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Leaky gut, circulating immune
complexes, arthralgia, and
arthritis in IBD: coincidence
or inevitability?
Xi-ya Jin1, Dan-dan Li1, Wei Quan2,
Yang Chao1 and Bin Zhang1*

1Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China,
2Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
Most host-microbiota interactions occur within the intestinal barrier, which is

essential for separating the intestinal epithelium from toxins, microorganisms,

and antigens in the gut lumen. Gut inflammation allows pathogenic bacteria to

enter the blood stream, forming immune complexes which may deposit on

organs. Despite increased circulating immune complexes (CICs) in patients

with inflammatory bowel disease (IBD) and discussions among IBD experts

regarding their potential pathogenic role in extra-intestinal manifestations, this

phenomenon is overlooked because definitive evidence demonstrating CIC-

induced extra-intestinal manifestations in IBD animal models is lacking.

However, clinical observations of elevated CICs in newly diagnosed,

untreated patients with IBD have reignited research into their potential

pathogenic implications. Musculoskeletal symptoms are the most prevalent

extra-intestinal IBD manifestations. CICs are pivotal in various arthritis forms,

including reactive, rheumatoid, and Lyme arthritis and systemic lupus

erythematosus. Research indicates that intestinal barrier restoration during

the pre-phase of arthritis could inhibit arthritis development. In the absence

of animal models supporting extra-intestinal IBD manifestations, this paper

aims to comprehensively explore the relationship between CICs and arthritis

onset via a multifaceted analysis to offer a fresh perspective for further

investigation and provide novel insights into the interplay between CICs and

arthritis development in IBD.
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1 Introduction

Inflammatory bowel disease (IBD) is a systemic condition that

impacts the gastrointestinal tract; in addition, it affects various

organs outside the digestive system in many patients (1). Extra-

intestinal manifestations (EIMs) may be characterized as

“inflammatory conditions occurring outside the digestive tract in

individuals with IBD, either due to immune responses extending

from the gut or as independent inflammatory events sharing genetic

or environmental links with IBD” (1). These EIMs exert a

significant influence on individuals with IBD, with reported

prevalence rates extending to a maximum of 50% (2). Among

these, musculoskeletal symptoms stand out as the most prevalent

EIMs in IBD, impacting as much as 40% of patients (3). However,

their pathogenic mechanisms remain unclear.

Recently, numerous reports have highlighted autoimmune diseases

as being associated with gut microbiota dysbiosis (4). Supporting

evidence exists for gut dysbiosis as an environmental trigger for

arthritis in both animals and humans. Despite extensive research on

gut microbiota composition, the direct cause of gut dysbiosis and its

consequences in arthritis onset remain unclear. Gut microbiota dysbiosis

compromises intestinal barrier function, elevating permeability and

facilitating the entry of microbes, viruses, and pathogenic antigens into

visceral organs (5). Patients with IBD showed significantly higher food-

specific IgG antibody levels than healthy controls (6); autoantibodies

reactive to colonic proteins (7) and anti-microbial antibodies have also

been identified (8). In individuals with IBD, serum complement

component 3 (C3) concentrations were elevated compared with those

in healthy volunteers (9). Concurrently, immune complex-mediated

inflammation has been suggested to influence certain extra-intestinal

immune reactions associated with IBD (10). However, there is a lack of

relevant research providing conclusive evidence demonstrating the

initiation of extraintestinal manifestations (EIMs) by immune

complexes in animal models of inflammatory bowel disease (IBD). In

various types of arthritis, including rheumatoid and reactive arthritis

(ReA), the significance of circulating immune complexes (CICs) has been

emphasized. One potential mechanism underlying the exacerbation of

arthritic conditions could be the disruption of the intestinal barrier.

To elucidate the pathogenic relevance of CICs in joint

inflammation associated with IBD, this review comprehensively

explores various dimensions of this subject. This review aspires to

stimulate researchers to refocus their inquiries on this mechanism,

thereby fostering relevant investigations.
2 Musculoskeletal EIMs

IBD, encompassing Crohn’s disease and ulcerative colitis, is an

immune-mediated disorder marked by a chronic, relapsing-

remitting course, significantly impacting the gastrointestinal tract

(11). IBD affects the gastrointestinal tract and extra-intestinal

organs of many patients. EIMs have the potential to impact

diverse organ systems, emerging at any stage of IBD, possibly

preceding gastrointestinal symptoms (1, 12, 13). In 1976,

Greenstein et al. (14) summarized the characteristics and

prevalence of EIMs in IBD by analyzing several patients with IBD.
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In the rheumatologic context, as per the Assessment of

Spondyloarthritis International Society criteria, musculoskeletal

EIMs of IBD fall within the spectrum of spondyloarthritis (SpA)

conditions (15). IBD-related musculoskeletal symptoms can impact

both the axial and peripheral skeletal systems (16–18). The

classification of peripheral musculoskeletal manifestations

includes two types: Type I (oligoarticular), affecting fewer than

five large joints and presenting as acute, asymmetrical, and

migratory, and Type II, characterized by symmetrical arthritis

impacting more than five facet joints, irrespective of intestinal

disease activity (13, 19, 20).

