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Background: Pancreatic cancer remains an extremely malignant digestive tract

tumor, posing a significant global public health burden. Patients with pancreatic

cancer, once metastasis occurs, lose all hope of cure, and prognosis is extremely

poor. It is important to investigate liver metastasis of Pancreatic cancer in depth,

not just because it is the most common form of metastasis in pancreatic cancer,

but also because it is crucial for treatment planning and prognosis assessment.

This study aims to delve into the mechanisms of pancreatic cancer liver

metastasis, with the goal of providing crucial scientific groundwork for the

development of future treatment methods and drugs.

Methods: We explored the mechanisms of pancreatic cancer liver metastasis

using single-cell sequencing data (GSE155698 and GSE154778) and bulk data

(GSE71729, GSE19279, TCGA-PAAD). Initially, Seurat package was employed for

single-cell data processing to obtain expression matrices for primary pancreatic

cancer lesions and liver metastatic lesions. Subsequently, high-dimensional

weighted gene co-expression network analysis (hdWGCNA) was used to

identify genes associated with liver metastasis. Machine learning algorithms

and COX regression models were employed to further screen genes related to

patient prognosis. Informed by both biological understanding and the outcomes

of algorithms, we meticulously identified the ultimate set of liver metastasis-

related gene (LRG). In the study of LRG genes, various databases were utilized to

validate their association with pancreatic cancer liver metastasis. In order to

analyze the effects of these agents on tumor microenvironment, we conducted

an in-depth analysis, including changes in signaling pathways (GSVA), cell

differentiation (pseudo-temporal analysis), cell communication networks (cell

communication analysis), and downstream transcription factors (transcription

factor activity prediction). Additionally, drug sensitivity analysis and metabolic

analysis were performed to reveal the effects of LRG on gemcitabine resistance

and metabolic pathways. Finally, functional experiments were conducted by

silencing the expression of LRG in PANC-1 and Bx-PC-3 cells to validate its

influence to proliferation and invasiveness on PANC-1 and Bx-PC-3 cells.
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Results: Through a series of algorithmic filters, we identified PAK2 as a key gene

promoting pancreatic cancer liver metastasis. GSVA analysis elucidated the

activation of the TGF-beta signaling pathway by PAK2 to promote the

occurrence of liver metastasis. Pseudo-temporal analysis revealed a significant

correlation between PAK2 expression and the lower differentiation status of

pancreatic cancer cells. Cell communication analysis revealed that

overexpression of PAK2 promotes communication between cancer cells and

the tumor microenvironment. Transcription factor activity prediction displayed

the transcription factor network regulated by PAK2. Drug sensitivity analysis and

metabolic analysis revealed the impact of PAK2 on gemcitabine resistance and

metabolic pathways. CCK8 experiments showed that silencing PAK2 led to a

decrease in the proliferative capacity of pancreatic cancer cells and scratch

experiments demonstrated that low expression of PAK2 decreased invasion

capability in pancreatic cancer cells. Flow cytometry reveals that PAK2

significantly inhibited apoptosis in pancreatic cancer cell lines. Molecules

related to the TGF-beta pathway decreased with the inhibition of PAK2, and

there were corresponding significant changes in molecules associated with EMT.

Conclusion: PAK2 facilitated the angiogenic potential of cancer cells and

promotes the epithelial-mesenchymal transition process by activating the

TGF-beta signaling pathway. Simultaneously, it decreased the differentiation

level of cancer cells, consequently enhancing their malignancy. Additionally,

PAK2 fostered communication between cancer cells and the tumor

microenvironment, augments cancer cell chemoresistance, and modulates

energy metabolism pathways. In summary, PAK2 emerged as a pivotal gene

orchestrating pancreatic cancer liver metastasis. Intervening in the expression of

PAK2may offer a promising therapeutic strategy for preventing liver metastasis of

pancreatic cancer and improving its prognosis.
KEYWORDS
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1 Introduction

Pancreatic cancer, a gastrointestinal malignancy with

inconspicuous symptoms, presents a significant diagnostic

challenge and suboptimal treatment outcomes. The mechanisms

underlying its occurrence and metastasis remain largely unknown.

The lethality of pancreatic cancer is attributed to three primary

factors: a lack of early detection methods, early metastasis leading to

a loss of surgical opportunities, and a complex tumor immune

microenvironment (1). About 80% of pancreatic cancer patients

miss the opportunity for surgery upon diagnosis, leading to a 5-year

survival rate of merely 6-8%. Even with surgical intervention, the 5-

year survival rate experiences only a modest increase to 20% (2).

Therefore, research on pancreatic cancer, especially its

pathogenesis, early diagnostic markers, and novel therapeutic

strategies, holds significant clinical significance.
02
Pancreatic cancer lacks specific early symptoms, corresponding

tumor markers, and imaging features, making early detection and

diagnosis challenging. The elevated invasiveness of pancreatic

cancer cells contributes to frequent instances of local infiltration

and metastasis. Pancreatic cancer metastasis is a multifaceted

process that encompasses the interplay between tumor cells and

the microenvironment, coupled with the activation of diverse

signaling pathways. Despite numerous studies revealing the

mechanisms of pancreatic cancer over past decade, seemingly

beneficial for diagnosis and treatment, it is acknowledged that

pancreatic cancer exhibits significant heterogeneity among

different tumors (3). The flourishing development of sequencing

technologies, from early gene chips to current high-throughput

sequencing, enables in-depth transcriptomic studies of pancreatic

cancer. Faced with the genetic heterogeneity of pancreatic cancer,

researchers such as Moffit (4), Collisson (5), and Bailey (6) have
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proposed distinct molecular subtypes, providing a basis for

understanding and treating pancreatic cancer. The advancement

of single-cell sequencing technology allows for cell-level analysis,

identifying the relationships between different cell subgroups and

the microenvironment. Moreover, investigating the interplay

between cells and the microenvironment offers deeper insights

into the biological behavior of tumors and the mechanisms of

treatment resistance. These research findings not only enhance our

understanding of the complexity of pancreatic cancer but also

provide potential avenues for developing more effective

personalized treatment strategies.

This study has various strengths, leveraging the respective

advantages of single-cell transcriptomics and traditional bulk

sequencing technologies, enabling us to achieve a more

comprehensive breakthrough in cancer research. Firstly, by

harnessing the precision of single-cell transcriptomics in

conjunction with the large-scale processing capability of

traditional bulk sequencing technology, we successfully identified

a series of genes stably expressed in cancer cells. These genes not

only exhibit excellent performance in diagnosis but also

demonstrate significant efficacy in predicting patient prognosis.

Diverging from studies solely focused on identifying diagnostic or

prognostic markers, we conducted in-depth analyses of the

mechanistic actions of key genes, covering nearly all mechanisms

that promote tumor progression. This approach added systematic

depth to our research, providing a more thorough understanding of

the multifaceted factors influencing cancer development. Lastly, our

research extended beyond theoretical analysis, incorporating

experimental validation to robustly support our analytical

findings. This experimental validation not only enhanced the

reliability of our study but also established a solid foundation for

the future application of these discoveries in clinical practice.
2 Methods

2.1 Pancreatic cancer liver metastasis
single-cell sequencing data and bulk
data download

The single-cell sequencing data for human pancreatic cancer

tissues utilized in this study were sourced from the Gene Expression

Omnibus (GEO) database under accession numbers GSE155698

and GSE154778. The GSE155698 dataset comprised sequencing

information from 20 tissues, encompassing 17 pancreatic cancer

tissues and 3 normal pancreatic tissues. The original FASTQ files of

the GSE155698 dataset were pre-processed by the submitter using

Cellranger (version 3.0.0) with default settings, and the initial

expected cell count was set at 10,000. In all instances, the

alignment was conducted using the hg19 reference provided with

the cellranger software. The GSE154778 dataset was sequenced at

an approximate depth of 50,000 reads per cell. The authors

constructed an expression matrix using CellRanger (10x

Genomics) and filtered out low-quality barcodes (cells).

Additionally, cells with small library sizes (<1000 UMI) or

expressing fewer genes were excluded.
Frontiers in Immunology 03
Bulk sequencing data were retrieved from the GEO and The

Cancer Genome Atlas (TCGA) databases using the search terms

“pancreatic cancer” and “liver metastasis”. Two datasets, namely

GSE71729 (comprising 145 primary lesions and 25 liver metastatic

lesions) and GSE19279 (consisting of 4 primary lesions and 5 liver

metastatic lesions), were identified for further analysis.

Furthermore, TCGA data were downloaded using the search

terms “pancreas”, “TCGA”, “TCGA-PAAD”, “transcriptome

profiling”, and “Gene Expression Quantification”, resulting in 183

sequenced pancreatic cancer tissues. Subsequently, samples without

survival information and normal samples were excluded, resulting

in a final dataset of 172 samples containing prognostic information.

The sequencing results of gemcitabine-resistant cell lines were

derived from the GSE140077 dataset. The original dataset

comprised 12 sequencing data, with 3 groups of BxPC-3 resistant

strains and 3 groups of CFPAC-1 resistant strains considered as the

experimental group. Meanwhile, 3 groups of wild-type BxPC-3 and

3 groups of wild-type CFPAC-1 were designated as the

control group.
2.2 Methods for processing and
visualization of single-cell sequencing data

The preliminary processing of the single-cell sequencing data

was performed using the Seurat package. To prevent sequencing

errors from affecting subsequent analyses, we implemented a two-

step filtering process to remove low-quality cells and abnormal data

such as non-single cells. The CreateSeuratObject function was

employed to read and preliminarily filter all data. Cells and genes

were retained based on specific criteria: a gene had to be expressed

in at least 3 cells, and a cell had to express at least 250 genes. Any

cells or genes not meeting these criteria were removed. After

reading the data, we calculated the proportions of mitochondrial

genes and rRNA genes in the dataset. The final filtering criteria were

as follows: (1) Exclude cells with gene expression counts less than

500 or greater than 6000; (2) Ensure each cell’s UMI count was

greater than 1000, and excluded cells with the top 3% of UMI count

values; (3) The proportion of mitochondrial gene expression in each

cell relative to the total genes should be less than 35%, and cells with

the top 2% of mitochondrial gene expression were excluded; (4)

Calculate the proportion of rRNA expression relative to the total

genes and exclude the bottom 1% and top 1% of cells based on this

proportion; (5) RNA count should be greater than 1000, and cells

with the top 3% of RNA count values were excluded.

Subsequently, the Seurat dataset underwent further processing

using the harmony package. First, the process included applying the

NormalizeData function to normalize the single-cell matrix. Next,

the FindVariableFeatures function was used for feature selection,

selecting 2000 variable features using the “vst” method. Following

this, the single-cell matrix underwent data scaling and principal

component analysis (PCA) using the ScaleData and RunPCA

functions, setting the npcs parameter to 30. Then, the

RunHarmony function was applied, running the Harmony

algorithm with “orig.ident” as the adjustment variable and

generating a convergence plot. Finally, based on the results of
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Harmony, the RunUMAP function was used for Uniform Manifold

Approximation and Projection (UMAP) dimensionality reduction,

setting the top 30 principal components, and the FindNeighbors

and FindClusters functions were employed for neighborhood

search and cluster analysis to elucidate the data’s structure.

