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Introduction: The connection between aging and cancer is complex. Previous

research has highlighted the association between the aging process of lung

adenocarcinoma (LUAD) cells and the immune response, yet there remains a gap

in confirming this through single-cell data validation. Here, we aim to develop a

novel aging-related prognostic model for LUAD, and verify the alterations in the

genome and immune microenvironment linked to cellular senescence.

Methods: We integrated a comprehensive collection of senescence genes from

the GenAge and CellAge databases and employed the least absolute shrinkage

and selection operator (LASSO) Cox analysis to construct and validate a novel

prognostic model for LUAD. This model was then utilized to examine the

relationship between aging, tumor somatic mutations, and immune cell

infiltration. Additionally, we explored the heterogeneity of senescence and

intercellular communication within the LUAD tumor microenvironment (TME)

through single-cell transcriptomic data analysis.

Results: By exploring the expression profiles of 586 cellular senescence-related

genes in 428 LUAD patients, we constructed an aging-related genes (ARGs) risk

model included 10 ARGs and validated it as an independent prognostic predictor
Abbreviations: ARGs, aging-related marker genes; ARKGs, aging-related key genes; ARRSs, aging-related

risk scores; CI, confidence interval; CNVs, copy number variations; DDR, DNA damage repair; DEGs,

differentially expressed genes; HR, hazard ratio; IQR, interquartile range; LUAD, lung adenocarcinoma;

SASP, senescence-associated secretory phenotype; SRS, senescence-related signature; TMB, tumor mutation

burden; TME, tumor microenvironment.
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for LUAD patients. Notably, patients with low aging scores (LAS group) exhibited

better survival, lower tumor mutation burden (TMB), lower somatic mutation

frequency, lower tumor proliferation rate, and an immune activated phenotype

compared to patients with high aging scores (HAS group). While the HAS group

was enriched in tumor cells and showed a lower infiltration of CD8-CCR7, CD8-

CXCL13, CD8-GNLY, FCGR3A NK cells, XCL1 NK cells, plasma cell (PC) and other

immune subsets. Furthermore, the SPP1 and TENASCIN pathways, associated

with tumor immune escape and tumor progression, were also enriched in the

HAS group. Additionally, our study also indicated that senescence levels were

heterogeneous in the LUAD tumor microenvironment (TME), especially with

tumor cells in the LAS group showing higher age scores compared to those in the

HAS group.

Conclusions: Collectively, our findings underscore that ARRS through ARGs

serves as a robust biomarker for the prognosis in LUAD.
KEYWORDS

cellular senescence, lung adenocarcinoma, tumor microenvironment, heterogeneity,
machine learning
1 Introduction

Cancer with complex molecular characteristics (1), remains a

significant global health challenge, accounting for a substantial

number of deaths and impacting life expectancy worldwide. Amid

the array of cancer types, lung cancer emerges as the second most

prevalent contributor to cancer-related mortality, marked by a

discouraging 5-year relative survival rate of just 23% (2). Lung

adenocarcinoma (LUAD), the predominant histological subtype

within non-small cell lung cancer, constitutes over 40% of all lung

cancer cases (3). Notably, LUAD continues to rise in incidence

among current smokers, former smokers, and even non-smokers,

and its five-year survival rate remains dishearteningly low at

approximately 15%, as a significant majority of patients are

typically diagnosed at advanced stages of the disease (4). Hence,

there is still a compelling need to formulate a novel prognostic

model for predicting the outcomes of LUAD to advance more

potent strategies for diagnosis and treatment.

Aging is a ubiquitous biological process that results in a progressive

and irreversible decline in physical function across all organ systems,

which presents with genomic instability, telomere attrition, epigenetic

alterations, loss of proteostasis, disabled macroautophagy, deregulated

nutrient-sensing, mitochondrial dysfunction, stem cell exhaustion,

chronic inflammation, altered intercellular communication, cellular

senescence, and dysbiosis (5–8). Cellular senescence refers to the

essentially irreversible arrest of cell proliferation (growth) that occurs

when cells experience potentially oncogenic stress (damage to DNA,

strong mitogenic signals, damage or disruptions to the epigenome, and

ectopic expression of certain tumor suppressors) (9, 10). Several

evidences have shown that cellular senescence plays a double-edged
02
role in initiation, growth, and progression of tumor (11, 12). Senescent

tumor cells wield influence over the tumor microenvironment (TME)

via the senescence-associated secretory phenotype (SASP). On one

hand, by emitting pro-inflammatory cytokines, chemokines, growth

factors, and proteases like IL-6, IL-8, and TGF-b, senescent cells can
trigger paracrine senescence, transforming neighboring non-senescent

cells into senescent counterparts. This process recruits and activates

immune cells within the TME, leading to outcomes that can either

hinder or foster tumor growth. M1 macrophages and natural killer

cells, for instance, can eliminate tumor cells and foster their senescence

through the secretion of IFN-g and TNF-a, thereby restraining tumor

expansion. On the other hand, senescent tumor cells may activate

myeloid-derived suppressor cells and M2 macrophages via SASP,

affecting the clearance of senescent tumor cells, in turn, driving

tumor progression and vascularization (9, 13, 14). Given the role of

cellular senescence in constraining tumor development, it emerges as a

potential target for tumor therapy. Hence, unraveling the impact of

senescence in tumorigenesis is paramount importance.

In recent years, several studies have focused on the role of

senescence in LUAD (15–20). For example, Lin et al. constructed a

cellular senescence-related signature (SRS) by leveraging senescence-

related genes. They found that SRS involved in the regulation of the

tumor immune microenvironment through SASP was a robust

biomarker for the immunotherapeutic response and prognosis in

LUAD (15). In a similar vein, another research by Lin et al. explored

cellular senescence patterns within LUAD by analyzing mRNA

expression profiles of 278 cellular senescence-related genes,

demonstrating the association between cellular senescence patterns

and tumor immune infiltration in LUAD (16). Besides, Liu et al.

developed a 12-gene signature for LUAD using 91 cancer-related
frontiersin.org
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senescence genes to assess survival outcome (19). Nonetheless, prior

investigations were marked by limitations. Firstly, all focused on only

a subset of senescence genes. Secondly, the assessment of the TME

was largely confined to the bulk transcriptomic level. As a result, the

role of senescence in LUAD has yet to undergo systematic evaluation,

and the intricate interplay between senescence and LUAD prognosis

has remained obscure.