Arthritis associated with IBD predominantly targets joints

beyond the spinal column, including the knees, wrists, and ankles.

Based on a comprehensive review of 69 studies, the median

prevalence of axial SpA (axSpA) and peripheral SpA (pSpA)

among patients with IBD was reported at 5 and 16%,

respectively (21).

Diagnosis of IBD-associated arthritis relies primarily on clinical

assessments, patient history, and exclusion of other arthritis forms

(1, 22, 23). Treatment is primarily based on studies of SpA, and

emphasizes addressing the underlying gut inflammation (13).

The mechanisms driving the development of musculoskeletal

EIMs are believed to share similarities or commonalities with those

underlying intestinal inflammation (24). Shared genetic factors

between IBD and musculoskeletal EIMs suggest their contributory

role. HLA-B27 positivity ranges from 25–78% in patients with IBD

and ankylosing spondylitis (AS). Notably, approximately 60% of AS

cases display symptomless gut inflammation, with a quarter

progressing to manifest IBD (1). In a unique study, germ-free

HLA-B27 transgenic rats exhibited no signs of gut or joint

inflammation (25). Conversely, in non-germ-free transgenic rats,

arthritis typically develops following episodes of diarrhea, closely

mirroring the sequence observed in humans with enteritis-induced

reactive arthritis (26). These findings suggest that bacterial exposure

may serve as a pivotal prerequisite for the development of

spondyloarthritis (SpA) in individuals genetically predisposed to

inflammatory bowel disease (IBD).

Some mechanisms linking microbiota to extra-intestinal

immune reactions have been explored. Dysbiosis may trigger the

activation of immune cells in the intestines, leading to their

migration to distant organs. Initial findings suggest heightened

Clostridiaceae levels in individuals with IBD and arthritis (27),

although this link appears moderately weak. Due to the

compromised intestinal barrier, microbiota elements, such as

lipopolysaccharides, bacterial antigens, or metabolites, may

translocate from the gut to extra-intestinal locations, potentially

inciting systemic inflammatory reactions (24).

3 The leaky intestinal barrier and
formation of immune complexes
in IBD

The intestinal barrier acts as a fundamental defense mechanism,

shielding the host against potential microbial threats and averting

immune responses (28). An array of diverse exogenous substances,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347901
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1347901
including microorganisms, toxins, and antigens, inhabit the gut

lumen. When the intestinal barrier lacks integrity or proper

function, these substances infiltrate the tissues beneath the

epithelial lining, diffusing into the bloodstream and lymphatic

systems, disturbing tissue equilibrium (5, 28). The intestinal

barrier, comprising physical, biochemical, and immunological

components, plays a critical role. Our focus lies in understanding

the immunological aspect, particularly highlighting the distinctive

attributes of the B cell system in the context of IBD.

The gut immune system, the body’s largest and most intricate

immune compartment (29), comprises two primary domains of B

cell lineages. These encompass the organized B cell clusters residing

in the gut-associated lymphoid tissue (GALT) and the diffuse

lymphoid tissues spanning the extensive lamina propria of the

small and large intestines (30). GALT serves as the initiation site

for intestinal immune responses (31), housing various CD20-

expressing B cell subtypes (32). Conversely, within the lamina

propria, B lineage cells, mostly lacking CD20 expression, are

believed to function as CD19+ plasma cell precursors (33). In the

context of IBD, disrupted humoral immunity, marked by

lymphoplasmacytic infiltrates—a recognized pathological

hallmark—has been historically noted (34). IBD often prompts an

increased formation of lymphoid aggregates harboring B cells and

actively dividing T cells within inflamed mucosal tissues (35). These

observations underscore the significant alterations in the gut’s

immune landscape in IBD pathogenesis. Several studies have

revealed increased microbiota-reactive IgG within the inflamed

mucosa in IBD (36, 37); these antibodies circulate within the

body and interact with bacteria associated with the mucosa (36).