Ultimately, cluster labels for the samples were obtained using the

identity function.
2.3 Identifying liver metastasis-associated
genes in pancreatic cancer single-
cell sequencing

We employed the hdWGCNA package to identify pivotal

module genes involved in pancreatic cancer liver metastasis.

Firstly, we employed the SetupForWGCNA function to construct

an expression matrix from the Seurat object. Subsequently, using

the MetacellsByGroups function, we built averaged “metacells”

based on cell types and cell sources (with 25 nearest neighbor

cells and a maximum shared cell count of 10 between two

metacells). Following this, we normalized and standardized the

metacell matrix through various means. We applied dimensionality

reduction to the metacell matrix using both PCA and the harmony

algorithm. The UMAP algorithm was then used for projection.

Next, we used the SetDatExpr function to set the expression matrix

and the TestSoftPowers function to calculate the topological

indicators of the network, assisting in the selection of the optimal

soft threshold. Ultimately, the ConstructNetwork function was

utilized to establish a co-expression network, and the

ModuleEigengenes function was used to compute the

“eigenvectors” of the modules to obtain module feature genes.

Following the acquisition of module genes, we conducted

differential analysis using the FindMarkers function to pinpoint

genes significantly altered during pancreatic cancer liver metastasis,

applying a significance threshold of P<0.05. The overlap of genes

from both analyses yielded the key genes involved in the pancreatic

cancer liver metastasis process.
2.4 Further screening of liver metastasis-
associated genes in bulk sequencing data

A univariate COX regression model was applied to delve deeper

into genes associated with pancreatic cancer liver metastasis and to

further screen molecular factors closely linked to patient prognosis.

Various machine learning algorithms were employed for the initial

screening of liver metastasis-associated genes. Subsequently,

another round of screening was performed using multiple

machine learning algorithms for prognosis-related liver

metastasis-associated genes.

Initially, the Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm, utilizing the glmnet package, was employed.

LASSO fits a generalized linear model, incorporating variable

selection and complexity adjustment to enhance the model’s

generalization ability. Subsequently, the Support Vector Machine
Frontiers in Immunology
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Recursive Feature Elimination (SVM-RFE) algorithm, based on the

e1071 package, was utilized. SVM-RFE, a sequence backward

selection algorithm relying on support vector machines (SVM),

optimized gene selection by extracting features through the

maximum margin principle for two-class data. Finally, the

Random Forest (RF) algorithm, employing the randomForest

package, was applied. Random Forest calculated the average

contribution of each feature in every decision tree within the

random forest, effectively ranking features based on their

contributions. The final step involved taking the intersection of

genes selected by LASSO regression, SVM-RFE, and Random

Forest. The top 15 genes from each method were considered.

The expression trends and prognostic implications of the

intersected genes were then examined for final selection. This

multi-tiered algorithmic selection and ranking approach

facilitated a comprehensive and accurate exploration of genes

closely associated with pancreatic cancer liver metastasis.

Furthermore, gene validation was conducted in various

databases. In the GSE71729 and GSE19279 datasets, we observed

the expression levels of genes in primary lesions and metastatic

groups. The diagnostic efficiency of the genes for pancreatic cancer

liver metastasis was identified through Receiver Operating

Characteristic (ROC) analysis. Additionally, the roles of genes in

pancreatic cancer occurrence were further analyzed in the above

datasets, and protein-level validation of the genes encoded by these

genes in pancreatic cancer/normal pancreatic tissues was performed

in the human protein atlas.
2.5 Unveiling the impact of LRG on
pathway activation in pancreatic
cancer cells

Gene Set Variation Analysis (GSVA) was employed to identify

pathway changes in pancreatic cancer cells induced by LRG. GSVA

calculated the cumulative score of genes within a gene set,

transforming samples into a metric of gene set activity, allowing

us to assess differences in gene set activity across samples. Reference

gene sets were obtained from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database. The impact of LRG on signaling

pathways in pancreatic cancer cells was evaluated separately in

single-cell and bulk data. In single-cell data, our initial assessment

focused on changes in signaling pathways in cancer cells from both

primary pancreatic cancer lesions and liver metastatic lesions.

Additionally, we combined all datasets, extracted cancer cells, and

based on LRG expression, divided all cancer cells into high LRG

expression cells and low LRG expression cells. Finally, we analyzed

the differences in signaling pathways between these two cell types.

In transcriptomic data, all samples were categorized into high

LRG expression and low LRG expression groups based on the

median relative expression of LRG. GSVA was subsequently

employed to analyze pathway differences between these two

groups. The intersection of pathway results from these three

analyses was considered the key pathways through which LRG

primarily influences pancreatic cancer liver metastasis.
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2.6 Assessing the impact of LRG on the
differentiation level of pancreatic
cancer cells

To investigate the impact of LRG on the differentiation level of

pancreatic cancer cells, we employed a combination of various

algorithms and datasets. Firstly, pseudotime analysis was conducted

on single-cell data using the monocle2 package. After estimating

size factors and dispersions, the detectGenes function was used to

filter out low-quality cells by setting an expression threshold (0.1).

Subsequently, we selected clusters of the top 200 differentially

expressed genes and applied dimensionality reduction using the

DDRTree method in the reduceDimension function. We then

calculated developmental time, inferred trajectories, and ranked

cells based on the pseudotime. The results were visualized using a

tree plot. During trajectory inference, the beam statistical method

was applied to the pseudotime-sorted cell data and specified nodes.

This analysis calculated the contribution of genes during cell

development and differentiation, ranking and outputting all key

genes based on their contribution values. These genes played crucial

roles in the process of cell development and differentiation. By

observing the contribution values and P-values of LRG, we could

determine if LRG played a role in the differentiation of pancreatic

cancer cells. Additionally, pseudotime analysis was also performed

using the monocle3 package. Single-cell data were stored in a

SingleCellExperiment object, and a Monocle3 object was created.

The reduceDimension function in Monocle3 was then used for

dimensionality reduction with UMAP-learned t-SNE, and the

orderCells function was applied to rank cells based on

pseudotime. Lastly, the Monocle3 method was used to estimate

and calculate cell development time. The graph_test function

executed differential network analysis to detect differences in gene

networks in single-cell data. The Moran index and P-values were

crucial parameters to assess whether genes influenced the

differentiation level. Finally, validation was performed in TCGA

data. We extracted the Grade grouping from TCGA clinical data,

observed gene expression in each group, conducted statistical tests

using a logistic regression model, and visualized the results with a

box plot.
2.7 Exploring changes in the
communication network of pancreatic
cancer cells with high LRG expression in
the tumor microenvironment

We utilized the CellChat package to elucidate the influence of

cells with high LRG expression on cell signaling communication in

the tumor microenvironment compared to cells with low LRG

expression. To achieve this, we utilized the Cell Communication

Analysis method for inferring and analyzing cell-cell interaction

networks. To start, within a cellular group, we identified ligands or

receptors that exhibited overexpression and then integrated gene

expression data into a protein-protein interaction (PPI) network.

Once the overexpressed ligands or receptors were pinpointed, we

could discern the interactions among them. Following this, we
Frontiers in Immunology 05
calculated the communication probability associated with ligand-

receptor interactions specific to each signaling pathway, thereby

deducing the pathway-level communication probability. By

quantifying either the number of connections or the

comprehensive communication probability, we computed the

consolidated communication network among cells. In the end, we

established a cellular communication network that integrated

details about cell ligand-receptor interactions and communication

at the pathway level. This approach provided a more profound

understanding of how pancreatic cancer cells with elevated LRG

expression regulated communication networks within the tumor

microenvironment. The establishment of this cell communication

network helped reveal dynamic changes and interactions in signal

transmission between cells with high LRG expression and

other cells.
2.8 Identification of downstream
transcription factors regulated by LRG

The prediction of transcription factor (TF) activity was based on

the “DoRothEA” package. DoRothEA is a gene regulatory network

that encompasses signed interactions between TF and their target

genes. After categorizing cancer cells, we accessed human

regulatory element information from the DoRothEA database,

filtering out regulatory elements with high confidence levels (A,

B, C grades). Afterward, we applied the Viper (Virtual Inference of

Protein-activity by Enriched Regulon analysis) algorithm to

compute the activity scores of regulatory elements in cells. These

scores reflected the activation levels of gene regulatory networks in

various cell types. Next, we switched to the data of DoRothEA

regulatory elements and performed cell standardization, PCA

dimensionality reduction, neighbor search, cluster analysis, and

UMAP dimensionality reduction. Using the FindAllMarkers

function, we identified genes with significantly differential

expression in different cell clusters. Lastly, we aggregated the

Viper scores, computed the mean and standard deviation of each

regulatory element across different cell types, and created a heatmap

illustrating the activity levels of regulatory elements in various cell

types using the pheatmap package.
2.9 Correlation analysis of LRG and
gemcitabine resistance

We categorized TCGA patient samples into low and high LRG

expression groups based on the median LRG expression.

Subsequently, we conducted an analysis of gemcitabine drug

sensitivity. The drug sensitivity analysis was carried out using the

R package “pRRophetic,” developed by Paul Geeleher and

colleagues in 2014. This package utilized the GDSC cell line

expression profi le and TCGA gene expression profi le,

constructing a ridge regression model to predict the half-maximal

inhibitory concentration (IC50), which corresponded to the drug

concentration at which the ratio of apoptotic cells to total cells is

50%. The results of the drug sensitivity analysis were visualized
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through box plots, illustrating the distribution of IC50 values

among different samples. Additionally, correlation analysis was

performed to reveal the relationship between LRG expression

levels and IC50 values. Additionally, we conducted an analysis of

LRG-mediated gemcitabine resistance in single-cell data. The

gemcitabine resistance gene set was obtained from the

GSE140077 dataset. We used differential analysis and Weighted

Gene Co-expression Network Analysis (WGCNA) to identify

gemcitabine resistance genes in pancreatic cancer. To identify the

enrichment of gemcitabine resistance genes in the cells of the

pancreatic cancer microenvironment, we performed enrichment

analysis on the single-cell sequencing data. Gene set enrichment

analysis in single-cell sequencing data was conducted using the

“irGSEA” package, which integrated four algorithms: “AUCell”,

“UCell”, “singscore”, and “ssgsea”. AUCell calculated the area under

the curve (AUC) to assess whether a subset of the input gene set was

enriched in the expression genes of each cell, and its ranking

method was based on AUC scores. UCell scoring was based on

gene ranking, demonstrating robustness to dataset size and

heterogeneity. Singscore was a rank-based measurement of the

degree of gene set enrichment in a single sample. Single-Sample

Gene Set Enrichment Analysis (ssGSEA), a single-sample GSEA,

computed the enrichment score of key gene sets in each cell.

Following this, the Wilcoxon test was applied to identify

differentially enriched gene sets in the enrichment score matrix,

with a filter criterion of a corrected P-value less than 0.05. Then, the

rank aggregation algorithm in the RobustRankAggreg package was

used to comprehensively evaluate the results of differential

analysis, filtering out significantly enriched gene sets in most

gene set enrichment analysis methods (the filter criterion for

comprehensive evaluation was P-value less than 0.05), thus

assessing in which cell subgroups the gene sets were enriched.

Finally, we extracted the enrichment scores of the gemcitabine

resistance gene set and correlated them with LRG expression levels.