This current study seeks to overcome these limitations by

integrating a comprehensive collection of 586 senescence genes

sourced from the GenAge and CellAge databases. Employing the

least absolute shrinkage and selection operator (LASSO) Cox

analysis, a novel prognostic model for LUAD was constructed

and validated. This model was further investigated the

relationship between aging and tumor somatic mutation or

immune cell infiltration. Furthermore, this study delved into the

senescent heterogeneity and intercellular communication of various

cells within the LUAD TME through the analysis of single-cell

transcriptomic data. In summary, this study enriches our

understanding of the profound impact of cell senescence on the

survival outcomes of patients with LUAD, which unravels the

complex associations between senescence, the immune landscape,

and the intricate genetic makeup of the tumor, ultimately

illuminating novel avenues for therapeutic interventions and

prognostic assessments.
2 Materials and methods

2.1 Data source and processing

In the training cohort, bulk RNA sequencing (RNA-seq) data,

somatic mutation data and clinical information for LUAD were

downloaded from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/) (21). After excluding non-primary

cases and patients with incomplete follow-up information, we

analyzed 428 patients from the TCGA dataset as the training set.

For the validation cohort (GSE31210, GSE50081, and GSE30219)

(22–25), transcriptome data were obtained from data series in the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/geo/) (26). Single-cell RNA-seq (scRNA-

seq) data (GSE189357) comprising nine patients with LUAD was

also download from the GEO database (27). Fragments per kilobase

million (FPKMs) values or raw gene expression counts were

normalized to transcripts per kilobase million (TPMs) in both the

training and validation cohorts. Genes that were not expressed in

more than half of the samples were excluded from the expression

profiles. The clinical features of 428 patients are listed in Table 1.
2.2 Aging gene set and screening

The set of aging-related marker genes (ARGs) was obtained

from two databases, GenAge and CellAge. Initially, 279 ARGs were

selected from CellAge (https://genomics.senescence.info/cells/)

(28), and an additional 307 ARGs were obtained from GenAge

(https://genomics.senescence.info/genes/index.html) (29)
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(Supplementary Table S1). Univariate Cox analysis was

conducted by survival (version 3.3-1) packages to preliminarily

identify ARGs associated with the overall survival (OS) of LUAD

patients in the TCGA cohort (30), resulting in a final gene set

comprising 102 ARGs (Supplementary Table S2).
2.3 Construction and validation of an ARGs
risk model

We utilized the “glmnet” (version 4.1-8) package in R software

(version 4.1.2) to perform the LASSO Cox regression analyses

(family=“cox”) to screen out the prominent genes (31, 32). The

“lambda.1se” value, determined through tenfold cross-validation,

was employed as the lambda for model fitting. Ten genes were

ultimately selected to construct the risk model. The prognostic

capability of the ten genes was assessed using Kaplan-Meier survival

curves generated with the survminer (version 0.4.9) and survival

(version 3.3-1) R packages (30). Subsequently, we calculated a risk

score for each sample, as a linear combination of gene expression

levels within the signature set, weighted by their respective LASSO

Cox regression coefficients, using the following formula:

Aging � related risk scores (ARRSs)

=on
i Expre(genei)*Coef (genei)  

Here, “Coef (genei)”, signifies the LASSO Cox regression

coefficient, “Expre (genei)”, represents the expression level of each

gene, and “n” denotes the number of genes included in the model.

In addition, the R package “survival” (version 3.3-1) was used to

construct multiple multivariate Cox analysis to determine the

independent prognostic factor in LUAD patients (30).

In the TCGA training cohort, LUAD patients were classified into

high aging score group (HAS group) and low aging score group

(LAS group) based on the median value of ARRSs. The prognostic

capability of the risk model in terms of OS and progression-free

survival (PFS) was assessed using Kaplan-Meier survival curves

generated with the survminer (version 0.4.9) and survival

(version 3.3-1) R packages (30). Additionally, we also compared the

clinicopathological characteristics of TCGA-LUAD patients between

the HAS group and the LAS group using Fisher’s Exact Test.

To validate the ARGs Risk Model, we calculated the risk score

for patients in the validation cohort (GSE31210, GSE50081, and

GSE30219) using the same formula as applied to the TCGA-LUAD

cohort. Patients in the validation cohort were also categorized into

high and low-risk groups based on the median value of ARRS.

Kaplan-Meier curves were generated to assess the relationship

between ARRS and OS in the validation cohort.
2.4 Functional enrichment analysis of
differentially expressed genes based on
HAS and LAS groups

We used the “DESeq2” (version 1.36.0) R package to calculate

fold-changes and identify differentially expressed genes (DEGs)
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based on the two risk groups (false discovery rate (FDR) < 0.05 and |

Log2FC| > 1) (33). Subsequently, we conducted Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses on these DEGs using the “clusterProfiler” (version

4.7.1.002) R package (34). Pathways with adjusted p-values less

than 0.05 were considered significant.
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2.5 Immune infiltration between the HAS-
group and LAS-group from TCGA-
LUAD cohort

The “estimate” R package, a powerful tool for quantifying the

immune stromal, and ESTIMATE scores, which was based on the
TABLE 1 Patient characteristics for TCGA_LUAD cohort.