Serological investigations among individuals with IBD have

highlighted noteworthy findings. For example, elevated levels of

circulating anti-flagellin and anti-Saccharomyces cerevisiae

antibodies were detected up to 5 years preceding the diagnosis of

Crohn’s disease (38, 39). Moreover, a notable increase in fecal

bacteria coated with IgG was noted in patients with IBD (40), and

this measure strongly correlated with disease activity (41). Notably,

autoantibodies have also been identified in IBD cases: anti-GM-CSF

IgG is linked to severe complicated Crohn’s disease (6), whereas

anti-TM5 IgG1 autoantibodies are specifically reported in ulcerative

colitis (7). These serological profiles signify potential predictive and

diagnostic markers, shedding light on the disease progression in

different subsets of IBD. Food-specific IgGs and IgAs were also

detected in patients with IBD, suggesting their reduced likelihood of

being linked to food intolerance, as opposed to food-specific IgEs

(42). Higher concentrations of antibodies against food proteins in

the serum may suggest increased nutrient passage across the

intestinal wall while preserving their antigenicity.

Recent findings challenge the prevailing notion that increased

paracellular trafficking of gluten peptides through disrupted tight

junctions precedes the onset of celiac disease (CD). Instead,

observations of smaller gaps in tight junction areas in patients

with CD suggest a strengthened upper epithelial barrier, potentially

defending against the absorption of luminal antigens (43). Another

study indicates that despite the presence of dilated tight junctions in

CD and ulcerative colitis (UC), the transport of antigens OVA and
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HRP primarily occurs through normal ultrastructure enterocytes

via transcellular pathways in all samples. Additionally, there is a

more pronounced presence of enterocytes with electron-lucent

cytoplasm containing a significant concentration of antigens in

both CD and UC compared to healthy mucosa (44). These findings

suggest that the increased intestinal permeability observed in IBD

may be largely due to enhanced transcellular transport, leading to

the production of several antibodies, including immune complexes.

Elevated CIC levels have also been demonstrated in patients

with IBD (29), and these levels correlate with disease activity and

systemic presentation (45). Considering the presence of antigen-

antibody responses in an inflamed gut, complement system

activation would be expected. This system is crucial in

maintaining intestinal immune homeostasis (46). Mice lacking

key complement components exhibit increased intestinal

inflammation in experimental colitis models, emphasizing the

complement system’s importance in gut health (47). A murine

gut cell line inherently expresses elevated levels of C3, toll-like

receptor 2 (TLR2), and TLR4, with C3 activity notably rising upon

exposure to lipopolysaccharides. Chronic colitis mouse models

displayed escalated C3 levels across various intestinal tissues (48).

Furthermore, a dextran sulfate sodium-induced experimental colitis

model revealed heightened activation of GALT in the colon (35)

alongside a significant accumulation of dense immune complexes

on the intestinal epithelium (49). In a groundbreaking 1974 study

by Ballard. et al., robust C3 and IgG staining were discovered on the

lamina propria and basal membrane of intestinal epithelial cells in

individuals with ulcerative colitis (50, 51). Notably, serum samples

from actively affected patients with IBD exhibited elevated C3 levels

compared with those from healthy controls (9). In our study, we

gathered assay results pertaining to C1q, IgG, IgA, and IgM from

untreated IBD patients within our department. These findings were

juxtaposed with data obtained from individuals undergoing

endoscopic gastrointestinal polyp resection, devoid of any chronic

diseases. Notably, our analysis revealed significantly elevated levels

of these indicators in untreated IBD patients in contrast to the

control group, with the exception of IgM, as illustrated in Figure 1.

Immune complexes (ICs) play a vital role as biological

mediators owing to their potential to induce tissue damage upon

deposition in blood vessels or tissues. Among the three different

types of ICs—small, intermediate, and large—intermediate-sized

ICs typically cause the most damage as they become trapped in

tissues or joints (52). Although the precise mechanism of IC

deposition remains unclear, it is hypothesized that endothelial

cells separate along the vessel wall owing to hydrostatic pressure

and leakage, thus facilitating the entry of ICs (52). Once ICs become

ensnared on the vessel wall, a series of inflammatory events ensues.

If the corresponding class of antibodies is present within the IC, the

complement system becomes activated, leading to mast cell

degranulation and the recruitment of leukocytes to the site of IC

deposition (53). Reactive leukocytes, particularly neutrophils,

release lysosomal enzymes, such as elastase, collagenase, thrombin

chain activator, cationic proteins, and kinin activators, thereby

contributing to local tissue damage. This cascade reaction

culminates in the destruction of blood vessels and tissues (54).
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Despite various animal models demonstrating arthritis induced

by immune complexes, their potential role in EIMs has been

consistently overlooked. In the collagen-induced arthritis (CIA)

mouse model, the onset of enteritis was observed prior to the

development of arthritis, accompanied by increased intestinal

permeability (55). Similarly, in CIA rats, although no significant

inflammation or damage was observed in the colon,

immunofluorescence staining revealed reduced Mucin 2

expression in colon tissue compared to that in colon tissues of

controls (56). In the K/BxN spontaneous mouse model of arthritis,

diminished ZO-1 expression was detected in the small intestinal

(SI) and colonic epithelial cells of arthritic mice. Additionally,

significant morphological changes, such as epithelial erosion and

crypt elongation, were observed in the small intestine and colon of

K/BxN mice with both early and established arthritis (57). These
Frontiers in Immunology 04
findings open avenues for a more comprehensive exploration of the