The statistical significance of the impact of LRG expression levels on

the enrichment scores of gemcitabine resistance genes was

evaluated using the Wilcoxon Signed Rank Test, with significance

set at P<0.05.
2.10 Exploring the influence of LRG on the
metabolic function of pancreatic
cancer cells

We conducted metabolic analysis on pancreatic cancer single-

cell sequencing tissues using the scMetabolism package. The

metabolic module of this package combined data from public

metabolite databases and literature, annotating and quantifying

metabolites in single-cell mass spectrometry analysis data to

determine the content and types of metabolites in each cell. Later,

we aligned the outcomes of metabolite annotation with metabolic

pathway databases like KEGG. Employing enrichment analysis

techniques, we evaluated the enrichment of metabolic pathways

in individual or multiple cells, delving into the biological functions

of these pathways and the structure of metabolic networks. In this
Frontiers in Immunology 06
investigation, we conducted distinct analyses to examine the

metabolic variances between primary lesions and liver metastases

of pancreatic cancer, as well as the metabolic distinctions between

cells exhibiting high and low LRG expression. The intersection of

these analyses represented the metabolic changes mediated by LRG

in the process of liver metastasis.
2.11 Cell culture

We utilized the human pancreatic cancer cell lines PANC-1 and

Bx-PC-3 (Pricella) for our investigation. Cell cultures were

maintained in 1640 medium (Pricella) supplemented with 10%

fetal bovine serum (Biological Industries, BI) and 1% penicillin-

streptomycin (Hyclone). The cells were incubated in a humidified

chamber at 37°C with 5% CO2.
2.12 siRNA transfection

siRNAs were transfected into both cell lines using riboFECT™

CP Reagent (RIBOBIO). siRNAs were obtained from RIBOBIO.

After pre-experiments, it was determined that a concentration of

100nM and the 24-hour incubation for siRNA transfection yielded

optimal results.
2.13 RNA extraction and qPCR detection

We utilized the RNA easy Isolation Reagent (Vazyme) to extract

total RNA from PANC-1 and Bx-PC-3 cells, and employed the

HiScript III RT SuperMix for qPCR (+gDNA wiper) (Vazyme) for

reverse transcription on a PCRmachine to obtain cDNA. The reverse

transcription process was as follows: 2ul of RNA was added at 42°C

for a reaction time of 2 minutes, along with 4ul of 4x gDNA wiper

mix and 10ul of RNase-free ddH2O to remove genomic DNA.

Subsequently, 4ul of 5x Hiscript III qRT Supermix was added and

incubated at 37°C for 15 minutes, then at 85°C for 5 seconds. Finally,

the ChamQ Universal SYBR qPCR Master Mix reagent (Vazyme)

was used for fluorescent quantitative PCR. The experiment used a

10ul system: 0.4ul of Forward and Reverse primers each; 3.2ul of

ddH2O, 1ul of cDNA, and 5ul of SYBR qPCR Master Mix. The

specific reaction steps were as follows: Stage 1: Pre-denaturation: 95°C

for 30 seconds. Stage 2: Cycle reaction: 95°C for 10 seconds to 60°C

for 30 seconds, for 40 cycles. Stage 3: Melting curve: 95°C for 15

seconds, 60°C for 60 seconds, 95°C for 15 seconds. PAK2 primers,

TGFb-related gene primers, and EMT-related gene primers were

designed by us using Oligo7, and along with the internal reference

GAPDH primers, were provided by Shanghai Shenggong Company.

The PAK2 primers were as follows: F: 5’ CTCCTCCCGTTATTGCC

3’; R: 5’ TGCACGTTTCTGTTACCAC 3’. For additional primer

information, refer to Table 1. The results of the above qPCR were

analyzed using GAPDH as an internal reference, and the fold changes

were calculated using the DDCT method (7).
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2.14 Cell phenotypic experiments

Cell proliferation levels were assessed by adding CCK8 and

measuring absorbance at 450nm. CCK8 kit reagents were obtained

from GLPBIO company. Control and siRNA-transfected groups

were seeded at 3000 cells/well in a 96-well plate, with 100 ml
complete medium and 10 ml CCK8 kit added per well. Detection

time points were set at 24h, 48h, and 72h using three 96-well plates.

After adding CCK8 kit, cells were uniformly incubated for 2 hours,

and OD values were measured at 450nm using elx800 Epoch

microplate reader.

To assess cell migration ability, scratch assays were conducted.

After overnight confluence in a 6-well plate, both cell types were

transfected with siRNA. The medium was then replaced with

serum-free medium, and scratches were made. Cell migration was

recorded at 0h and 24h. Image J software was employed to calculate

the migration area and migration rate.
2.15 Flow cytometric analysis of
cell apoptosis

Confirming the logarithmic growth phase of pancreatic cancer

cell lines, cells were then seeded into a 6-well plate with 60,000 cells

per well. Based on whether PAK2 in the cell lines was silenced, they

were divided into a control group (wild-type) and a knockdown

group (PAK2 silenced). After 48 hours, cells from both groups were
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aspirated into centrifuge tubes, washed twice with cold PBS by

centrifugation at 1200 rpm in a low-speed centrifuge, and then

resuspended in 1× Binding Buffer at a concentration of 1.0×106/ml.

A 100 ml solution was aspirated into the centrifuge tube and 5 ml of
PE Annexin V and 5 ml of 7-AAD were added. Cells were vortexed

and incubated for 15 minutes at room temperature in the dark.

After adding 400 ml of 1× Binding Buffer to each tube, the apoptotic

rate of cells was analyzed using a flow cytometer.
2.16 Statistical tests

All data analyses in this study were conducted using R (version

4.1.3). Statistical tests were rigorously applied according to their

scope. In differential analysis, the t-test method was employed, and

the t-statistic was adjusted using empirical Bayesian methods.

Correlation analysis in hdWGCNA utilized the Spearman

method. Differential comparisons among multiple groups were

based on the Wilcoxon Signed Rank Test. The analysis of Real-

time Fluorescence Quantitative PCR results for cell lines was

conducted using one-way ANOVA. For the results analysis of

CCK-8 cell proliferation experiments, two-way ANOVA was

applied. The comparison of migration areas after cell scratch

experiments was based on Welch’s test. The specific application

of statistical testing methods has been described in the

corresponding methodology sections. In this study, all tests were

considered statistically significant when P-value < 0.05. All the

online websites used in this study are visible in Table 2.
3 Results

3.1 Single-cell sequencing revealed the
cellular composition of the pancreatic
cancer microenvironment

The flowchart of this study was presented in Supplementary

Figure S1. After the integration and processing of single-cell
TABLE 1 All the online websites used in this study.

GAPDH:

F: 5'
CAGGAGGCATTGCTGATGAT 3'

R: 5' GAAGGCTGGGGCTCATTT 3'

TGFB1

F: 5'
TACCTGAACCCGTGTTGCTCT 3'

R: 5'
CTGCCGCACAACTCCGGTGA 3'

SMAD7

F: 5'
CTCCATCAAGGCTTTCGACT 3'

R: 5'
GCTGCATAAACTCGTGGTCA 3'

SNAI1

F: 5'
CCTCACCGGCTCCTTCGTC 3'

R: 5'
ACCCAGGCTGAGGTATTCCTT 3'

CDH1

F: 5' GGTATCTTCCCCGCCCTG 3' R: 5'
CTTCATAGTCAAACACGAGCAG 3'

VIM

F: 5'
AAATGGCTCGTCACCTTCGT 3'

R: 5'
AGGGCCATCTTAACATTGAGCA 3'

CDH2

F: 5'
GAGTTTACTGCCATGACGTT 3'

R: 5'
GGTTGATCCTTATCGGTCAC 3'
TABLE 2 Primer sequences.

Database website

GEO https://www.ncbi.nlm.nih.gov/geo/

TCGA https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga

CellMarker http://xteam.xbio.top/CellMarker/

BMC Genome Biology https://genomebiology.biomedcentral.com/

The human protein atlas https://www.proteinatlas.org/

Cancer Therapeutics
Response Portal

http://portals.broadinstitute.org/ctrp/

Genomics of Drug
Sensitivity in Cancer

https://www.cancerrxgene.org/

Ensemble http://asia.ensembl.org/index.html
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sequencing data from pancreatic cancer, we obtained the expression

matrix for the GSE154778 pancreatic cancer liver metastasis

dataset. The original matrix included 15,707 cells and 23,754

genes. After secondary filtering, we selected 13,922 cells and

23,754 genes for further analysis. Through UMAP dimensional

reduction, we categorized all cells into 15 subgroups (Cluster 0-14).

However, cell cycle analysis using Seurat’s built-in dataset suggested
Frontiers in Immunology 08
a significant impact of the cell cycle on the dimensional reduction

results. Hence, we accounted for the cell cycle. After this correction,

the distribution of cells in the primary and metastatic lesions

exhibited a more uniform pattern (Figure 1A). The Seurat matrix

contained 18 cell subgroups (Cluster 0-17) (Figure 1B). Through the

identification by machine learning algorithms and manual

annotation, we determined that these 18 cell subgroups originated
B C
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FIGURE 1

Single-cell composition and expression characteristics of the pancreatic cancer liver metastasis microenvironment. (A) Distribution of cells in the
pancreatic cancer liver metastasis dataset after UMAP dimensionality reduction and cell cycle correction. PT: Pancreatic cancer primary lesion tissue,
LM: Pancreatic cancer liver metastasis tissue. (B) Seurat matrix showing the 18 cell subtypes (Cluster 0-17) in liver metastasis tissue. (C) Classification
of 18 cell subtypes into 5 cell types through a combination of machine learning algorithms and manual annotation: Epithelial cells (Cluster 0, 1, 3, 6,
7, 10, 11, 12, 14, 15, 16), Macrophages (Cluster 2), Fibroblasts (Cluster 4, 5, 13, 17), T cells (Cluster 8), Endothelial cells (Cluster 9). (D) Classification of
the pancreatic cancer liver metastasis microenvironment into three main components: stroma (fibroblasts, endothelial cells), epithelium (epithelial
cells), and immune (T cells, macrophages) based on cell types. (E) Gene expression levels of individual cells, with darker colors indicating higher
gene expression. (F) Copykat algorithm inference results for malignant cells, with red cell subtypes defined as malignant cells. (G-L) Proportions of
various cell subtypes and cell types in different groups. (G) Proportions of 18 cell subtypes in 15 samples. (H) Proportions of 18 cell subtypes in
pancreatic cancer primary lesion and liver metastasis. (I) Proportions of 5 annotated cell types in pancreatic cancer primary lesion and liver
metastasis. (J) Proportions of the three main TME components in pancreatic cancer primary lesion and liver metastasis. (K) Proportions of the three
main TME components in 15 samples. (L) Proportions of cells identified as malignant by the copykat algorithm in 15 samples.
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from five cell types: epithelial cells (Cluster 0, 1, 3, 6, 7, 10, 11, 12, 14,

15, 16), macrophages (Cluster 2), fibroblasts (Cluster 4, 5, 13, 17), T

cells (Cluster 8), and vascular endothelial cells (Cluster 9)