Total
(n = 428)

HAS group
(n = 214)

LAS group
(n = 214)

Fisher’s Exact
Test (P value)

Age

<=65 206 111 95

0.142>65 212 98 114

NA 10 5 5

Gender
female 238 111 127

0.144
male 190 103 87

race

american indian or
alaska native

1 1 0

0.154

asian 8 6 2

black or african american 47 19 28

white 330 168 162

NA 42 20 22

OS
Alive 321 146 175

0.002
Dead 107 68 39

AJCC

I 245 105 140

0.004

II 103 59 44

III 59 38 21

IV 14 9 5

NA 7 3 4

T stage

T1 149 56 93

0.002

T2 231 130 101

T3 36 22 14

T4 11 5 6

TX 1 1 0

N stage

N0 292 130 162

0.001

N1 77 47 30

N2 50 35 15

N3 2 1 1

NX 6 1 5

NA 1 0 1

M stage

M0 286 147 139

0.313
M1 14 9 5

MX 124 56 68

NA 4 2 2
The “NA” represents sample with missing clinical information. Samples with missing clinical information were not considered in Fisher’s Exact Test statistics.
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expression of related molecular biomarkers in immune and stromal

cells, to predict the TME (35). The “xCell” is a robust algorithm that

analyzes the infiltration levels of 64 immune and stroma cell types,

including extracellular matrix cells, epithelial cells, hematopoietic

progenitors, innate and adaptive immune cells (36). Herein, we

utilized the R package estimate (version 1.0.13) and xCell (version

1.1.0) to evaluate the immune infiltration score and immune cell

infiltration in each patient between HAS and LAS subgroups.

Additionally, the T cell-inflamed gene expression profile (GEP) was

calculated as a weighted sum of standardized expression values of 18

genes (CCL5, CD27,CD274,CD276,CD8A,CMKLR1,CXCL9,CXCR6,

HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2,

PSMB10, STAT1, TIGIT) as described in previous literature (37–39).

The single sample gene set enrichment analysis (ssGSEA) algorithm in

“gsva” (version 1.42.0) R package was performed to compare

differences in 13 gene sets associated immune function and 4 gene

sets related to angiogenesis, matrix, matrix remodeling, and tumor

proliferation rate from previous studies (40–42). Box plots were

developed using ggplot2 software (version 3.4.3) in R to display the

differences between the two groups (43).
2.6 The genetic landscapes of HAS-group
and LAS-group

Genetic landscapes were analyzed and visualized using the

“maftools” (version 2.12.0) R package (44). Tumor Mutation

Burden (TMB) was defined as the number of somatic, non-silent,

protein-coding mutations in the coding regions per megabase (mut/

Mb) and counted using ‘maftools’ (version 2.12.0). The mutated

samples of tumor-related and DNA damage repair (DDR) pathways

in HAS and LAS groups were compared using Fisher’s exact test (with

p <0.05 indicates a significant difference) and visualized using

“ggradar” (version 2.12.0) and ggplot2 (version 3.4.3) R packages (43).
2.7 Single-cell RNA-seq analysis

Raw matrix data were obtained from the GEO database for

subsequent analysis (27). Initially, cells with low quality were filtered

out based on the following criteria: 1) fewer than 200 expressed genes,

2) total molecule count per cell less than 800, and 3) greater than 10%

of reads mapped to the mitochondrial genome. Additionally, the

“DoubletFinder” R package (45) was utilized to identify and remove

doublet cells using default parameters.

The “Seurat” package (version 4.3.0) (46) was employed to

normalize the single-cell gene expression data using the

“NormalizeData” and “ScaleData” functions, respectively.

Subsequently, the top 2,000 highly variable genes for each sample

were selected using the “FindVariableFeatures” function. Principal

component analysis (PCA) was performed using the “RunPCA”

function, and the first 20 principal components were used for

Uniform Manifold Approximation and Projection (UMAP)

analysis with the “RunUMAP” function. Following UMAP
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analysis, cells were clustered using an unsupervised method with

a resolution parameter of 1.5 employing the “FindNeighbors”

function. Differential expression analysis was conducted on the

original log-normalized data by comparing cells within each cluster

to all other clusters using the “FindAllMarkers” function. Clusters

were annotated based on the expression of well-known markers and

differentially highly expressed genes.

Subgroup analysis of each cell group, including T/NK cells, B

cells, and myeloid cells, was performed using the standard Seurat

pipeline. Specific markers were used for grouping and are listed in

Supplementary Table S3. Bar plots were generated to illustrate the

percentage of cells between the two groups. Additionally, cell

occupancy differences were assessed using Fisher’s exact test. The

cytotoxic and exhausted scores for T cell subgroups, as well as the

hallmark pathways compared between HAS and LAS groups, were

calculated using the ssGSEA algorithm in the “gsva” package

(version 1.42.0) based on different sets of genes (42).
2.8 Identification of cancer cells

To identify cancer cells, we utilized the inferCNV (version

1.13.0) tool (https://github.com/broadinstitute/inferCNV), as

previously described in studies by Liu, He, et al. and Chen et al.

(47, 48). The inferCNV package compares gene expression profiles

of each cell to reference gene expression profiles from other cells.

Initially, raw count data and cell type annotations for all cells were

extracted from the Seurat object. Immune cells and stromal cells

were chosen as reference cells. A gene ordering file was generated

from the human GRCh38 assembly, containing chromosomal start

and end positions for each gene. These files were used to create an

inferCNV object using the “CreateInfercnvObject” function,

followed by running inferCNV with default parameters. The

calculated copy number variation (CNV) signal was defined as

the mean square of CNV estimates across all genomic locations.

CNV R-scores were calculated as the Pearson correlation coefficient

between each cell’s CNV pattern and the average CNV pattern of

the top 5% of cells from the same tumor based on CNV signal. Cells

with CNV R-scores ≥0.3 were classified as tumor cells.
2.9 Aging-related risk scores based on
pseudo-bulks

The Seurat object was transformed into a “SingleCellExperiment”

object, followed by the computation of pseudo-bulks. Pseudo-bulks,

which represent the sum of counts, were calculated using

aggregation-based methods in the muscat (version 1.10.1) R

package (https://github.com/HelenaLC/muscat). The ARRSs were

then derived using the previously described formula based on the

pseudo-bulks. Patients were stratified into two groups, HAS and

LAS, based on the median value of ARRSs. Additionally, age scores

for each cell were calculated based on ten ARKGs at the single-cell

level using the ssGSEA algorithm.
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2.10 Cell-cell interactions

