
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Michele Costanzo,
University of Naples Federico II, Italy

REVIEWED BY

Yujun Sheng,
First Affiliated Hospital of Anhui Medical
University, China
Peizhi Deng,
Central South University, China

*CORRESPONDENCE

Xiaolu Fang

15271986198@163.com

Dengyin Bu

xychpsypdy@163.com

†These authors have contributed equally to
this work

RECEIVED 01 December 2023
ACCEPTED 05 April 2024

PUBLISHED 24 April 2024

CITATION

Ma J, Liu D, Zhao J, Fang X and Bu D (2024)
Unraveling the immunogenetic landscape
of autism spectrum disorder: a
comprehensive bioinformatics approach.
Front. Immunol. 15:1347139.
doi: 10.3389/fimmu.2024.1347139

COPYRIGHT

© 2024 Ma, Liu, Zhao, Fang and Bu. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 24 April 2024

DOI 10.3389/fimmu.2024.1347139
Unraveling the immunogenetic
landscape of autism spectrum
disorder: a comprehensive
bioinformatics approach
Jieying Ma1†, Deyang Liu2†, Jianzhong Zhao3, Xiaolu Fang3*

and Dengyin Bu1*
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Science, Xiangyang, China, 2Department of Rehabilitation Medicine, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China, 3Department of Clinical Laboratory, Xiangyang No.1
People’s Hospital, Hubei University of Medicine, Xiangyang, China
Background: Autism spectrum disorder (ASD) is a disease characterized by social

disorder. Recently, the population affected by ASD has gradually increased around

the world. There are great difficulties in diagnosis and treatment at present.

Methods: The ASD datasets were obtained from the Gene Expression Omnibus

database and the immune-relevant genes were downloaded from a previously

published compilation. Subsequently, we used WGCNA to screen the modules

related to the ASD and immune. We also choose the best combination and

screen out the core genes from Consensus Machine Learning Driven Signatures

(CMLS). Subsequently, we evaluated the genetic correlation between immune

cells and ASD used GNOVA. And pleiotropic regions identified by PLACO and

CPASSOC between ASD and immune cells. FUMAwas used to identify pleiotropic

regions, and expression trait loci (EQTL) analysis was used to determine their

expression in different tissues and cells. Finally, we use qPCR to detect the gene

expression level of the core gene.

Results: We found a close relationship between neutrophils and ASD, and

subsequently, CMLS identified a total of 47 potential candidate genes. Secondly,

GNOVA showed a significant genetic correlation between neutrophils and ASD,

and PLACO and CPASSOC identified a total of 14 pleiotropic regions. We

annotated the 14 regions mentioned above and identified a total of 6 potential

candidate genes. Through EQTL, we found that the CFLAR gene has a specific

expression pattern in neutrophils, suggesting that it may serve as a potential

biomarker for ASD and is closely related to its pathogenesis.

Conclusions: In conclusion, our study yields unprecedented insights into the

molecular and genetic heterogeneity of ASD through a comprehensive

bioinformatics analysis. These valuable findings hold significant implications for

tailoring personalized ASD therapies.
KEYWORDS

immune infiltration, characteristic genes, metabolic subclass, autism spectrum
disorders, single cells
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1 Introduction

Autism Spectrum Disorders (ASD), is a prevalent developmental

disorder characterized by impediments in social communication,

deficiencies in both verbal and nonverbal communication,

restricted interests, and repetitive behaviors (1). In recent times,

there has been a gradual rise in the global population affected by

ASD. Currently, it is widely acknowledged that the etiology of ASD is

multifaceted, encompassing genetic, environmental, and

psychological factors, among others (2, 3). Nonetheless, despite

extensive research spanning decades, the underlying causes of ASD

remain elusive, and the existing treatment modalities are far from

adequate, let alone curative.