(Figure 1C). Based on the attribution to cell types, we further

divided the pancreatic cancer tumor microenvironment into stroma

(fibroblasts, vascular endothelial cells), epithelium (epithelial cells),

and immune (T cells, macrophages) as the three main components

(Figure 1D). All cells showed relatively high gene expression, with

epithelial cells being the most significant (Figure 1E). Finally, the

Copy Number Karyotyping of Aneuploid Tumors (CopyKAT)

algorithm defined epithelial cells as non-diploid cells, namely

malignant cells. Therefore, all malignant cells in pancreatic cancer

tissue originated from epithelial cells (Figure 1F). Figures 1G-L

showed the proportions of various cell subgroups and cell types in

different groups.
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3.2 hdWGCNA identified key modules in
the pancreatic cancer liver
metastasis process

Using the TestSoftPowers function in the hdWGCNA package,

we tested different soft power values to find a suitable value that

gives the constructed co-expression network a scale-free network

structure. Ultimately, 9 was selected as the optimal soft threshold,

making the network’s topology most consistent with the actual

biological relationships (Figure 2A). Subsequently, we explored the

relationships between gene modules in the co-expression network

by measuring gene expression similarity, calculating the topological

overlap matrix, and performing hierarchical clustering analysis. The

hierarchical structure of the co-expression network was visualized

using a dendrogram (Figure 2B). Next, we obtained genes with
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FIGURE 2

Identification of key modules in pancreatic cancer liver metastasis based on hdWGCNA. (A) Soft-threshold selection process, 9 is the optimal soft-
threshold for constructing a co-expression network with a scale-free network structure. (B) Dendrogram visualizing the hierarchical structure of the
co-expression network, where each module color represents a distinct module. (C) Fourteen modules highly correlated with pancreatic cancer liver
metastasis and their central genes. (D) Enrichment of module genes at the single-cell level, with darker colors indicating high enrichment of module
genes in specific cell subtypes. (E) Inter-module correlation analysis, showing the strength of correlation between each module and all other
modules. Purple indicates positive correlation, green indicates negative correlation. Darker colors represent stronger correlation, while white
indicates no significant association between two modules. (F) Heatmap illustrating the correlation between modules and pancreatic cancer liver
metastasis. Colors represent the strength of correlation, with yellow indicating positive correlation and purple indicating negative correlation. The
intensity of the color reflects the strength of the correlation. represents P<0.1, * represents P<0.05, ** represents P<0.01, *** represents P<0.001.
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representative expression patterns in each module (module

eigengenes) and calculated the correlation of each gene with the

module eigenvector (module connectivity, kME). We visualized the

relationships between genes within modules using a connectivity

plot (Figure 2C). Next, we pinpointed the top 25 central genes,

namely, genes with the highest connectivity, and illustrated the

central gene signature scores for each module, based on their

normalized expression (Figure 2D). Furthermore, correlation

analysis demonstrated the strength of correlations between each

module and all other modules (Figure 2E). Finally, a correlation

heatmap displayed the strength of the correlation between each

module and pancreatic cancer liver metastasis. We selected modules

13 (R=0.68, P<0.05), 6 (R=-0.43, P<0.05), and 14 (R=0.3, P<0.05) as

meeting the criteria of module correlation coefficient > 0.3 and P-

value < 0.05 (Figure 2F). All modules comprised a total of 294 genes,

with module 13 having 175 genes, module 6 having 57 genes, and

module 14 having 62 genes. Differential analysis revealed 1,780

genes with significant differential expression between epithelial cells

in pancreatic cancer metastases and primary lesions, meeting the

criterion of P < 0.05. The intersection of 139 genes between the two

sets was recognized as the final set of pancreatic cancer LRG

identified from single-cell sequencing data.
3.3 COX regression model combined with
machine learning algorithms identified
PAK2 as a pancreatic cancer liver
metastasis-related gene

To mitigate the risk of false positives, we employed three

machine learning methods to further refine the selection of

pancreatic cancer LRG identified through single-cell analysis.

Considering the significant impact of liver metastasis on the

prognosis of pancreatic cancer patients, we initiated univariate

COX regression analysis on the gene set within the TCGA cohort.

The outcomes revealed that out of the 139 genes, 42 were linked to

the prognosis of pancreatic cancer patients, comprising 30 risk

factors and 12 protective factors (Figure 3A). Next, we evaluated the

diagnostic performance of the selected 42 genes using a univariate

logistic regression model in the GSE71729 cohort. Thirty-one genes

showed good discriminative ability between primary lesions and

liver metastases in pancreatic cancer (Table 3). Ultimately, we

performed feature selection on the 31 genes using three machine

learning algorithms. SVM-RFE, employing ten-fold cross-

validation, identified the top 15 genes based on the average

ranking across 10 folds (Figures 3B, C). In LASSO regression, we

determined lambda.min and identified 13 genes screened by the

LASSO model (Figures 3D, E). Following random forest analysis

(8), we extracted the top 15 genes based on gene importance

ranking (Figures 3F, G). Eight genes were common in the results

of the three machine learning methods: COL1A2, PRSS22, PAK2,

SURF4, IRF1, PABPC4, AHI1, ANXA4 (Figure 3H). Among these

genes, six genes had contradictory prognosis and expression

patterns, so they were excluded. IRF1 performed poorly in the
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TCGA cohort, while PAK2 consistently showed excellent

performance in all analyses. Hence, PAK2 was chosen as the

pivotal gene in the progression of pancreatic cancer liver

metastasis for subsequent investigations.
3.4 Various lines of evidence consistently
underlined the substantial role of PAK2 in
the progression of pancreatic cancer
liver metastasis

We confirmed the significance of PAK2 across multiple datasets

and databases, investigating its implications in the initiation and

advancement of pancreatic cancer. In the TCGA cohort, patients

with hematogenous metastasis (M1 stage) exhibited significantly

higher expression of the PAK2 gene compared to patients without

hematogenous metastasis (M0 stage) (Figure 4A). Moreover,

examination of the GSE71729 dataset indicated a notable

elevation in PAK2 gene expression levels among patients with

pancreatic cancer and liver metastasis, as opposed to those

without liver metastasis (Figure 4B). ROC analysis indicated good

discriminative ability of PAK2 for pancreatic cancer liver metastasis

in the GSE19279 cohort (AUC=0.73, Figure 4C) and GSE71729

cohort (AUC=0.7, Figure 4D). Additionally, we assessed the

oncogenic role of PAK2. In the GSE15471 (Figure 4E), GSE62165

(Figure 4F), GSE62452 (Figure 4G), and GSE71729 (Figure 4H)

cohorts, the Wilcoxon test showed statistically significant

differences in PAK2 expression between pancreatic cancer and

normal individuals, with elevated expression of PAK2 in

pancreatic cancer patients. Evidence at the protein level,

indicating PAK2’s role in mediating pancreatic cancer, was

provided by the HPA database (Figures 4I, J). Finally, in single-

cell sequencing of pancreatic cancer cells, a comparison of PAK2

expression revealed a significantly higher level of PAK2 in

pancreatic cancer cells from liver metastatic tissues compared to

primary pancreatic cancer tissues (Figures 4K, L).
3.5 GSVA analysis reveals PAK2 promoted
liver metastasis from the primary site
through the TGF-beta signaling pathway

We conducted single-cell GSVA on pancreatic cancer cells from

the primary site and liver metastatic site in the GSE154778 dataset.

The results demonstrated enhanced activation of multiple signaling

pathways in cancer cells from the liver metastatic site (Figure 5A).

Furthermore, to obtain a sufficient number of pancreatic cancer

cells, we integrated two datasets, GSE155698 and GSE154778,

extracted cancer cells, and divided them into low and high PAK2

expression groups. Following GSVA analysis on both cell types, we

identified abnormal activation of numerous signaling pathways in

PAK2-high expressing cells (Figure 5B). Additionally, GSVA

analysis was performed on bulk sequencing data. We categorized

pancreatic cancer tissues from the TCGA cohort into low and high
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PAK2 expression groups according to the median PAK2 expression.

Subsequently, we performed GSVA analysis on both groups

(Figure 5C). GSVA analysis was also performed on the primary

and metastatic groups in the GSE71729 cohort (Figure 5D). Finally,

the TGF-Beta signaling pathway was consistently upregulated in all

four GSVA analyses, indicating it as the key pathway primarily

regulated by PAK2 in mediating pancreatic cancer liver metastasis

(Figure 5E). Further correlation analysis revealed significant
Frontiers in Immunology 11
associations between various genes in the TGF-Beta signaling

pathway and PAK2 (Figure 5F). Therefore, we identify the TGF-

Beta signaling pathway as the key signaling pathway regulated by

PAK2 in mediating pancreatic cancer liver metastasis. In addition to

signaling pathways, we observed that the elevation of PAK2 was

correlated with increased malignant behaviors of pancreatic cancer,

such as angiogenesis (logFC=0.011, P<0.05), and epithelial-

mesenchymal transition (logFC=0.01, P<0.05).
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FIGURE 3

COX regression model combined with machine learning algorithms for the selection of pancreatic cancer liver metastasis-related genes. (A) Results
of single-factor COX regression analysis on 139 genes in the TCGA cohort. Hazard ratio values less than 1 indicate protective factors for the
prognosis of pancreatic cancer patients, while values greater than 1 indicate risk factors. (B, C) SVM-RFE machine learning feature selection. The top
15 genes were extracted based on the average ranking from ten-fold cross-validation, including COL1A2, PRSS22, PAK2, SURF4, IRF1, PABPC4, AHI1,
and ANXA4. (D, E) LASSO regression model feature selection. Thirteen genes were extracted based on the selection of lambda.min, including
COL1A2, PRSS22, PAK2, SURF4, IRF1, PABPC4, AHI1, and ANXA4. (F, G) Feature selection using random forest analysis. The top 15 genes were
extracted based on the ranking of gene importance, including COL1A2, PRSS22, PAK2, SURF4, IRF1, PABPC4, AHI1, and ANXA4. (H) Intersection of
the gene sets obtained from the three machine learning methods, resulting in a final set of 8 genes.
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3.6 PAK2-mediated differentiation
alterations contributed to the malignant
behavior of PDAC

In this investigation, we explored the influence of PAK2 on the

differentiation and development of pancreatic cancer cells. Firstly,

utilizing the monocle2 package, we performed developmental

inference and trajectory analysis on pancreatic cancer cells to gain

insights into their developmental trajectory and potential cell fate

decisions. Pseudotime analysis revealed four critical branch points in
Frontiers in Immunology 12
pancreatic cancer tissue, representing pivotal turning points in the

developmental process of cancer cells. Additionally, we observed

nine distinct branches, reflecting potential developmental trajectories

of cancer cells at these critical time points (Figure 6A). These

branches showcased the heterogeneity and complexity of cancer

cells within pancreatic cancer tissue. To determine the starting point

for developmental trajectories, we assessed the expression of cell

cycle genes (PCNA, MKI67). Branches displaying elevated

expression of cell cycle genes were often associated with a more

primitive state along the developmental trajectory (Figures 6B, C).