CellChat (version 1.5.0) is an open-source R package (https://

github.com/sqjin/CellChat) utilized for the analysis, comparison,

and visualization of single-cell RNA sequencing data intercellular

communication (49). In this study, CellChat was employed to infer

cell-cell interactions across 24 immune subgroups, fibroblasts,

normal epithelial cells, tumor cells, and endothelial cells for both

the HAS and LAS groups. Subsequently, major signaling changes

between the HAS and LAS groups were computed.
2.11 Statistical analysis

The Wilcoxon test was conducted to examine differences in

variables between two groups, while the Kruskal-Wallis test was

used to assess differences among groups greater than two. Gene

mutation differences between the HAS and LAS groups were

determined using Fisher’s exact test.
3 Results

3.1 Construction and validation of aging-
related risk score

The workflow of the whole study was graphically presented in

Figure 1A. We compiled a comprehensive list of 586 aging-associated

genes sourced from the CellAge and GenAge databases. Among these

genes, 102 were significantly associated with clinical survival (p <

0.05) based on univariate Cox analysis (detailed results shown in

Supplementary Table S2), conducted on the expression matrix and

clinical survival information of 428 LUAD samples obtained from the

TCGA dataset. Subsequently, to construct the ARGs risk model, we

performed LASSO Cox regression analysis on the aforementioned

102 genes and the gene expression profiles of the training cohort

(Figures 1B, C). Through this analysis, we successfully identified 10

aging-related key genes (ARKGs), including. BRCA2, CSNK1E,

EEF1E1, GAPDH, IGFBP3, IL1A, PSEN1, XRCC5, XRCC6, and

YWHAZ. And low RNA expression for the 10 ARKGS was

correlated with longer survival time in LUAD (Supplementary

Figure S1). Utilizing these ten ARKGs and their corresponding risk

coefficients, we established an aging risk signature. The risk score of

every patient was calculated using this formula. Patients in the

training cohort were stratified into two groups: the high aging

score group (HAS group) and the low aging score group (LAS

group) based on median values of ARRSs. Upon investigating the

expression levels of the ten ARKGs, we found that they were

significantly higher in HAS group than LAS group (Supplementary

Figure S2, Supplementary Table S4).

We compared the clinicopathological characteristics, including

age, gender, race, OS, TNM tumor grade, and AJCC tumor grade, of

TCGA-LUAD patients between the HAS group and the LAS group

(Table 1). The results showed significant differences in OS status

(P = 0.002), T grade (P = 0.002), N grade (P = 0.001), and AJCC

tumor grade (P = 0.004) between the groups. Survival analysis
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demonstrated that the LAS-group exhibited significantly improved

overall survival (OS) (hazard ratio (HR) = 0.45, 95% confidence

interval (CI) = 0.31 – 0.66, P = 0.000044) and progression-free

survival (PFS) (HR =55, 95% CI = 0.41 – 0.74, P = 0.000052)

compared to the HAS-group (Figures 1D, E). Upon integrating age,

gender, TNM tumor grade, and AJCC tumor grade into the

multivariate Cox regression analysis, ARRSs emerged as the sole

significant survival-related risk factor (HR = 9.32, 95% CI = 4.50 –

19.29, P = 0.0000000018) (Figure 1F), suggesting that ARRSs was an

independent prognostic factor for LUAD.

To validate the prognostic roles of the above risk model, we

applied the same stratification method to three independent

datasets form the GEO database. Consistent with the findings

from the training cohort, patients with in the high ARRSs group

displayed significantly worse survival outcomes compared with the

low ARRSs group in all three cohorts, namely GSE50081 (HR =

0.32, 95% CI = 0.18 – 0.56, P = 0.000081), GSE30219 (HR = 0.52,

95% CI = 0.29 – 0.95, P = 0.038), and GSE31210 (HR = 0.36, 95%

CI = 0.19 – 0.71, P = 0.005) (Figures 1G-I).
3.2 The genetic characteristics of HAS-
group and LAS-group

To explore the genetic features in LUAD with different ARRSs,

we further investigated the genomic differences between the HAS

group and the LAS group based on somatic mutation data in the

TCGA-LUAD cohort (Figure 2A; Supplementary Figures S3A-C).

We observed that HAS group had a higher mutation frequency than

the LAS group, particularly in the top 20 genes such as, TP53, TTN,

CSMD3, ZFHX4, RYR3, CSMD2, SI, LRRC7, and PAPPA2 (detailed

P values shown in Supplementary Table S5) between HAS and LAS

groups (Figure 2B). Additionally, the HAS group displayed a higher

tumor mutation burden (TMB) but a lower occurrence of co-

occurring mutations between genes, indicating distinct genomic

alteration patterns (Figure 2C; Supplementary Figure S3D). Further

analysis of ten tumor-related pathways revealed significantly higher

mutation frequencies in the Hippo (P = 0.011), NOTCH (P =

0.013), and TP53 (P = 0.011) pathways in the HAS-group compared

to the LAS-group (Figures 2D, F; Supplementary Figure S4B).

Similarly, higher mutation rates were observed in the HAS group

among the eight DDR pathways, with five of them being statistically

significant (Figures 2E, G; Supplementary Figure S4A).
3.3 ARRSs is associated with cell
proliferation and immune function

Differential expression analysis of gene expression data based on

the HAS group and LAS group identified a total of 1664 differentially

expressed genes (DEGs) under a threshold of adjusted p < 0.05,

comprising 707 up-regulated and 957 down-regulated genes

(Figure 3A). GO enrichment analysis for DEGs revealed that in the

HAS-group, biological processes were predominantly enriched in cell

cycle, cell division, and cell development, indicating a potential

involvement in regulating normal cell function and organismal

development (Figure 3B). Furthermore, based on gene sets from
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Bagaev, et al. (40), we found that the tumor proliferation rate, and

matrix remodeling of the HAS group were significantly higher than

those of the LAS group (Figure 3F, detailed P values were shown in the

Supplementary Table S4).