Although the diagnosis of ASD has posed challenges for an

extended period, the existing biomarkers are insufficient to provide

personalized gene-level treatment (4, 5). However, molecular

subtypes could aid in identifying the heterogeneity among ASD

patients and facilitating the discovery of targeted therapies for ASD

(6). Presently, numerous studies posit that inflammatory cells play a

pivotal role in the pathogenesis of ASD. Extensive clinical and animal

research indicates a strong correlation between inflammation and

mental illnesses as well as neurodegenerative diseases. Furthermore,

certain studies indicate that the activation of inflammatory cells is

also related to central nervous system disorders (3, 5, 7). The

activation of inflammatory cells is associated with various

molecular structures, including cell membrane receptors for central

nervous system signaling molecules, cell membrane channels,

intracellular signal transduction pathways, and activation of

intracellular transcription factors (8). This activation further leads

to the release of proinflammatory factors, such as interleukin-1b (IL-

1b), interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a),
thereby causing neuronal damage and loss (9, 10). Specifically, the

intimate connection between inflammation and ASD can be

attributed to the upregulated expression of proinflammatory

factors, which closely relates to hippocampal and brain

parenchymal damage in newborns.

In this investigation, We first evaluated the immune infiltration

of ASD samples. We also utilized the Weighted Correlation

Network Analysis R software package to determine the module

that was most highly correlated with the ASD and immune cells. To

further limit the selection range of feature genes, we employed

Consensus Machine Learning Driven Signatures (CMLS).

Subsequently, we evaluated the genetic correlation between

immune cells and ASD used GNOVA. And pleiotropic genes

identified by PLACO and CPASSOC between ASD and immune

cells. FUMA was used to identify pleiotropic regions, and

expression trait loci (EQTL) analysis was used to determine their

expression in different tissues and cells. Finally, we use qPCR to

detect the gene expression level of the core gene. In brief, we have

successfully identified 6 core genes that exhibit extraordinary

diagnostic potential and present themselves as promising

therapeutic targets for ASD.
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2 Materials and methods

2.1 Data collection and processing

We devised a comprehensive study flowchart (Figure 1). The gene

expression matrix of ASD patients involved in this study comes from

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/

) database created by the National Biotechnology Information Center.

After screening, three data sets were included, namely GSE6575,

GSE26415 and GSE42133. Subsequently, we first filter the genes

recorded in the three data sets and correct the background to

ensure that the data will not be disturbed. Subsequently, we

logarithmically transformed the data and further normalized it.

Finally, the three data sets are properly merged and batch corrected

by using the Combat method in the “sva” package. GWAS data

acquisition for ASD from the Psychiatric Genomic Consortium

(https://www.med.unc.edu/pgc/results-and-downloads).
2.2 Evaluation of immune infiltration

In this study, many algorithms were used to calculate the

immune infiltration. Firstly, XCELL software package was used to

calculate the gene expression profile of ASD and quantify their

internal immunity and relative abundance of stromal cells.

Subsequent algorithms for evaluating the scores and relative

abundance of immune cells come from EPIC (11), ssGSEA (12),

quanTIseq (13), TIMER (14), CIBERSORT (15), MCPCounter,

XCELL and ESTIMATE.
2.3 Weighted correlation network analysis
and functional enrichment analysis

We utilized the WGCNA software package to construct the

WGCNA network with the aim of identifying gene modules

associated with two subclasses of ASD and the clinical features of

ASD patients (16). To ascertain the optimal threshold, additional

scale-free topological criteria are applied. The cluster tree analysis

encompasses over 50 modules, distinguished based on diverse

colors. The R software package “Cluster Profiler” is utilized to

conduct gene ontology (GO) and Kyoto Gene and Genome

Encyclopedia (KEGG) analyses, elucidating the positions and

pathways of pivotal genes within the cyan module.
2.4 Consensus Machine Learning
Driven Signatures