Notably, the cell subset in branch 8 was identified as being in the

most primitive stage of pancreatic cancer cell development and was

designated as the starting point for the trajectory, allowing us to

assess the differentiation status of cells and subgroups within

pancreatic cancer (Figures 6D, E). PAK2-high expressing cells

showed a stronger tendency to be in the early branches of the

developmental trajectory, while PAK2-low expressing cells,

comparatively, exhibited a more mature state of differentiation

(Figure 6F). According to the results of the Beam algorithm, PAK2

underwent significant changes during the pseudotime process

(P<0.05). Thus, we preliminary concluded that PAK2 leads to a

less differentiated state in pancreatic cancer cells. Subsequently, using

the latest monocle3 package, we conducted pseudotime analysis on

pancreatic cancer cells once again. After determining the

differentiation starting point using the same method, we found

compelling evidence confirming that PAK2 promoted the low

differentiation of pancreatic cancer cells (Figures 6G, H). Finally,

we performed clinical data correlation analysis in the TCGA cohort,

and the low differentiation of pancreatic cancer directly manifested

in the clinical data’s “Grade” classification. Based on a logistic

regression model, we identified a significant association between

PAK2 and Grade (P=0.006), with elevated PAK2 levels leading to

higher Grade classifications (Figure 6I).
3.7 Cellular communication highlighted the
significant impact of PAK2 on the
interaction between ductal cells and tumor
microenvironment cells

Applying the CellChat package, we compared the cell

communication networks between primary tumors and liver

metastases in pancreatic cancer, uncovering significant differences

in signaling communication. We observed that, compared to

primary tumors in the pancreas, the signaling communication

network in liver metastases exhibited significant activation,

including pathways such as MIF, VEGF, and CD45. Results from

the cell communication analysis indicated a more complex

interaction among cells in liver metastases, suggesting a potential

critical role in the metastatic process (Figures 7A, B). The outdegree

(outgoing) of pancreatic cancer cells remained relatively consistent

between primary and liver metastatic sites, while the indegree

(incoming) showed a considerable difference. This suggested that

cancer cells in liver metastases experienced more external regulation

or signal input from other cells (Figures 7C, D). Next, we

concentrated on analyzing the distinctions in the function of
TABLE 3 Univariate logistic regression model evaluation results.

Gene ID P-value

LUM 9.00E-08

CXCL17 0.000932

COL3A1 4.02E-06

COL1A2 5.55E-06

ARHGAP18 0.002463

HSD17B2 0.035921

PRSS22 0.004958

TRIM31 0.00151

PPA1 0.004154

BEX2 2.74E-06

MMP7 5.77E-06

BEX4 1.96E-07

SFRP2 6.94E-08

SLC16A3 0.001743

MRPS7 0.005893

MRPL41 2.32E-07

NCBP2 0.010999

PAK2 0.000298

SURF4 8.55E-05

IRF1 0.000876

ITGAE 0.08793

MUC4 0.007265

NDUFB2 0.048649

NCOR2 0.013449

PABPC4 0.006308

PAICS 0.000178

DDX21 0.043241

AHI1 0.063661

COX19 8.80E-07

LRRC59 0.09702

ANXA4 4.48E-05
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cancer cells with high PAK2 expression compared to those with low

PAK2 expression in the signaling communication network. The

number and strength of interactions for high PAK2-expressing

cancer cells were significantly higher than those for low PAK2-

expressing cancer cells (Figures 7E, F). Moreover, in shared

signaling communication networks involving both cell types (e.g.,

COLLAGEN, LAMININ, FN1, MK, and THBS), the contribution of

high PAK2-expressing cancer cells was markedly greater than that

of low PAK2-expressing cancer cel ls . Some signaling

communication networks (CD46, HSPG, EGF, CEACAM, PDGF,

and EDN) exclusively involved high PAK2-expressing cancer cells,

with no participation from low PAK2-expressing cancer cells
Frontiers in Immunology 13
(Figures 7G, H). We specifically presented the analysis results for

the EGF signaling pathway, where high PAK2-expressing cancer

cells might play a crucial role as key signal transduction nodes,

particularly as signal receivers. This interaction leaded to reciprocal

communication with monocytes/macrophages, mast cells,

progenitor cells, and tissue stem cells, while low PAK2-expressing

cancer cells had minimal involvement in this signaling pathway

(Figures 7I-K). Within this network, AREG-(EGFR+ERBB2)

receptor communication was particularly close (Figure 7L).

Finally, we also illustrated the performance of both cell types in

signaling pathways such as GDF, OCLN, WNT, CD46, and CDH

(Figures 7M-Q).
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FIGURE 4

Multiple lines of evidence reconfirming the significant role of PAK2 in the process of pancreatic cancer liver metastasis. (A-D) Validation of the
role played by PAK2 in the process of pancreatic cancer liver metastasis. (A) In the TCGA cohort, the gene expression of PAK2 in patients with
hematogenous metastasis (M1 stage) is significantly higher than in patients without hematogenous metastasis (M0 stage). (B) In the GSE71729 cohort,
the gene expression of PAK2 in patients with pancreatic cancer liver metastasis is significantly higher than in patients without liver metastasis.
(C, D) ROC analysis showing the area under the curve (AUC) in the GSE19279 cohort (AUC = 0.73) and GSE71729 cohort (AUC = 0.7). (E-H) Validation
of the role played by PAK2 in the occurrence of pancreatic cancer. Expression trends and rank sum test results of PAK2 in the GSE15471, GSE62165,
GSE62452, and GSE71729 cohorts. (I, J) Protein-level evidence of PAK2 mediating the occurrence of pancreatic cancer provided by the HPA database.
Left image: Normal pancreatic tissue (low PAK2 expression), right image: Pancreatic cancer tissue (high PAK2 expression). (K) Comparative analysis
in single-cell sequencing of pancreatic cancer cells reveals that the expression level of PAK2 in pancreatic cancer cells in liver metastatic tissues is
significantly higher than in cells from the primary site. (L) High expression of PAK2 in pancreatic cancer cells compared to low expression of PAK2 in
pancreatic cancer cells in the primary tumor and liver metastatic lesions of pancreatic cancer. The p-value represents the statistical test results for the
difference in quantity.
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FIGURE 5

GSVA analysis reveals signaling pathways regulated by PAK2. (A) Differential activation of signaling pathways and gene functions in pancreatic cancer
cells from primary tumors and liver metastases in the GSE154778 dataset. (B) Differential activation of signaling pathways and gene functions
between pancreatic cancer cells with high PAK2 expression and those with low PAK2 expression in the GSE154778 dataset. (C) GSVA analysis results
in pancreatic cancer tissues from the TCGA cohort, divided into low and high PAK2 expression groups based on the median PAK2 expression.
(D) GSVA analysis results for the primary tumor and metastatic tumor groups in the GSE71729 cohort. (E) Significantly upregulated signaling
pathways in all four GSVA analyses, with a focus on the TGF-Beta signaling pathway. “scGSVA_LM vs PT” represents the comparison between the
primary tumor and liver metastasis in pancreatic cancer; “scGSVA_PAK2low vs PAK2high” represents the comparison between pancreatic cancer
cells with low PAK2 expression and those with high PAK2 expression; “GSVA_TCGA” indicates the comparison between samples with high PAK2
expression and low PAK2 expression in the TCGA cohort; “GSVA_GEO” signifies the comparison between samples with high PAK2 expression and
low PAK2 expression in the GEO cohort. (F) Correlation analysis showing significant associations between various genes in the TGF-Beta signaling
pathway and PAK2. Red represents high expression, and blue represents low expression.
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3.8 PAK2 regulated the activity of various
transcription factors leading to complex
tumor behaviors

Using the DoRothEA package, we explored the transcription

factors regulated by PAK2. In pancreatic cancer cells, substantial

evidence supported the involvement of PAK2 in the regulation of

90 transcription factors, including 72 positive regulators and 18

negative regulators (Figure 8A). To decipher the molecular

functions and signal ing pathways regulated by these

transcription factors, we conducted GO enrichment analysis and

KEGG enrichment analysis. The results indicated significant

enrichment in various biological pathways, including (1)

Molecular Function: regulation of miRNA transcription, miRNA

metabolic process, etc.; (2) Molecular Function: RNA polymerase
Frontiers in Immunology 15
II transcription regulator complex, transcription repressor

complex, etc. ; (3) Cellular Component: DNA-binding

transcription activator activity, DNA-binding transcription

activator activity, RNA polymerase II-specific, etc. (Figure 8B).

KEGG analysis revealed enrichment in pathways such as the

Estrogen signaling pathway, Thyroid hormone signaling

pathway, Hippo signaling pathway, and Cellular senescence

(Figure 8C). As transcription factors exerted their functions as

proteins, we utilized PPI to analyze the network of their

interactions at the protein level. The PPI network revealed a

complex interaction network among transcription factors

(Figure 8D). Using the MCODE algorithm, we extracted the

core network, identifying SP1, AR, the NCOA family, and

HIF1A as key players in the transcription factor network

primarily regulated by PAK2 (Figure 8E).
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FIGURE 6

PAK2 impact on pancreatic cancer cell differentiation revealed by pseudotime analysis. (A) Pseudotime analysis based on the monocle2 package
reveals four key branching points and nine branches in pancreatic cancer tissue. (B, C) Expression of cell cycle genes (PCNA, MKI67) at various
branches. (D) After determining branch 8 as the starting point of the developmental trajectory, pseudotime increases along the direction of the
branch (from dark to light), reflecting the gradual maturation of cell differentiation levels. (E) Developmental status of each branch cell and
pancreatic cancer subtype. (F) Distribution of pancreatic cancer cells with high PAK2 expression and low PAK2 expression on the pseudotime
trajectory. (G) Pseudotime analysis based on the monocle3 package showing the differentiation trajectory of pancreatic cancer cell subtypes.
(H) Expression of PAK2 in various subtypes. (I) Association between the expression levels of PAK2 in TCGA samples and the “Grade” classification
of pancreatic cancer.
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FIGURE 7

Cell communication network reveals significant role of high PAK2 expression cancer cells in liver metastasis. (A, B) Cell communication networks
in pancreatic cancer primary and liver metastasis show significant differences in signaling communication. (C, D) Pancreatic cancer cells exhibit
similar outgoing communication in primary and liver metastasis, while the incoming communication shows a larger difference in liver metastasis.
(E, F) Interaction quantity and interaction weight/strength of various cells in the pancreatic cancer tumor microenvironment (TME) in the
communication network. (G, H) Contribution of various cells in the pancreatic cancer TME as signal senders and receivers to various signaling
pathways. (I-L) Specific analysis results of the EGF signaling pathway. (I) Sine wave graph of cell communication in the EGF signaling pathway.
(J, K) Contribution heatmap of each cell communication in the EGF signaling pathway. (L) Receptor with the most frequent communication in the
EGF signaling network. (M-Q) Contribution heatmap of cell communication in various signaling pathways, including GDF, OCLN, WNT, CD46,
and CDH.
Frontiers in Immunology frontiersin.org16

https://doi.org/10.3389/fimmu.2024.1347683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1347683
3.9 High expression of PAK2 promoted
gemcitabine resistance in
pancreatic cancer

In the TCGA dataset, we scrutinized the variations in sensitivity

to common chemotherapy drugs between the low PAK2 expression

group and the high PAK2 expression group. The results showed

that increased expression of PAK2 reduces the sensitivity of

pancreatic cancer to gemcitabine treatment (Figure 9A). To

further explore the mechanism by which PAK2 induces
Frontiers in Immunology 17
gemcitabine resistance, we first identified gemcitabine resistance-

related genes in pancreatic cancer based on the GSE140077 dataset.