In contrast, the LAS-group exhibited enrichment in immune

response mechanisms, encompassing cell activation, signal

transduction, and production of immune mediators (Figure 3C).
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Based on another gene set related to immune functions (41), we

observed that nine of the 13 immune function gene sets had

significantly higher ssGSEA scores in all LAS groups than the

HAS group (Figure 3G, detailed P values were shown in the

Supplementary Table S4), especially type II IFN response, T cell

co-stimulation, and HLA. Immune estimations for LUAD patients

within the training set (TCGA-LUAD) showed notably increased
FIGURE 1

Identification of ARKGs related to prognosis in the TCGA training cohort. (A) The workflow of the present study. (B) Selection of optimal candidate
genes in the LASSO model. (C) LASSO coefficients of prognosis-associated ARKGs. (D, E) Kaplan-Meier curves for overall survival (D) and progression
free survival (E) of the TCGA-LUAD cohort in the HAS and LAS groups. (F) Forest plots showing results of multivariate Cox regression analysis
between Risk score, clinical information and overall survival. (G-I) Kaplan-Meier curves for overall survival of validation cohorts in the high and low
groups: GSE50081 (G), GSE30219 (H), GSE31210 (I).
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StromalScore, ImmuneScore, ESTIMATEScore, and GEP score in

the LAS group when compared to the HAS group (Figures 3D, E).

Xcell analysis revealed the immune infiltration of TME (36). The

results indicated that LAS group had an activated TME, with

significantly increased numbers of T cells, such as CD8+ T cells,
Frontiers in Immunology 08
CD8+ Tcm, CD4+ Tem, and CD4+ Tcm, and significantly

decreased numbers of Th1 and Th2 (Figure 3H, detailed p values

were shown in the Supplementary Table S4). Additionally, B cells

such as plasma cells (Figure 3H), and myeloid cells such as Mast

cells, and various DCs (Figure 3I, detailed p values were shown in
FIGURE 2

Genomic alterations differences between the HAS and LAS group from the TCGA-LUAD cohort. (A) Genomic alterations landscape between the HAS
(left) and LAS (right) group. (B) Mutation frequency differences of the top 20 mutation genes in the HAS group compared to the LAS group. The
asterisk to the right of the gene indicates that the mutations in the gene were significantly different in the two groups, as determined by Fisher’s
exact test. (C) The TMB between HAS and LAS groups. The HAS group had a higher TMB (2.66 (IQR: 0.04, 11.985) compared to the LAS group (1.58
(IQR: 0.02, 6.9)) with P value = 0.000065 compared by the Wilcoxon test. The frequency of mutated genes in each tumor-related pathway (D, F)
and DDR pathway (E, G) difference between two groups. The asterisks in (D, E) denote significant differences of mutated genes in different pathways
identified by Fisher’s exact test which showed in (F, G).
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the Supplementary Table S4), were also significantly increased in

the LAS group. Furthermore, we explored the relationship between

ARRSs and various cell death pathways. The findings revealed that

significantly elevated scores for Alkaliptosis, Cuproptosis,
Frontiers in Immunology 09
and Oxeiptosis in the HAS-group, whereas Autophagy,

Lysosome-dependent cell death, Necroptosis, and Parthanatos

scores were markedly higher in the LAS-group (Figure 3J;

Supplementary Table S4).
FIGURE 3

Transcriptomic differences between the HAS and LAS group from the TCGA-LUAD cohort. (A) Volcano Plot of DEGs between the HAS and LAS
group. (B, C) Top 20 biological processes of GO enrichment results between the HAS (B) and LAS (C) group. (D) Stromal score, immune score and
ESTIMATE score between the two groups. (E) GEP score between the two groups. (F, G) Boxplots of gene sets related to tumor proliferation (F) and
immune-related functions (G). (H, I) Box plot of T cells (H), B cells (H), and myeloid cells (I) infiltration in “Xcell” between the two groups. (J) Box plot
of cell death between the two groups. "ns" indicates p > 0.05, * indicates p ≤ 0.05, ** indicates p ≤ 0.01, *** indicates p ≤ 0.001, and **** indicates p
≤ 0.0001. The actual P determined by the Wilcoxon test, and the medians (IQR) in Figures 2D-F were all displayed in Supplementary Table S4. All
abbreviations presented in Figure 3 showed as following: GEP, T cell-inflamed gene expression profile; CCR, cytokine and cytokine receptor; HLA,
human leukocyte antigen; MHC, major histocompatibility complex.
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3.4 The single cell alta of HAS-group and
LAS-group

To further investigate whether the ARRSs is heterogeneous in the

TME, we utilized a single-cell dataset (GSE189357) containing over

10,000 cells from 9 patients. Initially, the single-cell dataset was

converted to pseudo-bulks and then ARRSs were calculated.

Subsequently, the 9 patients were divided into HAS (n = 5) and

LAS (n = 4) groups based on the median value of ARRSs. Notably, two

of the three invasive adenocarcinoma (IAC) samples were categorized

into the HAS group, exhibiting significantly higher aging scores

compared to the LAS group (Figures 4A, B). Employing the

standard pipeline in Seurat (46), we identified six major cell types,

including T/NK cells, B cells, myeloid cells, fibroblasts, endothelial

cells, and epithelial cells (Figures 4C, D). Subsequently, the epithelial

cells were further subdivided into tumor cells and normal epithelial

cells (Figure 4E). Interestingly, we observed an enrichment of tumor

cells and endothelial cells in the HAS (P = 6.44E-66, odds ratio (95%

CI) = 1.57 (1.49, 1.66), Supplementary Table S6) and LAS (p = 0, odds

ratio (95% CI) = 4.56 (4.2, 4.95)) groups, respectively (Figure 4F).