In this study, we used the following R packages (openxlsx, seqinr,

plyr, randomForestSRC, glmnet, plsRglm, gbm, caret, mboost, e1071,

BART, MASS, snowfall, xgboost, ComplexHeatmap, RColorBrewer,
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pROC) and harnessed the capabilities of 12 machine learning

algorithms. These machines learning included Lasso, Ridge, Enet,

Stepglm, SVM, glmBoost, LDA, plsRglm, RandomForest, GBM,

XGBoost, NaiveBayes. Importantly, several algorithms, such as RF

and Lasso, inherently offer feature selection capabilities. These feature

selection capabilities are instrumental in refining our model, allowing

it to focus on the most predictive attributes. Therefore, we mainly

choose feature variables based on RF or LASSO (17).
Frontiers in Immunology 03
In ML framework, the RF model was implemented via the

randomForestSRC package. RF had two parameters ntree and

rf_nodesize, where ntree represented the number of trees in the

forest and rf_nodesize was the number of randomly selected

variables for splitting at each node. In this study, we set ntree to

1000 and rf_nodesize to 5 for RF model construction. The Enet, Lasso,

and Ridge were implemented via the glmnet package. We utilized the

built-in cv.glmnet function from the glmnet package to perform 10-
FIGURE 1

Flowchart of the research.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347139
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2024.1347139
fold cross-validation. This approach was employed to accurately

determine the optimal value of the lambda parameter, which is

critical for regularization in the Elastic Net model. Additionally, the

alpha parameter was dynamically set within the framework to

distinguish between the Lasso (alpha = 1) and Ridge (alpha = 0)

penalties. The Stepglm was implemented via stats package. A stepwise

algorithm using the AIC (Akaike information criterion) was applied,

and the direction mode of stepwise search was set to “both”,

“backward”, and “forward”, respectively. The SVM was implemented

via e1071 package. This approach allows for the construction of a

hyperplane or set of hyperplanes in a high-dimensional space, which

can be used for classification, regression, or other tasks. Particularly, the

SVM implementation in e1071 is versatile and supports various SVM

kernels. The GBM was implemented using the gbm package. The gbm

function facilitates the construction of the GBM model, which is

particularly adept at handling complex nonlinear relationships within

high-dimensional datasets. In this analysis, this function was employed

to identify the optimal number of trees by minimizing the cross-

validation error through an iterative process. The glmboost model was

implemented using the mboost package. It employs cross-validation to

determine the optimal number of boosting iterations, enhancing model

performance while preventing overfitting. The function supports two

modes: returning the final model for predictions (“Model” mode) or

extracting significant predictors (“Variable” mode), thus facilitating

both predictive accuracy and interpretability of influential variables.

LDA is implemented in your function using the caret package,

emphasizing the use of training data, labels, and cross-validation to

improve model performance. The plsRglm was implemented using the

plsRglm package. The plsRglm mainly conducts cross-validation with

ten folds to optimize model parameters and validate the model’s

predictive performance. This approach aims to enhance model

accuracy while addressing high-dimensionality and multicollinearity

in the dataset. The XGBoost was implemented using the xgboost

package. This function performs 5-fold cross-validation to determine

the optimal number of boosting rounds by minimizing the test log loss,

ensuring a balanced approach between prediction accuracy and model

simplicity.The NaiveBayes was implemented using the e1071 package.

It constructs the model by combining feature data with the target

variable, ensuring the target is treated as a categorical outcome, thus

facilitating both predictive modeling and feature analysis. Finally, in

ML framework, we employ a novel approach by combining two

distinct machine learning algorithms: one for variable selection and

the other for model construction. This methodology leverages the

strengths of different algorithms to enhance the predictive performance

and interpretability of the resulting models.
2.5 Estimate genetic correlation
with GNOVA

We utilized GNOVA to evaluate the impact of single nucleotide

polymorphisms (SNPs) on the genetic inheritance of ASD and

neutrophils. This involved conducting regression analysis on the z-

statistics produced from two separate studies on these traits. The
Frontiers in Immunology 04
studies utilized LD scores precomputed using 1000 Genomes