In GSE140077, all cell lines were divided into resistant and non-

resistant groups. We constructed a co-expression network with the

optimal soft threshold “11” (Figure 9B), and after merging the

obtained modules, we obtained six modules (Figure 9C). We

selected modules strongly associated with gemcitabine resistance

(R > 0.7, P < 0.05) (red and brown modules) (Figure 9D) and genes

that were significantly differentially expressed between the two

groups (logFC > 1, P < 0.05) (Figure 9E). This resulted in 27
B
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FIGURE 8

PAK2-regulated transcription factor network and functional enrichment analysis. (A) Prediction of transcription factor activity between two cell types
based on PAK2 expression, showing transcription factors with significantly different activity. (B) GO enrichment analysis of transcription factors,
highlighting significant enrichment in molecular function, cellular component, and other biological pathways. (C) KEGG enrichment analysis
revealing the involvement of PAK2-regulated transcription factors in multiple pathways and functional enrichments. (D) Protein-protein interaction
(PPI) network of transcription factors showing a complex interaction network. (E) Extraction of a key subnetwork playing a crucial role in the
protein-protein interaction network using Cytoscape software.
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gemcitabine resistance-related genes. The enrichment analysis of

gemcitabine resistance genes based on the AUCell algorithm in

pancreatic cancer single-cell data is shown in the figure. Clearly,

gemcitabine resistance genes were significantly enriched in

pancreatic cancer cells (Figures 9F, G). Among them, pancreatic

cancer cells in the cluster 8 with TIMP1+/FN1+ showed the

strongest resistance, while the cluster 1 with CLDN18-/

CEACAM5- and the cluster 7 with HSPA6+/NEAT1+ showed

milder resistance. Finally, we visualized the relationship between

PAK2 expression and gemcitabine resistance gene enrichment

scores. Cells with high PAK2 expression exhibited higher
Frontiers in Immunology 18
gemcitabine resistance scores, indicating a more pronounced

resistance effect (Figure 9H).
3.10 High expression of PAK2 leaded to
abnormal metabolic changes in
cancer cells

There were significant metabolic changes between the liver

metastasis and primary lesion of pancreatic cancer. In our

analysis, we found 37 metabolic pathways significantly
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FIGURE 9

PAK2 and gemcitabine resistance in pancreatic cancer. (A) Sensitivity differences to gemcitabine treatment between PAK2 high-expression and low-
expression groups in the TCGA pancreatic cancer cohort. (B) Construction of a co-expression network based on the GSE140077 dataset using the
optimal soft threshold “11.” (C) Merging similar modules to obtain six modules related to gemcitabine resistance. (D) Selection of modules strongly
correlated with gemcitabine resistance (red and brown modules). (E) Differential analysis of the two groups in GSE140077, heatmap showing genes
significantly upregulated/downregulated in gemcitabine-resistant cell lines. (F) Enrichment analysis of gemcitabine resistance genes in pancreatic
cancer cells based on single-cell data using the AUCell algorithm. (G) Boxplot visualizing the relationship between PAK2 expression and gemcitabine
resistance gene enrichment scores.
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upregulated and 31 metabolic pathways significantly downregulated

in the liver metastasis of pancreatic cancer. Applying a similar

approach to assess PAK2 high-expression cells and PAK2 low-

expression cells, we observed that PAK2 triggered the upregulation

of 17 metabolic pathways and the downregulation of 25 metabolic

pathways in pancreatic cancer cells. Upon intersection, we

identified 23 metabolic pathways implicated in PAK2-promoted

pancreatic cancer liver metastasis, comprising 5 upregulated and 18

downregulated metabolic pathways. We selected the most

significant three upregulated metabolic pathways and three
Frontiers in Immunology 19
downregulated metabolic pathways for visualization. The

upregulated pathways were Oxidative Phosphorylation

(Figure 10A), Glycolysis/Gluconeogenesis (Figure 10B), and

Folate Biosynthesis (Figure 10C). The downregulated pathways

were Arginine Biosynthesis (Figure 10D), Sphingolipid

Metabolism (Figure 10E), and Primary Bile Acid Biosynthesis

(Figure 10F). The expression of these six significantly altered

metabolic pathways in the primary lesion/liver metastasis

(Figure 10G) and PAK2 high-expression/low-expression cells

(Figure 10H) was shown in the figures.
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FIGURE 10

Expression changes in metabolic pathways regulated by PAK2 in pancreatic cancer liver metastasis. (A-C) Upregulated metabolic pathways in PAK2
high-expression cells compared to low-expression cells. (A) Oxidative phosphorylation. (B) Glycolysis/Gluconeogenesis. (C) Folate biosynthesis.
(D-F) Downregulated metabolic pathways in PAK2 high-expression cells compared to low-expression cells. (D) Arginine biosynthesis. (E)
Sphingolipid metabolism. (F) Primary bile acid biosynthesis. (G, H) Expression patterns of the six significantly altered metabolic pathways in the
comparison between primary tumor and liver metastasis and between PAK2 high-expression and low-expression cells. (G) Primary tumor vs. liver
metastasis. (H) PAK2 high-expression cells vs. PAK2 low-expression cells.
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3.11 In vitro experiments provided evidence
that the inhibition of PAK2 results in
diminished proliferation and invasion
capabilities in pancreatic cancer cell lines

In Figure 11, subsequent to siRNA transfection in pancreatic

cancer cell lines PANC-1 and Bx-PC3 (Figures 11A, B), qPCR

analysis demonstrated a significant reduction in PAK2 expression.

Examination of proliferation post-PAK2 knockdown using CCK8
Frontiers in Immunology 20
(Figures 11C, D) showcased diminished OD values in comparison

to the control group, indicative of PAK2 knockdown hindering

the proliferation of pancreatic cancer cell lines PANC-1 and Bx-

PC-3. The effect of PAK2 knockdown on migration was assessed

via scratch assays (Figure 11E). As depicted in the figure, the

migration area in the experimental group was notably lower than

that in the control group, underscoring that PAK2 knockdown

hampers the migration of pancreatic cancer cell lines PANC-1 and

Bx-PC3.
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FIGURE 11

In vitro experiments demonstrate that the inhibition of PAK2 leads to reduced proliferation and invasion capabilities in pancreatic cancer cell lines.
(A, B) Real-time fluorescence quantitative PCR was conducted on PANC-1 and Bx-Pc-3 cells (n=3, one-way ANOVA, P<0.0001). (C, D) CCK-8 cell
proliferation experiments were performed on PANC-1 and Bx-Pc-3 cells (n=4, two-way ANOVA, P<0.01). (E) Comparison of migration areas after
scratch assays on PANC-1 and Bx-Pc-3 cells (n=3, Welch’s test, P<0.05). ns represents no statistical significance, represents * represents P<0.05,
**** represents P<0.0001.
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3.12 The results of flow cytometry
indicated a significant reduction in the
apoptotic levels of pancreatic cancer cells
upon downregulation of PAK2

The results, as shown in the Figure 12, demonstrate that upon

PAK2 knockdown, the apoptotic rates of BXPC-3 (Figure 12A, P <

0.001) and PANC-1 (Figure 12B, P < 0.01) cells significantly

increased. There is a statistically significant difference between the

two groups. Therefore, PAK2 exhibits a significant pro-apoptotic

cytotoxic effect.
3.13 Detection of TGF-beta pathway-
related genes and EMT phenotype-
related genes

In Figure 13, we compared the changes in related pathways and

phenotype genes after knocking down PAK2 using siRNA. Among

them, TGFB1, SMAD7, and SNAI1 are related genes of the TGF-b
pathway. TGFB1 is a protein that initiates the TGFb pathway, and

its activation may increase TGFB1. SMAD7 is an inhibitory protein

whose expression increases after the TGF-b pathway is activated.

SNAI1 is a downstream specific protein whose expression increases

after the TGF-b pathway is activated (9–11), and it also has the

function of initiating EMT. The three hallmark proteins of EMT

activation are CDH1, VIM, and CDH2 (12). Among them, CDH1

expression will be downregulated; VIM and CDH2 expression will
Frontiers in Immunology 21
be upregulated. As shown in the experimental results, after

knocking out PAK2, TGFB1, SMAD7, and SNAI1 all showed a

downward trend compared to the control group (Figures 13A-C),

and at least one siRNA transfection group had a statistically

significant decrease, indicating that knocking out PAK2 at least

partially weakened the activation of TGF-b. Although the change in

CDH1 was not significant between different groups (Figure 13D),

both VIM and CDH2 showed a significant decrease after knocking

down PAK2 (Figures 13E, F), indicating that the knockdown of

PAK2 affected the progress of EMT. The above experiments

indicate that there is a correlation between PAK2 and the TGF-b
pathway and EMT phenotype, and in pancreatic cancer, the

upregulation of PAK2 may lead to the activation of the TGF-b
signaling pathway and EMT.
4 Discussion

Pancreatic cancer is an extremely malignant digestive tract

tumor. The 2022 cancer statistics reported by Xia et al. reveal that

pancreatic cancer constitutes 2.8% of all new cancer cases and

contributes to 4.1% of all cancer-related deaths among the 34 types

of cancers (13). Hence, pancreatic cancer stands out as one of the

most perilous cancers. The insidious and nonspecific nature of early

symptoms, combined with its pronounced invasiveness, contributes

to frequent occurrences of local tissue invasion and distant

metastasis. Consequently, the majority of patients receive a

diagnosis at an advanced stage, with only approximately 15-20%
B

A

FIGURE 12

Flow cytometry was employed to determine the apoptosis rate of pancreatic cancer cell lines. (A) The apoptotic rate of BXPC-3 significantly
increased after PAK2 silencing. (B) The apoptotic rate of PANC-1 significantly increased after PAK2 silencing. ** represents P<0.01, ***
represents P<0.001.
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of pancreatic cancer patients deemed eligible for early pancreatic

resection (3, 14). According to the NCCN guidelines, once distant

metastasis occurs, pancreatic cancer is defined as unresectable (4)

(15). Given that surgical resection remains the sole potential cure

for pancreatic cancer, the prevention and management of distant

metastasis emerge as crucial strategies in the clinical treatment of

patients with pancreatic cancer (16). According to epidemiological

data, pancreatic cancer patients often experience distant metastasis,

with the most common sites being the liver, followed by the

peritoneum, lungs, pleura, bones, and adrenal glands (17).

Furthermore, metastatic pancreatic cancer has been documented

in nearly every organ, encompassing the brain, diaphragm,
Frontiers in Immunology 22
gallbladder, heart, small and large intestines, kidneys, ovaries,

pericardium, seminal vesicles, skin, stomach, spleen, testicles,

thyroid gland, bladder, and uterus (18). Even patients who have

undergone radical pancreatic cancer resection often present with

distant metastatic symptoms as a sign of recurrence. Hishinuma

et al.’s investigation revealed that approximately three-quarters of

patients encountered local recurrence following surgery, half

developed liver metastasis, and about one-third experienced

peritoneal dissemination (8, 19). In summary, the identification of

distant metastasis plays a crucial role in treatment decisions and

prognosis assessment for patients with pancreatic cancer. This

information is essential for developing personalized treatment
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FIGURE 13

Detection of TGF-beta pathway-related genes and EMT phenotype-related genes. (A-F) Real-time fluorescence quantitative PCR was conducted on
PANC-1 and Bx-Pc-3 cells transfected with control siRNA and PAK2 siRNAs (n=3, one-way ANOVA, * represents P<0.05, ** represents P<0.01, ***
represents P<0.001). (A) TGFB1, (B) SMAD7, (C) SNAI1, (D) CDH1, (E) CDH2, (F) VIM.
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plans and early interventions to improve patient survival and

quality of life.