Furthermore, we conducted subtype annotation specifically for

immune cells including T/NK cells, B cells, and myeloid cells

(Figures 4G-I; Supplementary Table S2). T/NK cells were

subdivided into eight T cell subpopulations and two NK cell

subpopulations (Figure 4G). Functional scoring of T-cell subsets

revealed that FCGR3A NK cells (T09) and CD8-GNLY (T08) had

the highest cytotoxic scores, while CD8-CXCL13 (T06) had the

highest exhausted score (Supplementary Figure S5). We compared

the cellular infiltration in the HAS and LAS groups and found that the

T and NK cell subpopulations were significantly differed between the

HAS and LAS groups (Supplementary Table S6). Specifically, CD4-

CCR7 (T01, P = 1.53E-134, odds ratio (95% CI) = 1.81 (1.72, 1.9)),

and CD4-FOXP3 (T03, P = 4.55E-21, odds ratio (95% CI) = 1.41

(1.31, 1.52)) were enriched in the HAS group, whereas CD8-CCR7

(T05, P = 6.42E-14, odds ratio (95% CI) = 1.34 (1.24, 1.45)), CD8-

CXCL13 (T06, P = 2.35E-64, odds ratio (95% CI) = 5.66 (4.51,

7.16)), CD8-GNLY (T08, P = 2.94E-23, odds ratio (95% CI) = 1.39

(1.3, 1.48)), FCGR3A NK cells (T09, P = 4.29E-98, odds ratio (95%

CI) = 1.95 (1.83, 2.08)), and XCL1 NK cells (T10, P = 2.65E-34,

odds ratio (95% CI) = 2.02 (1.8, 2.27)) were enriched in the LAS

group. For B cell subsets, naive and memory B cells were more

prevalent in the HAS group, whereas plasma cell (PC) subsets (B03

P = 1.33E-24, odds ratio (95% CI) = 2.3 (1.96, 2.69); B04, P = 3.51E-

48, odds ratio (95% CI) = 2.96 (2.55, 3.43)) and stressed PC (B05,

P = 7.24E-13, odds ratio (95% CI) = 3.02 (2.21, 4.12)) were more

prevalent in the LAS group. The Mast cells (M01, P = 7.44E-292,

odds ratio (95% CI) = 2.77 (2.62, 2.92)) showed a tendency to

increase in the LAS group compared to the HAS group, while

neutrophils (M02, P = 4.84E-164, odds ratio (95% CI) = 5.25 (4.55,

6.08)), S100B DC (M06, P = 1.08E-66, odds ratio (95% CI) = 2.05

(1.88, 2.23)), TXN DC (M07, P = 9.61E-15, odds ratio (95% CI) =

2.47 (1.93, 3.19)), and proliferation myeloid cells (M09, P = 1.51E-

16, odds ratio (95% CI) = 1.87 (1.6, 2.2)) were significantly more

prevalent in the HAS group. These results provide further evidence

of heterogeneity in immune cell infiltration between groups with
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differing ARRs at the single-cell level, especially the LAS enriched

more cytotoxic T/NK cells and antibody-secreting B cells.
3.5 Inference of cell-cell interactions

Given that senescence alters intercellular communication, we

conducted a comparative analysis of intercellular communication

between the HAS and LAS groups for each cell subset based on

single-cell data. Significant differences were observed in several

signaling networks between the HAS and LAS group

(Supplementary Figure S6). Notably, SPP1 was exclusively present

in in the HAS group (Supplementary Figure S6; Figure 4J).

Especially, the interaction of SPP1-CD44 has been reported to

inhibit T-cell activation and promote tumor immune evasion (50,

51). Additionally, TENASCIN was frequently observed in the HAS

group, with tumor cells in this group interacting with other cells,

including tumor cells themselves, via TNC - SDC1/SDC4 or TNC -

ITGA8_ITGB1/ITGAV_ITGB6 (Supplementary Figure S6;

Figure 4K). TNC is an extracellular matrix glycoprotein known to

contribute to tumor progression, and increased TNC expression in

LUAD tissues correlates with an unfavorable clinical outcome for

patients (52). Conversely, certain pathways were exclusively or

more frequently observed in the LAS group (Supplementary

Figure S6). For example, the secreted signaling BAG, and CD70

pathways were uniquely found in the LAS group (Supplementary

Figure S6). The BAG6-NCR3 interaction targeting T09 might

trigger NK cell cytotoxicity (Figure 4L). Furthermore CD70-CD27

interaction was observed between B02 and PC or between B02 and

T cells. CD27 receptor activation provides a costimulatory signal

promoting T cell and B cell activity to enhance anti-tumor and anti-

infection immunity (Figure 4M) (53).
3.6 Cellular senescence heterogeneity in
the tumor microenvironment

Using single-cell data, we evaluated the senescence levels of

individual cells and compared the senescence levels among different

cell subpopulations (Figure 5A). We observed lower age scores in

B01, B03, B05, M02, and endothelial cell subpopulations, while M03

and M05 exhibited higher age scores (Figure 5A). Subsequently, we

compared the senescence levels of cell subpopulations between the

HAS and LAS groups (Figure 5B). Most T cell subsets (e.g., T05,

T07) displayed higher age scores in the HAS group than in the LAS

group (Figures 5B, C). Moreover, endothelial and fibroblast cells

exhibited higher age scores in the HAS group, whereas normal

epithelial cells and tumor cells showed higher age scores in the LAS

group (Figures 5B, C). Age scores for different subpopulations of

myeloid and B cells varied between the HAS and LAS groups

(Figures 5B, C). For instance, the age scores of B01, B02, M05 and

M06 were significantly lower in the HAS group than in the LAS

group, while B04 and M02 showed higher scores in the HAS group

(Figures 5B, C). As cellular damage caused by reactive oxygen

species (ROS) is a major trigger for senescence (54), we assessed and
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FIGURE 4

Single cell atlas and cell-cell interactions between the HAS (n = 5) and LAS (n = 4) group. (A) ARRSs based on single cell pseudo-bulks differed
between the HAS and LAS group. The HAS group had a higher ARRS 0.4496 (IQR: 0.4304, 0.463) compared to the LAS group 0.4147 (IQR: 0.3969,
0.4228) with P value = 0.0159 compared by the Wilcoxon test. (B) Alluvial diagram showed the grouping of the nine samples. (C) UMAP plot for cells
displaying the six major cell types from patients. (D) Dot plot depicting mean expression levels and percentage of cells expressing signature genes
across the six major cell types. (E) Distribution of normal and tumor cells in epithelial cells from LUAD. (F) The composition of the cell compartment,
displaying the average frequencies of cell subsets for HAS and LSA groups. (G-I) The UMAP plot and the average frequencies of different T cell, B cell
and myeloid cell subgroups. (J, K) Comparison of the significant ligand-receptor pairs of SPP1 signaling (J) and TENASCIN signaling (K) for the HAS
group. Dot color reflects communication probabilities and dot size represents computed p-values. Empty space means the communication
probability is zero. p-values are computed from one-sided permutation test. (L, M) Circle plot showed cell–cell communication mediated by CD70-
CD27 (L) and BAG6-NCR3 (M) in the LAS group. All abbreviations presented in Figure 4 showed as following: ARRS, aging related risk score; IQR,
interquartile range; AIS, lung adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; tumor, tumor cells;
normal, normal epithelial cells; Fib, fibroblasts; End, endothelial cells.
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compared the “reactive oxygen species pathway”. Our results