impact of immune complexes on exacerbating extra-intestinal

complications in IBD.
4 Gut dysbiosis and
inflammatory arthritis

Inflammatory arthritis encompasses a range of rheumatic

conditions characterized by synovial joint inflammation and

systemic effects, with prevalent subtypes including rheumatoid

arthritis (RA), psoriatic arthritis (PsA), and AS (58). Similar to

other autoimmune diseases, many forms of inflammatory arthritis

are associated with circulating autoantibodies (59–61). This type of

arthritis, mediated by circulating autoantibodies, likely contributes
A B

DC

FIGURE 1

Illustration depicting the comparative analysis of C1q, IgG, IgA, and IgM levels between untreated IBD patients and individuals without chronic
diseases: (A) Plasma levels of complement C1q significantly increased in patients with IBD (22.49, n=40) compared with controls (18.13, n=40). (B)
Elevated IgG plasma levels were observed in IBD patients (14.44, n=40) compared with controls (11.25, n=40). (C) Patients with IBD exhibited higher
concentrations of IgA in plasma (2.66, n=40) compared with controls (2.28, n=40). (D) Plasma levels of IgM showed no significant difference
between IBD patients (1.23, n=40) and controls (0.86, n=40). Statistical significance is indicated as follows: ns indicates p > 0.05, * signifies p < 0.05,
and **** denotes p < 0.0001 vs. the control group. (Unpaired t test with Welch’s correction of C1q and IgG; Mann Whitney test of IgA and IgM).
Laboratory test results were collected from medical records of patients with IBD and age- and sex-matched healthy participants at the China-Japan
Union Hospital of Jilin University between June 2021 and June 2022. Patients diagnosed with IBD had experienced symptoms for more than 6
months prior to hospital admission. In the experimental group, 47.5% of participants were male, whereas in the control group, the proportion was
35%. The mean ages of the experimental and control groups were 44.5 and 47.1 years, respectively. Exclusion criteria for patients included not
receiving immunotherapy, absence of malignancy diagnosis, and normal body temperature. Healthy controls without any known diseases were
enrolled and paired accordingly. The study adhered to the principles outlined in the Helsinki Declaration and the Rules of Good Clinical Practice.
Approval was obtained from the Ethics Committee of the China-Japan Union Hospital of Jilin University, and the study was registered in the Chinese
Clinical Trial Registry (No. 2023053016). All participants provided written informed consent before participation.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347901
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1347901
significantly to joint inflammation in humans, as indicated by

prominent synovial fluid complement fixation, the presence of

immune complexes within synovial fluid neutrophils, and the

identification of immune complexes in the joints of patients with

RA (61–63).

Immune complexes, comprised of antibodies clustered around

multivalent targets, primarily IgG, IgM, and occasionally IgA,

induce an inflammatory response upon activation of the

complement pathway. In joint tissues, immune complex

accumulation primarily occurs through three pathways: direct

deposition within joint tissues, local formation due to antibodies

targeting intrinsic joint antigens, and interaction with antigens

introduced into joints or generated within the joint, resulting in

local immune complex formation. These pathways showcase

diverse mechanisms underlying immune complex accumulation

in joint tissues, contributing to elucidating the potential

mechanisms driving joint inflammation across various

conditions (64).

The human gut hosts an intricate ecosystem of microorganisms

collectively termed the ‘gut microbiota,’ comprising approximately

1013 bacterial cells. This diverse microbial community, spanning

over 250 species of viruses, fungi, bacteria, and archaea, exhibits

dynamic changes throughout an individual’s lifespan. The

symbiotic alliances among organisms in this community

significantly influence various physiological and pathological

processes, making their relationship profoundly mutualistic to

human life (65). Gut dysbiosis, capable of disrupting the intestinal

barrier integrity, potentially allows leakage of microbiota or their

byproducts into gut tissues, possibly leading to their circulation

within the venous or lymphatic systems (66).

The gut–joint axis signifies the correlation between

gastrointestinal health and joint well-being, with gut dysbiosis

being linked to the onset of several rheumatic conditions,

including RA, axial SpA, PsA, and osteoarthritis (OA) (67–71).

Numerous microbiome alterations in these conditions resemble

those observed in chronic IBD, including reduced microbial

diversity and decreased abundance of Firmicutes, known for their

anti-inflammatory properties (71). Two systematic analyses of gut

microbiota in untreated patients with early RA revealed an elevated

prevalence of Prevotella species, notably P. copri, which was

considerably less prevalent in the general population (72).