Clinical observations indicate that pancreatic cancer exhibits a

distinct secondary tumor preference for the liver, which is closely

associated with the liver providing a microenvironment favorable

for the metastasis of pancreatic cancer cells. The interaction

between pancreatic cancer cells and the liver during the process

of liver metastasis involves three interconnected stages: firstly, the

adhesion of disseminated cancer cells to the liver sinusoids;

followed by the early formation of micro-metastases in the

hepatic lobules; and finally, the suppression of anti-tumor activity

by the immune system (20). The initial step in the liver metastasis of

pancreatic cancer involves the adhesion of pancreatic cancer cells to

the liver sinusoids. This process is influenced by chemokine-

chemokine receptor patterns, as well as the involvement of

platelets and neutrophils. Meijer et al. highlighted in their study

that CXCL13 plays a significant role in promoting the recruitment

of disseminated pancreatic cancer cells expressing CXCR5 to the

liver, thereby inducing the growth of liver metastases (21).

Moreover, receptor patterns, including CX3CL1/CX3CR1 (22)

and CXCR7/CXCR4/CXCL12 (23), have been demonstrated to

play crucial roles in the progression of pancreatic cancer liver

metastasis. Platelets play a crucial role in the pancreatic cancer

liver metastasis process by aggregating to form clots. This clot

formation acts as an effective barrier, preventing cancer cells from

being cleared by natural killer (NK) cells, monocytes, or

macrophages (24). Polymorphonuclear neutrophils (PMN), acting

as carriers for cancer cells, possess the capability to directly adhere

to the endothelium of hepatic microvessels. Pancreatic cancer cells

recruit PMNs through intercellular adhesion molecule-1 (ICAM-1),

thereby enhancing the likelihood of cell stagnation in capillaries.

Additionally, abnormal expression of the selectin family also

contributes to the adhesion of pancreatic cancer cells (25). In the

formation stage, pancreatic cancer cells gradually reshape the liver

environment by interacting with tumor-associated fibroblasts to

create a robust extracellular matrix environment (26, 27), thereby

establishing a preliminary hypoxic tumor microenvironment

(TME). Hypoxia facilitates the production of vascular endothelial

growth factor (VEGF), supporting the formation of new

microcirculation (28). Subsequently, pancreatic cancer completes

survival and proliferation in the liver sinusoids. In the third stage,

pancreatic cancer cells strengthen the gradually established tumor

microenvironment, gradually causing the immune killing system to

cease by recruiting and transforming other cells in the TME.

Suppressed tumor-killing cells including NK cells (29), exhausted

T cells (30), and macrophages gradually shift towards the M2 type

(31). Immune inhibitory cells including regulatory T cells (Treg)

(32) and myeloid-derived suppressor cells (MDSC) infiltrate

massively (33), ultimately forming an impregnable immune

escape situation.

Due to the rarity of samples from pancreatic cancer liver

metastasis and limitations in research techniques, previous studies

on pancreatic cancer liver metastasis have mostly been confined to

clinical cohort studies. This limitation makes it challenging for

researchers to comprehend the microscopic changes occurring

during the process of liver metastasis. With the advancements in
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microarray technology and next-generation sequencing techniques,

researchers can explore changes at the gene level during the process

of pancreatic cancer liver metastasis by repeatedly analyzing mRNA

matrices. However, due to the limitations of sequencing techniques,

researchers cannot eliminate the influence of infiltrating cells in

sequenced tissues, which has limited the clinical utility of most

biomarkers. In recent years, advancements in single-cell sequencing

technology have opened up new avenues for studying diseases at the

individual cell level. Single-cell sequencing technology provides us

with high-resolution gene expression data, allowing for detailed and

comprehensive studies of cell gene expression. This is crucial for

researching disease-specific cell phenotypes and developing

therapeutic approaches. The advancing machine learning

algorithms provide powerful tools, accelerating our understanding

of biological complexity, propelling advancements in biomedical

research, and offering more possibilities for future medical

diagnosis and treatment. Therefore, the rise of single-cell

sequencing technology combined with machine learning provides

us with more comprehensive and in-depth tools for disease

research. However, until now, there has been a scarcity of

bioinformatics analysis regarding pancreatic cancer liver

metastasis, and the methods used in these analyses are often

outdated. In this investigation, we undertook a comprehensive

analysis of pancreatic cancer liver metastasis utilizing diverse data

sources. We utilized single-cell sequencing data to identify

transcriptomic changes in epithelial cells as accurately as possible.

By combining the advantages of large samples from traditional bulk

sequencing results, which allow for prognostic analysis, we obtained

satisfactory results. In the selection of key genes, we not only relied

on the results of statistical algorithms but also considered the

biological significance of genes for selection, supplementing the

lack of domain-specific knowledge in unsupervised machine

learning. Additionally, we conducted in-depth mechanistic

analysis of how PAK2 influences the process of pancreatic cancer

liver metastasis and ultimately validated the findings through cell

experiments. Therefore, our study not only provides new insights

into pancreatic cancer liver metastasis but also offers new research

directions for future bioinformatics studies.

P21-activated kinase (PAK) plays a crucial role in regulating a

wide range of processes associated with cytoskeletal rearrangement,

including cell migration, apoptosis, and cell division (34). P21-

activated kinase 2 belongs to the PAK family of serine/threonine

kinases and functions as a downstream substrate of Rho family

GTPases, including Rac and CDC42 (35). Earlier research has

highlighted a significant correlation between P21-activated kinase

2 (PAK2) and the proliferation, adhesion, and migration of various

types of tumors (36, 37). There is limited research on the

relationship between PAK2 and pancreatic cancer, and existing

studies have only demonstrated, at the cellular experimental level,

that PAK2 can increase the proliferation and invasive capabilities of

pancreatic cancer cells (38). The association of PAK2 with

pancreatic cancer hematogenous metastasis was confirmed in our

TCGA dataset analysis. Furthermore, based on this, our study

proposes that PAK2 is a key gene mediating the liver metastasis

of pancreatic cancer. After analyzing other single-cell data, we

found that PAK2 has no significant promoting effect on the lung
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and vaginal metastasis of pancreatic cancer. Therefore, we believe

that the promotion of PAK2 in pancreatic cancer liver metastasis is

specific. GSVA suggests a strong connection between the

overexpression of PAK2 and the activation of the TGF-beta

signaling pathway in pancreatic cancer. This association aligns

with findings from prior studies (39, 40). The TGF-beta signaling

pathway is a classical pro-tumor metastasis pathway, and its

activation will further increase the vascular generation ability and

epithelial-mesenchymal transition of tumor cells, making the tumor

more prone to distant metastasis (41). In our investigation,

grouping analysis of cancer cells revealed that elevated PAK2

expression enhances the angiogenesis capability and epithelial-

mesenchymal transition of cancer cells, aligning with findings

from previous studies. Hence, we have grounds to posit that one

of the roles of PAK2 is to foster the liver metastasis of pancreatic

cancer through the activation of the TGF-beta signaling pathway.

This activation, in turn, enhances the vascular generation ability

and epithelial-mesenchymal transition of pancreatic cancer cells. In

our proposed temporal sequence analysis, we observed that PAK2

tends to induce cancer cells into a state of lower differentiation,

representing a crucial mechanism contributing to the facilitation of

liver metastasis in pancreatic cancer.

The tumor microenvironment refers to a highly dynamic

integrated network of cellular and non-cellular components formed

around tumor cells. This microenvironment encompasses diverse cell

types that engage in interactions with tumor cells, including immune

cells, endothelial cells, fibroblasts, and interconnected molecular

signaling networks (42). The tumor microenvironment is pivotal in

orchestrating the dynamics of tumor growth, invasion, and

metastasis. Its complex interaction network involves aspects like

cytokines, extracellular matrix, angiogenesis, and immune

regulation, forming an interconnected ecosystem (43). Tumor cells

are vital for maintaining the homeostasis of the tumor

microenvironment, and any factor that alters the degree of

communication between the tumor and surrounding cells can lead

to changes in the homeostasis of the tumor microenvironment,

disrupting the anti-tumor immune response or causing stronger

immune suppression. In our study, we found that PAK2 is crucial

for influencing the communication network of pancreatic cancer

cells. The cells with high PAK2 expression receive signals from other

cells more frequently, playing a significant role in various signaling

networks, directly leading to a significant increase in the strength of

multiple signaling networks in liver metastatic lesions. This includes

CEACAM, HSPG, and EGF, among others. The CEACAM

(carcinoembryonic antigen-related cell adhesion molecule) family,

which encodes proteins involved in cell adhesion, plays a crucial role

in mediating interactions between tumor cells and surrounding

tissues. Specifically, members like CEACAM1 are known to

regulate immune responses, potentially influencing the immune

microenvironment within tumors through interactions with

immune cells. Additionally, the CEACAM protein family is

implicated in cell signaling pathways, suggesting potential effects on

processes such as cell proliferation, apoptosis, and differentiation

(44). Heparan sulfate proteoglycans (HSPGs) are a class of molecules

consisting of a core protein covalently linked to heparan sulfate (HS)

glycosaminoglycan (GAG) chains. These complex structures are
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extensively expressed on the cell surface and within the

extracellular matrix (ECM), exerting significant influence on

various aspects of cellular physiology. HSPGs play crucial roles in

processes such as cell proliferation, adhesion, and motility. They are

also involved in membrane transport, the formation of extracellular

gradients, morphogenesis, and angiogenesis. The diverse functions of

HSPGs highlight their importance in regulating fundamental cellular

processes and tissue development (45). Epidermal Growth Factor

(EGF) is a gene that encodes the epidermal growth factor protein. The

EGF protein, upon binding to its receptor, Epidermal Growth Factor

Receptor (EGFR), activates downstream signaling pathways,

including RAS/MAPK and PI3K/AKT. These pathways play a

crucial role in promoting the proliferation of cancer cells. The

interaction between EGF and EGFR is a key molecular mechanism

that contributes to cell growth and survival, and dysregulation of this

pathway is often associated with cancer development and progression

(46). Therefore, cells with high expression of PAK2 enhance their

proliferative and invasive capabilities by activating these signaling

networks, thereby accelerating the occurrence of liver metastasis.

Transcription factors are proteins that play a vital role in gene

regulation by binding to specific DNA sequences. This binding

interaction enables transcription factors to modulate the

transcriptional activity of nearby genes. Transcription factors create

complexes with protein-nucleic acid interactions, influencing the

regulation of gene activation or suppression. The activity of

transcription factors experiences alterations in various cancers

through direct mechanisms such as chromosomal translocation,

gene amplification or deletion, point mutations, and changes in

expression. Furthermore, mutations in non-coding DNA that

impact the binding of transcription factors indirectly contribute to

these modifications (47). Since single-cell sequencing detects mRNA,

the transcription factors that function as proteins have been

challenging to analyze at the transcriptome level. However, the

DoRothEA package provides a reliable analytical method for

interpreting gene expression patterns in single-cell data, inferring

the likely activity levels of transcription factors in single cells. In our

analysis, we identified numerous transcription factors influenced by

PAK2, and after conducting a protein-level analysis, we identified a

critical subnetwork among them. In this subnetwork, the NOCA

family occupies an important position. The Nuclear Receptor

Coactivator (NCOA), also known as the Steroid Receptor

Coactivator (SRC) family, comprises proteins primarily responsible

for regulating the transcriptional activity of genes through interactions

with nuclear receptors. Nuclear receptors, including hormone

receptors such as estrogen receptor (ER) and androgen receptor

(AR), govern various biological processes in cells. The NCOA family

plays a crucial role in the regulation mediated by these nuclear

receptors. Research in the context of cancer indicates that abnormal

expression of NCOA is closely associated with the occurrence and

development of various cancer types (48). In this study, we

hypothesize that the NCOA family is implicated in the process of

pancreatic cancer liver metastasis regulated by PAK2, although the

specific mechanism requires further investigation.