revealed higher scores for this pathway in the HAS group for

B01, B02, M05, M06, normal epithelial cells, and tumor cells,

whereas the HAS group for B04, M02, T05, T07, endothelial, and

fibroblast cells exhibited lower scores (Figure 5D), consistent with

the trend observed in age scores (Figure 5C).
4 Discussion

Cellular senescence involves the cessation of cell-cycle and the

release of inflammatory cytokines with autocrine, paracrine and

endocrine activities (55). The SASP represents a significant feature

of senescent cells, encompassing the release of various cytokines,

chemokines, growth factors and proteases (56). The impact of cellular

senescence on cancer is intricate, displaying both advantageous and

detrimental effects. Nevertheless, the extent to which the senescent

heterogeneity of immune infiltration cells within tumors, as well as
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the interplay between tumor senescence and immune infiltration in

LUAD, remains incompletely documented. In the current

investigation, we constructed an independent prognostic model

based on cellular senescence-related genes, and comprehensively

analyzed the role of aging in genomic alterations and immune

landscape in LUAD, which might hold the potential to facilitate the

development of personalized immunotherapy.

This study successfully identified a novel and independent

prognostic risk model incorporating ten significantly upregulated

genes in LUAD. Ten genes were selected from a comprehensive list

of 586 aging-associated genes obtained from the CellAge and

GenAge databases. These genes also have been previously

reported as positive regulators of tumor development. For

example, CSNK1E, a member of the serine/threonine protein

kinase family, controls circadian rhythms, which is closely related

to the animals longevity (57). Inhibition of CSNK1E has been show

to selectively inhibit tumor cell development (58), and elevated

CSNK1E expression is associated with poor prognosis in patients
FIGURE 5

Single cell age score. (A) The age score for each cell. (B) The medians of age scores for each cell type in the HAS and LAS groups. (C) The box plots
demonstrating between-group differences in the HAS and LAS groups for age scores for specific cell types. We used the following notation for
statistical significance: “ns” indicates p > 0.05, ** indicates p ≤ 0.01, *** indicates p ≤ 0.001, and **** indicates p ≤ 0.0001. The actual P determined
by the Wilcoxon test, and the medians (IQR) in (C) were all displayed in Supplementary Table S4. (D) Heatmap showed the activity of hallmarks
between the HAS and the LAS groups for different cell types. All abbreviations presented in Figure 5 showed as following: tumor, tumor cells;
normal, normal epithelial cells; Fib, fibroblasts; End, endothelial cells.
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with ovarian cancer and malignant melanoma (59, 60). EEF1E1, a

tumor suppressor, plays a role in ATM/ATR-mediated p53

activation (61), and serves as a poor prognosis predictor in lung

cancer (62). Overexpression of EEF1E1 in transgenic mice resulted

in a significantly shorter mean lifespan (63). GAPDH directly

participates in tumor progression, invasiveness, and metastasis

(64), and conditions such as oxidative stress impair GAPDH

catalytic activity, leading to cellular aging and apoptosis (65).

Increased expression of PSEN1 in colorectal cancer is associated

with enhanced tumor development through heightened EGFR

signaling via NOTCH1 processing and activation of the COX-2-

PGE2 pathway (66). PSEN1-null mice die shortly after birth (67),

although PSEN1’s role in human aging remains largely unknown.

YWHAZ is an adapter protein implicated in several signal

transduction pathways (68) and interacts with numerous proteins

associated with aging, such as the INS/IGF1 pathway (69, 70).

YWHAZ has also been shown to mediate lung cancer malignancy

and b-catenin protein through its complex with b-catenin (71).

IL1A, a pivotal inflammatory cytokine, is thought to be one of the

critical upstream regulators of other SASP-related genes (72, 73)

and drives tumor growth and metastasis (74). IGFBP3, a member of

the insulin-like growth factor-binding protein (IGFBP) family,

regulates IGF1 and IGF2 by altering the interaction of IGFs with

their cell surface receptors. Interestingly, the cell growth regulator

IGFBP3 exhibits a unique pattern, as elevated levels are associated

with a good prognosis in patients with advanced NSCLC (75).

BRCA2, XRCC5, and XRCC6 are all DDR related genes, involved in

DNA damage and repair. Mice deficient for BRCA2 and XRCC5

have a reduced lifespan (76, 77). XRCC5/6 are associated with poor

prognosis and can be used as diagnostic and prognostic biomarkers

for LUAD (78). BRCA2’s role in cancer well-established, as elevated

BRCA2 expression is associated with a significantly reduced number

of stromal cells and high infiltration of both beneficial and

detrimental immune cells in breast cancer (79). BRCA2 has also

been demonstrated to exhibit increased mRNA levels and poor

prognosis in lung cancer (80). These findings collectively provide

compelling evidence that this newly proposed prognostic risk model

has the potential to reflect LUAD prognosis by considering genomic

alterations and the immune landscape.

Genetic instability is a common characteristic of both aging and

cancer (81), encompassing changes in DNA damage, DNA damage

response and repair, mutations, replication stress, transposition,

chromosome aberrations, telomere shortening, micronuclei, and

DNA fragments (82). In our study, we found that the HAS group

exhibited more frequent gene mutations and higher TMB,

indication the presence of an unstable genome and immunogenic

potential in patients with HAS. Furthermore, the mutation

frequency of the Hippo, NOTCH, TP53, and DDR pathways in

the HAS group were also significantly increased. Hippo is an

important pathway regulating differentiation, stem cell renewal,

and oncogenic transformation (83). In cancer research, the

activated Hippo pathway is considered as a tumor suppressor

pathway due to its ability to impede cell proliferation and

facilitate apoptosis (84). Similarly, NOTCH (85) and TP53 (86)

pathway mutations have also been reported to associate with

unfavorable prognosis in lung cancer. DNA damage response
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plays a significant role in maintaining genomic integrity and

closely associated with lung cancer progression and treatment

(87, 88). These researches provide additional insights into our

observed outcomes that patients with HAS experience poorer

survival when compared to those with LAS patients.