Furthermore, studies indicated that P. copri exhibits pro-

inflammatory effects in a murine colitis model (72). The latest

Shotgun metagenomic sequencing studies have revealed that

microbial taxonomic groups, functionalities, and even strains are

shared between patients with arthritis and those with IBD. These

alterations are largely consistent across RA, AS, and PsA, a finding

previously unexplored in earlier research (73). Epithelial barrier

dysfunction, observed in both murine models and human studies,

has been noted in the preclinical stage of RA (74, 75). Li et al.

utilized the Mendelian randomization method to unveil a

significant association between PsA and IBD (76). Moreover, a

cohort of patients with SpA exhibited clinical manifestations of IBD

alongside latent gut inflammation (77–79). Recent insights

underscore the pivotal involvement of gut microbiota as a

primary mediator, amplifying immune complex deposition,
Frontiers in Immunology 05
complement activation, and macrophage infiltration. These

mechanisms contribute significantly to the renal inflammation

observed in systemic lupus erythematosus (SLE) (80).
5 Reactive arthritis

The World Health Organization and the International League

of Associations for Rheumatology categorize joint relationships

with infections into four groups (81). The first group includes

pathogens found within joints that cause infectious arthritis

originating from infections in other parts of the body. The second

group includes post-infectious arthritis, where bacterial antigens are

detected in the joint. The third group comprises ReA triggered by

infections from the genitourinary or gastrointestinal systems, often

undetectable in the joint. The fourth group involves microbial-

induced inflammatory arthritis without the confirmed presence of

the microbe, its products, or specific antigens within the joint.

In its early conception, ReA was characterized as non-purulent,

developing subsequently into a gastrointestinal infection without

direct bacterial infiltration into the joints (82). Kekomäki et al. (83)

identified CICs in patients with intestinal infections and ReA.

Patients with ReA exhibit the presence of microbial antigens and

bacterial DNA and RNA within the synovial fluid or tissues of

affected joints. Notably, these substances often indicate the

persistent existence of metabolically active microorganisms (84–

87). ReA commonly ensues following gastrointestinal infections

caused by bacteria such as Yersinia, Salmonella, Campylobacter, and

Shigella, with post-dysentery outbreaks, especially post-Shigella,

being the most prevalent inciting events for this condition (88).

Recent reports on ReA encompass various rare causative

microorganisms, including Clostridium difficile and Escherichia

coli (89, 90). Several large human cohort studies have employed

whole genome sequencing to reveal that E. coli (specifically

adherent-invasive strains) and Enterobacteriaceae are typically

elevated in individuals with IBD, reportedly enhancing the

inflammatory response (91–93). Recurrence of C. difficile is

common in IBD (94). Patients with IBD are notably more

vulnerable to C. difficile infection (CDI), which can lead to

elevated morbidity and mortality rates (95). Although whether

IBD itself or disease activity is an independent risk factor for CDI

remains unclear, additional predisposing and specific conditions

have been proposed within this patient group (96, 97). One of the

most prominent newly identified infectious agents linked to ReA is

the SARS-CoV-2 virus (98). An immune complex, potentially

comprising COVID-19 spike protein and associated antibodies,

has been identified as a contributing factor to platelet activation

and thrombosis in patients with COVID-19 (99). Nevertheless, no

studies have established a definitive link between this complex and

the underlying cause of ReA in COVID-19.

The clinical presentation of joint symptoms in both IBD and

ReA is similar (Table 1). In the 20–30 age bracket, the prevalence of

arthritis among patients with IBD is approximately 25%, while the

strength of the HLA-B27 association in spondylitis-complicating

IBDs ranges between 50 and 70% (1). ReA most commonly affects

young adults in the 20–40 year age range, with 30–50% of patients
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carrying the HLA-B27 allele (100). The onset of ReA is often

preceded by symptoms of the triggering infection, which may

manifest as diarrhea in cases of gastrointestinal infections. In

severe cases, this diarrhea may even cause an IBD such as

Crohn’s disease (101). ReA presents with inflammatory back pain,

arthritis, and extra-articular symptoms, mirroring the commonly

observed manifestations in inflammatory bowel-associated arthritis

(1, 102).
6 Mitochondrial dysfunction and IBD

Within the colonic crypts, mitochondria maintain cellular

energy gradients, which are crucial for effective cell differentiation

and proliferation, and thus, pivotal in determining epithelial cell

fate (103). Notably, five percent of the genetic susceptibility factors

identified in human GWAS for IBD are associated with
Frontiers in Immunology 06
mitochondrial homeostasis (104). Moreover, research has revealed

that spontaneous ileitis in Phb1iDIEC mice is attributed to

mitochondrial dysfunction in all intestinal epithelial cells and

early abnormalities in mitochondria in Paneth cells, with

translational implications for the subset of patients with Crohn’s

disease exhibiting Paneth cell defects (105). Research also indicates

that p32 is the primary driver of mitochondrial oxidative

phosphorylation, and goblet cell differentiation induction in vitro

relies on p32-regulated mitochondrial function (103). Additionally,

decreased p32 expression in UC is the fundamental cause of

mitochondria l dys funct ion and defec t ive goble t ce l l

maturation (103).