Gemcitabine, as a primary treatment for pancreatic cancer,

remains a crucial therapeutic approach in extending the survival of

patients. However, the emergence of resistance to gemcitabine
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1347683
significantly diminishes its benefits for individuals with pancreatic

cancer (49). In our drug sensitivity prediction, we found that

overexpression of PAK2 is associated with decreased sensitivity to

gemcitabine treatment. To elucidate the mechanism by which PAK2

induces resistance to gemcitabine, we first performed differential

analysis and weighted gene co-expression network analysis between

gemcitabine-resistant and sensitive cell lines to identify gemcitabine

resistance genes. In pancreatic cancer single-cell data, enrichment

analysis revealed a notable enrichment of gemcitabine resistance genes

in pancreatic cancer cells. A rank-sum test was conducted to correlate

the enrichment scores of gemcitabine resistance gene sets in each cell

with the expression level of PAK2. The findings demonstrated a

significant correlation between the expression level of PAK2 and the

enrichment scores of gemcitabine resistance gene sets Therefore, we

have demonstrated that PAK2 can mediate gemcitabine resistance in

pancreatic cancer, and genes regulated by PAK2, such as SPRR1B,

KRT5, and KRT17, are the major mediators promoting resistance to

gemcitabine chemotherapy.

This study conducted a detailed analysis of liver metastasis in

pancreatic cancer through the integration of single-cell

transcriptomics and bulk sequencing data. However, the study has

certain limitations. Due to constraints on the quantity of sequencing

data, we were unable to completely eliminate the potential impact of

factors such as ethnicity, gender, and age. Furthermore, while we

employed standard methods supported by existing literature to

obtain the gene set associated with gemcitabine resistance in this

study, some genes within the set remain unvalidated, potentially

introducing uncertainties into the analysis of gemcitabine resistance.

Lastly, although the analysis results of this study were corroborated

through cell line experiments, additional evidence from animal

experiments, organoid experiments, and large-scale human trials

would strengthen our findings. In conclusion, the further

development of spatial transcriptomics data and other sequencing

technologies may offer deeper insights into the mechanisms

underlying PAK2 in the process of pancreatic cancer liver metastasis.
5 Conclusion

PAK2 played a pivotal role in promoting the angiogenic

capability and epithelial-mesenchymal transition processes of

cancer cells by activating the TGF-beta signaling pathway.

Simultaneously, it diminished the differentiation level of cancer

cells, intensifying their malignancy. Furthermore, PAK2 facilitated

communication between cancer cells and cells in the tumor

microenvironment, augments cancer cell chemoresistance, and

induced alterations in pathways associated with energy

metabolism. To sum up, PAK2 emerged as a central gene

mediating hepatic metastasis in pancreatic cancer.
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and PAK2 in cell metabolism regulation. J Cell Biochem (2022) 123:375–89. doi:
10.1002/jcb.30175

35. Reddy PN, Radu M, Xu K, Wood J, Harris CE, Chernoff J, et al. p21-activated
kinase 2 regulates HSPC cytoskeleton, migration, and homing via CDC42 activation and
interaction with b-Pix. Blood (2016) 127:1967–75. doi: 10.1182/blood-2016-01-693572

36. Xing J, Wang Z, Xu H, Liu C, Wei Z, Zhao L, et al. Pak2 inhibition promotes
resveratrol-mediated glioblastoma A172 cell apoptosis viamodulating the AMPK-YAP
signaling pathway. J Cell Physiol (2020) 235:6563–73. doi: 10.1002/jcp.29515

37. Flate E, Stalvey JR. Motility of select ovarian cancer cell lines: effect of extra-
cellular matrix proteins and the involvement of PAK2. Int J Oncol (2014) 45:1401–11.
doi: 10.3892/ijo.2014.2553

38. Cheng TY, Yang YC, Wang HP, Tien YW, Shun CT, Huang HY, et al. Pyruvate
kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis
through phosphorylation and stabilization of PAK2 protein. Oncogene (2018)
37:1730–42. doi: 10.1038/s41388-017-0086-y

39. Wilkes MC, Repellin CE, HongM, Bracamonte M, Penheiter SG, Borg JP, et al. Erbin
and the NF2 tumor suppressor Merlin cooperatively regulate cell-type-specific activation of
PAK2 by TGF-beta. Dev Cell (2009) 16:433–44. doi: 10.1016/j.devcel.2009.01.009

40. Zhang Y, Xiao WH, Huang YX, Yang YY, Ouyang SX, Liang YM, et al. miR-128-
3p inhibits high-glucose-induced peritoneal mesothelial cells fibrosis via PAK2/SyK/
TGF-b1 axis. Ther apheresis Dialysis (2023) 27:343–52. doi: 10.1111/1744-9987.13912

41. Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-b signal transduction for
fibrosis and cancer therapy. Mol Cancer (2022) 21:104. doi: 10.1186/s12943-022-01569-x

42. deVisser KE, Joyce JA. The evolving tumormicroenvironment: From cancer initiation to
metastatic outgrowth. Cancer Cell (2023) 41:374–403. doi: 10.1016/j.ccell.2023.02.016

43. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and
metastasis. Nat Med (2013) 19:1423–37. doi: 10.1038/nm.3394

44. Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion
molecules (CEACAMs) in cancer progression and metastasis. Cancer metastasis Rev
(2013) 32:643–71. doi: 10.1007/s10555-013-9444-6

45. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring
Harbor Perspect Biol (2011) 3. doi: 10.1101/cshperspect.a004952

46. Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by
aberrant ERBB family signalling. Nat Rev Cancer (2021) 21:181–97. doi: 10.1038/
s41568-020-00322-0

47. Bushweller JH. Targeting transcription factors in cancer - from undruggable to
reality. Nat Rev Cancer (2019) 19:611–24. doi: 10.1038/s41568-019-0196-7

48. O'Malley BW, Kumar R. Nuclear receptor coregulators in cancer biology. Cancer
Res (2009) 69:8217–22. doi: 10.1158/0008-5472.CAN-09-2223

49. Binenbaum Y, Na'ara S, Gil Z. Gemcitabine resistance in pancreatic ductal
adenocarcinoma. Drug resistance updates (2015) 23:55–68. doi: 10.1016/j.drup.2015.10.002
frontiersin.org

https://doi.org/10.1016/S0140-6736(10)62307-0
https://doi.org/10.1111/hpb.12078
https://doi.org/10.1016/j.cell.2023.02.014
https://doi.org/10.1038/ng.3398
https://doi.org/10.1038/s41575-019-0109-y
https://doi.org/10.1038/nature16965
https://doi.org/10.3892/ol.2022.13427
https://doi.org/10.18632/aging.203122
https://doi.org/10.18632/aging.203122
https://doi.org/10.1167/iovs.10-5635
https://doi.org/10.3892/ijmm.2019.4102
https://doi.org/10.1016/j.abb.2021.109087
https://doi.org/10.3390/ijms20112767
https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.1080/00365521.2022.2067786
https://doi.org/10.6004/jnccn.2014.0106
https://doi.org/10.1038/s41571-018-0112-1
https://doi.org/10.1038/s41571-018-0112-1
https://doi.org/10.5858/133.3.413
https://doi.org/10.1097/00006676-199511000-00005
https://doi.org/10.1097/00006676-199511000-00005
https://doi.org/10.1007/s005340050025
https://doi.org/10.1007/s00432-015-2024-0
https://doi.org/10.1007/s00432-015-2024-0
https://doi.org/10.1158/0008-5472.CAN-06-1507
https://doi.org/10.1002/hep.23591
https://doi.org/10.1124/pr.113.007724
https://doi.org/10.1016/S0049-3848(12)70143-3
https://doi.org/10.1136/gut.28.3.323
https://doi.org/10.3892/ijo.19.4.681
https://doi.org/10.1097/MOG.0b013e328363affe
https://doi.org/10.1186/1479-5876-11-262
https://doi.org/10.1034/j.1600-0528.2002.017404.x
https://doi.org/10.1016/j.ejca.2006.01.003
https://doi.org/10.1016/j.ejca.2006.01.003
https://doi.org/10.1158/1078-0432.CCR-06-0369
https://doi.org/10.1189/jlb.0909607
https://doi.org/10.1002/jcb.30175
https://doi.org/10.1182/blood-2016-01-693572
https://doi.org/10.1002/jcp.29515
https://doi.org/10.3892/ijo.2014.2553
https://doi.org/10.1038/s41388-017-0086-y
https://doi.org/10.1016/j.devcel.2009.01.009
https://doi.org/10.1111/1744-9987.13912
https://doi.org/10.1186/s12943-022-01569-x
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1038/nm.3394
https://doi.org/10.1007/s10555-013-9444-6
https://doi.org/10.1101/cshperspect.a004952
https://doi.org/10.1038/s41568-020-00322-0
https://doi.org/10.1038/s41568-020-00322-0
https://doi.org/10.1038/s41568-019-0196-7
https://doi.org/10.1158/0008-5472.CAN-09-2223
https://doi.org/10.1016/j.drup.2015.10.002
https://doi.org/10.3389/fimmu.2024.1347683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1347683
Glossary

hdWGCNA high-dimensional weighted gene co-expression network analysis

LRG liver metastasis-related gene

GEO Gene Expression Omnibus

TCGA The Cancer Genome Atlas

PCA principal component analysis

UMAP Uniform Manifold Approximation and Projection

LASSO Least Absolute Shrinkage and Selection Operator

SVM-RFE Support Vector Machine Recursive Feature Elimination

SVM support vector machines

RF Random Forest

ROC Receiver Operating Characteristic

GSVA Gene Set Variation Analysis

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI protein-protein interaction

TF transcription factor

IC50 half-maximal inhibitory concentration

WGCNA Weighted Gene Co-expression Network Analysis

AUC area under the curve

ssGSEA Single-Sample Gene Set Enrichment Analysis

CopyKAT Copy Number Karyotyping of Aneuploid Tumors

NK natural killer cells

PMN Polymorphonuclear neutrophils

ICAM-1 intercellular adhesion molecule-1

TME tumor microenvironment

VEGF vascular endothelial growth factor

Treg regulatory T cells

MDSC myeloid-derived suppressor cells

PAK P21-activated kinase

PAK2 P21-activated kinase 2

CEACAM carcinoembryonic antigen-related cell adhesion molecule

HSPGs Heparan sulfate proteoglycans

HS heparan sulfate

GAG glycosaminoglycan

ECM extracellular matrix

EGF Epidermal Growth Factor

EGFR Epidermal Growth Factor Receptor

NCOA Nuclear Receptor Coactivator

ER estrogen receptor

AR androgen receptor
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