Cellular senescence functions as a stress response characterized

by a halt in proliferation and heightened secretion of pro-

inflammatory cytokines (89). Senescent cells recruit immune cells,

facilitating their own immune clearance, thereby restoring tissue

homeostasis. In the context of cancer, various stressors such as

oncogenic signaling, replication stress, hypoxia, reactive oxygen

species, nutrient deprivation, and exposure to cytokines within the

tumor microenvironment can trigger senescence. This underscores

the significant link between tumor cell senescence and immune cell

infiltration. Through a bulk-transcriptome analysis, we observed

that senescence-associated genes exert a strong influence on the

immune microenvironment in LUAD. Specifically, the LAS group

showed an activated TME, this manifested as a noteworthy increase

in the quantities of CD8+ T cells, CD8+ Tcm, CD4+ Tem, CD4+

Tcm, plasma cells, mast cells and DC, alongside heightened

ImmuneScore, GEP score and type II IFN response, T cell co-

stimulation, and HLA scores, in addition to enriched immune

response pathways. These findings were further corroborated

though single-cell analysis, which revealed that CD8-CCR7 (T05),

CD8-CXCL13 (T06), CD8-GNLY (T08), FCGR3A NK cells (T09),

XCL1 NK cells (T10), plasma cell sets (B03, B04, B05), and mast

cells (M01) were more enriched in the LAS group (Figure 4). In

contrast, the HAS group displayed an immunosuppressive

microenvironment with lower immune function scores and a

higher tumor proliferation rate (Figure 4). Additionally, based on

the cellular communication results, we identified some signaling

pathways specific to the HAS group, such as SPP1 and TENASCIN

(Figure 4), which contribute to tumor immune escape and tumor

progression (50–52). These results suggest that the HAS group

might promote tumor cell invasion by evading immune

surveillance, enhancing proliferation and immune escape, leading

to poor prognosis in LUAD.

In addition to bulk-level senescence assessment, we also

compared senescence at the single-cell level and found significant

heterogeneity in cellular senescence. Interestingly, we found that the

age scores for tumor cells in the HAS group were significantly lower

than that in the LAS group (Figure 5C), suggesting that senescence

at the bulk-level is not the same as senescence at the cellular level.

Senescent tumor cells might augment the immune response against

tumors (90), which is entirely consistent with the highly senescent

tumor cells and activated immune microenvironment in the LAS

group. However, it’s worth noting that these senescent cells could

also reinforce the tumor’s resistance to immunotherapy through

potent immunosuppressive mechanisms (91, 92). Therefore, more

in-depth studies at the cellular level remain essential.

Herein, we also explore the relationship between senescence

and other modes of cell death. Patients in the HAS-group

demonstrated a propensity for Alkaliptosis and ROS cell death

mechanisms such as Oxeiptosis (93) and Cuproptosis. These

endogenous damages, coupled with certain exogenous factors,

induced a wide array of genetic injuries, including point
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mutations and deletions (94), ultimately leading to significantly

higher TMB in the HAS-group compared to the LAS-group. To

counteract DNA damage, the HAS-group employed a series of

intricate DNA repair and maintenance mechanisms associated with

cell proliferation and differentiation, ensuring the preservation of

proper chromosomal structure and stability (8, 94). Conversely, the

interactions among lysosome-dependent cell death, autophagy, and

apoptosis played a more significant role in the LAS-group.

Meanwhile, the LAS-group exhibited immunological functions in

response to cellular senescence, engaging in tissue repair through

immune cell recruitment and immune clearance of senescent cells.

More novel analyses were added to our study, although studies

related to senescence in LUAD have been reported (15–18, 20).

Firstly, although previous studies have also compared differences

between aging subgroups in terms of mutations, or TMB (15–18).

Patients with higher risk scores had noticeably increased TMB and

mutated more frequently for TP53 (15, 16, 18), which is consistent

with the results we found. Furthermore, our study was the first to

compare at the pathway level which showed significant differences

in patients with different ARRs. Second, existing researches related

to senescence in LUAD have found that the lower risk scores group

embodies an immune-activated microenvironment. Lin, et al., 2023

showed that the ASRS was positively correlated with most

immunomodulator-related mRNAs, including chemokines, and

immune inhibitors, and receptors (18). This study collected a

previously reported set of 13 immune-related gene sets (41) and

comprehensively compared the immunity of different subgroups.

We found that nine of the 13 immune function gene sets were

positively correlated with ARRS score, including APC to

stimulation, cytokine and cytokine receptor (CCR), Check-point,

cytolytic activity, inflammation-promoting, HLA, T cell co-

stimulation, T cell co-stimulation, and type II IFN response

(Figure 3). Thirdly, previous studies based on different datasets

and different methods have been performed to show the association

between immune infiltration and senescence. However, sometimes

inconsistent results were obtained by different software. Our study

evaluates the association between immune infiltration and

senescence for the first time at the single cell level, and using

scRNA-seq, this study compared cellular communication between

different senescence groups, revealing possible alterations in cellular

communication caused by senescence (Figure 4). Finally, we

assessed senescence at the cellular level for the first time and

found significant inter-cellular heterogeneity for senescence. In

particular, we found an opposite trend between the overall

senescence score and the tumor cell senescence score. This study

still had some limitations, the limited availability of single-cell

samples and immune cohort samples may introduce some bias in

our model validation. Although we validated the aging score model

using several external independent public datasets, prospective

clinical trials verification of our model is still necessary.

Nevertheless, we hope that this model can contribute to the

comprehension of the molecular mechanisms of cellular

senescence and TME in LUAD.

In conclusion, our study identified and validated a senescence-

related signature based on 10 senescence-related genes as an

independent prognostic significance for patients with LUAD,
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indicating that the senescence levels are heterogeneous in LUAD

immune microenvironment, and the HAS group might promote

tumor cell invasion by evading immune surveillance, enhancing

proliferation and immune escape, leading to poor prognosis in LUAD.
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