Notably, Ho et al. were the first to observe a significant increase

in plasma mitochondrial DNA levels in patients with IBD and a

dextran sodium sulfate-induced mouse model of intestinal

inflammation (106). Moreover, N-formylated peptides derived

from mitochondria were detected in both circulation and fecal

samples (106). This indicates that mitochondrial damage-associated

molecular patterns (DAMPs) are released pathologically within the

inflamed mucosa of IBD. Given that mitochondria are

endosymbionts originating from bacteria, their components are

inherently immunogenic. Additionally, released mitochondrial

DAMPs (MTDs), including its components, formyl peptides, and

mitochondrial DNA, activate human neutrophils (PMNs) through

formyl peptide receptor 1 and TLR9, promoting PMN Ca2+ influx

and MAP kinase phosphorylation (107). Consequently, this triggers

PMN migration and degranulation in vivo, ultimately leading to

neutrophil-mediated organ damage (107). In recent years, a

growing body of research has strongly suggested that

mitochondrial dysfunction plays an important role in

inflammatory arthritis (108). However, specific mechanisms

require further elucidation. Therefore, it is imperative to confirm

whether circulating mitochondrial components in patients with

IBD form immune complexes as antigens and deposit in the joints,

leading to inflammation.
7 Optimizing gut barrier for early
arthritis management

The potential treatment approach for early and new-onset

arthritis involves the restoration of intestinal barrier integrity.

Emphasis is placed on the pivotal role of the intestinal barrier

and microbial byproducts in various chronic illnesses. Elevated

permeability within this barrier may serve as an initial trigger for a

spectrum of diseases, encompassing gastrointestinal conditions or

even exacerbating their progression. However, the precise causal

re la t ionship regard ing this interp lay remains to be

conclusively established.

The permeability and barrier function of the intestinal

epithelium relies on the regulation of intercellular tight junctions.

Among various factors, intestinal permeability is controlled by the

disengagement of protein ZO-1 from the tight junction protein

complex, a process mediated by the zonula occludens toxin, also

known as zonulin (109). Patients with RA have displayed
TABLE 1 A Comparison of arthritis in IBD and “classical”
reactive arthritis.

Arthritis in IBD “Classical”
reactive
arthritis

Age 20–30 years predominantly 20–40
years predominantly

Gender No significant difference Male preponderance

Precipitating
factor

Gut inflammation Gut or
urogenital infection

HLA-B27
association
Strength

50–70% 30–50%

Phenotype Axial arthropathy ankylosing
spondyloarthritis
-Isolated sacroiliitis

-Inflammatory back pain
peripheral arthritis

- Oligoarticular asymmetric arthritis
(involving preferentially large joints)

- Polyarticular involvement
(small joints of both hands)

Spondyloarthritis-like
-Axial involvement

-Lower limb
predominant
oligoarthritis

Chronicity chronic 1/3rd become chronic
(lasts beyond
three months)

Management Treatment of intestinal inflammation
COX-2 inhibitors Corticosteroids

(short term)
Sulfasalazine

(especially in ulcerative colitis)
Methotrexate

Anti-tumor necrosis factor

Treated as other
spondyloarthritis
cases (limited
evidence base)

Extra-
articular

manifestations

Dactylitis Dactylitis

Enthesitis Enthesitis

Synovitis Skin

Uveitis Uveitis

Inflammatory bowel disease Inflammatory
bowel disease
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347901
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1347901
significantly increased gut-permeability marker levels (55); arthritic

mice have also been found to display increased intestinal

permeability and inflammation (57). The serum zonulin levels in

mice with collagen-induced arthritis also increased significantly

well before the onset of arthritis (55). In recent adjuvant-induced

arthritis rat models, increased intestinal permeability and gut

inflammation precede the onset of arthritis (110). Treatment of

arthritic mice with AT-1001, which prevents zonulin-mediated

retraction of tight junctions, via oral gavage, has been found to

prevent disruption of gut permeability, shown by significantly

reduced FITC dextran uptake compared with that in untreated

mice and significantly reduced joint swelling (57).

