vaccine

group differences. As swiftReg produces new .FCS files containing

registered data, registration can also be a useful step in data

processing pipelines using alternate clustering approaches.

Compared to the initial analysis (2) the high-resolution SWIFT

analysis detected substantially higher numbers of responding

participants for all antigens. A major contribution to this increase

may have been due to our sharpened discrimination of responders

from non-responders using competitive template assignment (19).

In this approach, SWIFT cluster templates were produced from two

concatenates, of antigen-stimulated and negative control samples.

These two templates were then combined and all samples assigned

to the joint template. Some cytokine-secreting clusters preferentially

captured background responses, so by focusing only on clusters that

were significantly higher in antigen-stimulated samples, we were

able to sharpen the identification of antigen-responding cells and

improve signal:noise ratios. This probably contributed to the higher

number of responders detected, while the overall pattern of the

response was similar, e.g., group T3 had higher responder

frequencies in both analyses.

Several issues have to be considered for the potential T cell

cross-reactions between different antigens used in the HVTN105

study. The predictions for anti-Gag responses are relatively

straightforward, because Gag antigens were encoded by the DNA

vaccine, but not included in the protein vaccine. Thus Gag

responses should be attributable only to Gag-ZM96 priming and

boosting. Consistent with this prediction, significant numbers of

Gag responders were only observed in groups that had received the

DNA vaccine prior to the sample draw. In addition, Gag responses
Frontiers in Immunology 15
are simpler to interpret because the immunogen and the in vitro

challenge peptides were fully matched.

In contrast, three different Env sequences were included in the

vaccines. The DNA vaccine expressed the clade C ZM96 gp140

protein, whereas the protein AIDSVAX vaccine contained both the

clade B gp120 MN and clade E gp120 A244 proteins. Thus, the

DNA and protein vaccines should stimulate partially overlapping T

cell repertoires specific for Env, and a second immunization with

the other vaccine type (protein to DNA, or DNA to protein) should

induce a mixture of memory responses to cross-reactive epitopes,

and naïve responses to non-cross-reactive epitopes.

In vitro testing of T cell anti-Env responses was performed with

three peptide pools: Two vaccine-matched peptide pools covered

the N-terminal and C-terminal regions of the ZM96 clade C

gp140 protein, and a third pool contained peptides of the clade E

92TH023 protein, i.e. the same clade as the AIDSVAX clade E Env

A244 protein, but with only about 90% homology between the

protein sequences. However, the two proteins contain long stretches

of completely homologous sequences, so there should be substantial

but not complete cross-reaction between the immunizing and

testing clade E Env epitopes. Responses to the immunizing clade

B MN env protein would be expected to have lower cross-reactivity

to either the clade C or Clade E test antigens, and so may not have

contributed significantly to the overall in vitro T cell results. Because

the extent of cross-reaction between the clade C- and clade E-

specific T cells in this study was unknown, we made the

conservative assumption that the “any env” response was taken as

the maximum of the ZM96 and 92TH023 responses, i.e., assuming

complete cross-reaction, as in the previous analysis (2).

The quality of the T cell response, i.e. the cytokine patterns

produced by antigen-specific T cells, was influenced by the type of

vaccine. In line with previous studies (14, 15) the AIDSVAX protein

vaccine preferentially induced CD4 T cells producing IL-2 but not

IFNg, whereas the DNA vaccine induced more IL-2+ IFNg+ T cells.

The IL-2+ cells may be central memory T cells (Tcm) (16) that have

high proliferative potential and can differentiate into effector cells

(16, 20), whereas the IL-2+ IFN-g+ T cells are effector memory cells.

While both T cell populations are potentially valuable for future

protection, the Tcm may have higher potential over longer

times (21).

In addition to the evaluation of the major cytokines TNF, IFN-g
and IL-2, the flow cytometry analysis also measured IL-21-

producing cells. Although the staining for IL-21 was not strong,

there appeared to be an IL-21+ population that expressed high

levels of TNF and IL-2, and variable amounts of IFN-g. IL-21 is

produced commonly, although not exclusively, by CXCR5+ Tfh

cells in lymph nodes (22, 23). However, the IL-21+ cells in the

HVTN105 study were generally CXCR5-. Although this might

suggest that these were not circulating Tfh-like cells (24, 25) it is

also possible that CXCR5 expression was lost during in

vitro stimulation.

Assessment of the SWIFT-defined CD4+ T cell clusters’

association with the plasma Ab response to HVTN 105, revealed

that although polyfunctional TNF-alpha+ IL-2+ IFN-g+ effector

memory cells dominated the CD4+ T cell response in T3 and T4, a
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subdominant IFN-g producing population, IFN-g+IL-2- cells in T3

and T4 correlated with IgG AE.A244 V1V2 (an inverse CoR in

RV144), suggesting that the magnitude of a specific CD4+ T cell

cluster is not the sole determinant of correlation with the Env-

specific Ab response. The consequences of associations between

CD4+ T cell cytokine producing subsets and protective antibody

responses to HIV remain uncertain, however intriguing findings

regarding this relationship continue to emerge.

A limitation of this study was that although HVTN 105 used the

same protein immunogen as RV144, AIDSVAX B/E, unlike RV144,

HVTN 105 was not an efficacy trial. Subsequently, the differences

observed in response rates or phenotypes of CD4+ T cells observed

between groups in HVTN 105 either in this re-analysis or the

primary analysis (2) cannot infer association with vaccine efficacy.

The recent HVTN 702 efficacy trial conducted in South Africa,

which was an iteration of RV144 with Clade C immunogens consisting

of priming with a canarypox-based env/gag/pro immunogen and

boosting with the addition of a Env protein immunogen,

unfortunately resulted in similar infection rates in placebo and

vaccine recipients (26). Post-hoc analysis revealed that among

individuals that had high IgG AE.A244V1V2 responses, CD4+ T cell

polyfunctional score was associated with lower risk of HIV acquisition.

And conversely, among individuals that had low IgG AE.A244V1V2

responses, the CD4+ T cell polyfunctional score was associated with a

higher risk of HIV acquisition. These findings highlight the increasing

need to better define and monitor the nuanced relationship between

the CD4+ T cell response to HIV vaccines and the protection that may

be conferred by antibody responses, and we suggest that advanced flow

cytometry analysis approaches, such as SWIFT, can enhance resolution

of the HIV-specific T cell response.
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