Short-chain fatty acids (SCFAs) - acetate, propionate, and

butyrate - are produced through the anaerobic fermentation of

dietary fiber by intestinal microbiota. They serve as essential

nutrients for intestinal epithelial cells and support barrier

function (111). Acetate is primarily predominant in the colon,

while butyrate has garnered substantial attention in extensive

research (112). A recent study has demonstrated that a decrease

in butyrate-producing bacteria leads to lower levels of butyrate and

decreased FFAR2/3 signaling, resulting in suppressed mucin

formation, increased gut permeability, and inflammation (113).

Dysbiosis in patients with CD is characterized by a decrease in

butyrate-producing bacteria belonging to the order Clostridiales

and the phylum Firmicutes (114). Additionally, a decrease in

Roseburia, also within the order Clostridiales, contributes to the

observed dysbiosis in patients with UC (115).
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Although conclusive evidence does not strongly support

disease-specific changes in gut microbes, consistent alterations

have been observed in conditions such as RA, Sjögren’s

syndrome, and SLE. These alterations involve a decline in anti-

inflammatory butyrate-producing microbes like Faecalibacterium

and an increase in pro-inflammatory microbes such as

Streptococcus (67). In a recent study employing a quasi-paired

cohort strategy, a decrease in butyrate-producing species and an

enrichment of butyrate consumers was reported in patients with RA

(116). Additionally, an underrepresentation of Lachnospiraceae, a

key family of butyrate producers, has been linked to new-onset

untreated RA, although its exact pathological significance remains

unclear (117).

In patients with RA, a positive association has been noted

between butyrate levels and the frequency of both total CD19

+CD24hiCD38hiB cells and IL-10+B cells (118). Recent studies

have unveiled that mild inflammatory cues governing the

maturation of immature B cells into regulatory B cells originate

within the GALT due to interactions between gut microbiota and

the innate immune system (119). The strength of these

inflammatory signals significantly influences the differentiation of

B cells into either regulatory or mature B cells and the production of

antibody-secreting plasma cells (120). Moreover, the use of butyrate

to restore intestinal barrier integrity in the pre-arthritic phase has

demonstrated inhibition of arthritis development (121).

In mice with established arthritis, compared with those in the

early stages, bacterial 16S DNA accumulated in the mesenteric
FIGURE 2

Inflammatory bowel disease leads to a compromised gut barrier, allowing the entry of microbiota and their products into gut tissues. This figure
illustrates the interaction between intestinal epithelial cells, complement proteins (C1q, C3, factor B), IgG, antigen-presenting cells, T cells, and B
cells. B cells capture microbial fragments, leading to their breakdown, while helper T cells activate B cells. This activation transforms B cells into
plasma cells, producing antibodies. Additionally, the complement system forms membrane attack complexes (MAC) that adhere to affected cells and
cause destruction. Some MAC structures attach to gut blood vessel walls, amplifying inflammation. The figure also highlights the potential for
antibody-microbe complexes to travel through the bloodstream, potentially affecting joints. Created with BioRender.com.
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lymph nodes, paw-draining axillary lymph nodes, and spleen (57).

Furthermore, arthritic K/BxN mice exhibited a significant increase

in the frequency of LPAM-1+CCR9+CD45+ cells in various sites,

including the spleen, Peyer’s patches, mesenteric lymph nodes, and

paw-draining axillary lymph nodes, compared with those in control

mice (naive nonobese diabetic mice) (57). These findings emphasize

the association between arthritis development and compromised

intestinal barrier integrity, suggesting the systemic spread of

bacteria—a factor potentially contributing to arthritis

pathogenesis. The decline in butyrate-producing bacteria in the

intestine can be reasonably deduced to signify more than disruption

of the intestinal barrier alone; instead, it likely triggers an increased

generation of mature B cells and plasma cells, responsible for

handling the abundance of antigens stemming from a leaky gut.

This, in turn, results in the formation of immune complexes, which

are likely key contributors to arthritis onset (Figure 2).
7 Conclusions and future directions

Some of the most significant progress in understanding the role

of immune complexes in the musculoskeletal symptoms of IBD has

emerged from unguided analysis of extensive datasets. Some of

these findings “rediscover” concepts that have been long known and

whose importance has been overlooked. For example, pioneers in

rheumatology have long recognized that immune complexes

represent a substantial pathway contributing to joint

inflammation in humans. The potential for these complexes to

induce inflammatory responses in joints has also been known.

However, the focus in recent decades has predominantly been on

T cells and the microbiota in the pathogenesis of IBD-related

arthritis rather than on immune complexes. Recent research into

the gut–joint axis has highlighted the direct connection between

impaired intestinal barrier function, stemming from gut dysbiosis,

and gut leakage, leading to arthritis. This once again emphasizes the

pivotal role that immune complexes may play in this context.

Nevertheless, the oversight of the impact of heightened CICs on

EIMs in patients with IBD results from the lack of animal models

demonstrating their involvement in initiating arthritis during

enteritis. We are currently in an exciting era of unguided, in-

depth, observational science, promising to not only prioritize

established pathways but also to expand our knowledge.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by Clinical

Research Ethics Committee of China-Japan Union Hospital of
Frontiers in Immunology 08
Jilin University. The studies were conducted in accordance with

the local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.

Written informed consent was obtained from the individual(s) for

the publication of any potentially identifiable images or data

included in this article.
Author contributions

XJ: Writing – original draft. DL: Writing – review & editing,

Investigation. WQ: Writing – review & editing, Supervision. YC:

Writing – review & editing, Supervision. BZ: Writing – review &

editing, Conceptualization.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by Department of Finance of Jilin Province,

grant number 3D5214468430.
Acknowledgments

We would like to thank Editage (www.editage.cn) for English

language editing.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1347901/full#supplementary-material
frontiersin.org

https://www.editage.cn
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1347901/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1347901/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1347901
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1347901
References
1. Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of
inflammatory bowel disease: current concepts, treatment, and implications for disease
management. Gastroenterology. (2021) 161:1118–32. doi: 10.1053/j.gastro.2021.07.042

2. Hanzel J, Ma C, Casteele NV, Khanna R, Jairath V, Feagan BG. Vedolizumab and
extraintestinal manifestations in inflammatory bowel disease. Drugs. (2021) 81:333–47.
doi: 10.1007/s40265-020-01460-3

3. Vavricka SR, Brun L, Ballabeni P, Pittet V, Prinz Vavricka BM, Zeitz J, et al.
Frequency and risk factors for extraintestinal manifestations in the Swiss inflammatory
bowel disease cohort. Am J Gastroenterol. (2011) 106:110–9. doi: 10.1038/ajg.2010.343

4. Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, et al. An autoimmunogenic and
proinflammatory profile defined by the gut microbiota of patients with untreated systemic
lupus erythematosus. Arthritis Rheumatol. (2020) 73:232–43. doi: 10.1002/art.41511

5. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune
diseases. Front Immunol. (2017) 8. doi: 10.3389/fimmu.2017.00598

6. Han X, Uchida K, Jurickova I, Koch D, Willson T, Samson C, et al. Granulocyte-
macrophage colony-stimulating factor autoantibodies in murine ileitis and progressive ileal
Crohn's disease. Gastroenterology. (2009) 136:1261–71.e3. doi: 10.1053/j.gastro.2008.12.046

7. Mirza ZK, Sastri B, Lin JJC, Amenta PS, Das KM. Autoimmunity against human
tropomyosin isoforms in ulcerative colitis: Localization of specific human tropomyosin
isoforms in the intestine and extraintestinal organs. Inflamm Bowel Dis. (2006)
12:1036–43. doi: 10.1097/01.mib.0000231573.65935.67

8. Shome M, Song L, Williams S, Chung Y, Murugan V, Park JG, et al. Serological
profiling of Crohn’s disease and ulcerative colitis patients reveals anti-microbial antibody
signatures. World J Gastroenterol. (2022) 28:4089–101. doi: 10.3748/wjg.v28.i30.4089

9. Okada K, Itoh H, Ikemoto M. Serum complement C3 and alpha(2)-
macroglobulin are potentially useful biomarkers for inflammatory bowel disease
patients. Heliyon. (2021) 7:e06554. doi: 10.1016/j.heliyon.2021.e06554

10. Bodenheimer HC, Larusso NF, Thayer WR, Charland C, Staples PJ, Ludwig J.
Elevated circulating immune complexes in primary sclerosing cholangitis. Hepatology.
(2007) 3:150–4. doi: 10.1002/hep.v3:2

11. Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HSP. Dysbiosis in
inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol
Sci. (2022) 23:3464. doi: 10.3390/ijms23073464

12. Greuter T, Rieder F, Kucharzik T, Peyrin-Biroulet L, Schoepfer AM, Rubin DT,
et al. Emerging treatment options for extraintestinal manifestations in IBD. Gut. (2021)
70:796–802. doi: 10.1136/gutjnl-2020-322129

13. Kim JM, Cheon JH. Pathogenesis and clinical perspectives of extraintestinal
manifestations in inflammatory bowel diseases. Intest Res. (2020) 18:249–64.
doi: 10.5217/ir.2019.00128

14. Greenstein AJ, Janowitz HD, Sachar DB. The extra-intestinal complications of
Crohn's disease and ulcerative colitis: a study of 700 patients.Medicine. (1976) 55:401–
12. doi: 10.1097/00005792-197609000-00004

15. Rudwaleit M, van der Heijde D, Landewé R, Akkoc N, Brandt J, Chou CT, et al.
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