European data (18, 19). Through this methodology, we estimated

both the heritability (h2) of ASD attributed to SNPs and the overall

genetic correlation (rg) between ASD and neutrophils.
2.6 PLACO

First, we defined the set of SNPs as those located within a

particular gene using the VEGAS annotation file. Then, the P values

of the SNPs within each gene are weighted averaged to obtain a

gene-level P value, and the P values are simultaneously transformed

into Z-statistics. Finally, the newly determined Z-statistic was

subjected to a pleiotropy test using the PLACO method. PLACO

is an innovative method for detecting pleiotropy at the level of SNPs

using the concept of composite null hypothesis from high-

dimensional mediation analysis (20). Previous simulations and

variance-component-based mediation analyses under the

composite null hypothesis have suggested the potential use of this

method to assess validity at the gene level (21, 22). Consequently,

we used it to identify polymorphic associations at the gene level. To

mitigate the impact of excessively large effects, SNPs with extreme

Z2 (>80) values were excluded. PLACO assumes three sub-null

scenarios for each SNP studied using the composite null hypothesis

of pleiotropy: (i) H00: The SNP is not associated with either disease.

(ii) H01: The SNP has an effect only on the first disease. (iii) H02:

The gene has an effect only on the second disease. (is H1: the SNP

effect on both diseases, which represents a pleiotropic relationship.
2.7 Pairwise cross-trait meta-analysis using
Cross Phenotype Association

A pairwise cross-trait meta-analysis was performed utilizing Cross

Phenotype Association (CPASSOC). CPASSOC integrates effect

estimates and standard errors obtained from GWAS summary

statistics. This approach aims to examine the hypothesis of

association between a single nucleotide polymorphism (SNP) and

two traits (23). For this analysis, we utilized the heterogeneous

version of cross-phenotype association (SHet). SHet employs a fixed-

effect model weighted by sample size, rendering it more potent for

detecting heterogeneous effects when they exist among studies (24).
2.8 Functional analysis for
pleiotropic regions

We performed differential expression analysis and gene set

enrichment analysis with FUMA for the pleiotropic genes

analyzed by PLACO and CPASSOC employing FUMA as the tool

(25). expression trait loci (EQTL) analysis will from GTEx and

other database were collected for 53 different tissues, with a final

consideration of 22,146 genes. The resulting gene sets with adjusted

P ≤ 0.05 were reported as significant findings.
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2.9 Experimental specimen

In order to further study the expression level of the selected target

genes in ASD and normal people, we collected new blood samples

(10ml, EDTA anticoagulation) from ASD children and normal

children, with 5 people in each group. Subsequently, the collected

blood was stored at 4 degrees, and serum was obtained by low-speed

centrifugation. The people included in this study are volunteers, who

voluntarily provide blood samples after being fully explained, and pass

the examination and approval of the ethics Committee of the hospital.
2.10 Quantitative reverse−transcription
polymerase chain reaction

In this research, we included 5 ASD and 5 healthy individuals from

Xiangyang No.1 People’s Hospital for qPCR analysis. The gathered

blood was subjected to centrifugation at a speed of 3000 revolutions per

minute for a duration of 10 minutes. Subsequently, the upper portion

of the resulting serum was preserved for mRNA extraction. The Trizol

reagent (Life Technologies, USA) was employed to extract the total

RNA from the serum. Afterwards, cDNA synthesis was conducted

using the RevertAid First Strand cDNA synthesis kit (Fermentas,

Canada) with the isolated total RNA. PCR amplification was

executed using the QuantiTect SYBR Green PCR kit (Qiagen, Inc)

utilizing the ABI Prism 7000 sequence detection system (Applied

Biosystem, CA, USA). The cycling conditions were as follows: an

initial denaturation step at 95°C for 10 minutes, followed by 40 cycles

of denaturation at 95°C for 15 seconds and annealing/extension at 60°C

for 1 minute. The mRNA expression level was determined employing

the 2-△△Ct method, and subsequently normalized to the expression

level of b-actin. All experiments were repeated five times, and the

primer sequences are listed in Table 1.
2.11 Statistical analysis

R language (version 4.2.0) is used for statistical analysis.

Wilcoxon test was used for comparison between groups. P-value <

0.05 were considered as potential associations.
Frontiers in Immunology 05
3 Results

3.1 Association between the ASD and
immune infiltration

The flowchart systematically described our study (Figure 1).

The essence of using the ESTIMATE algorithm to determine the

subgroup characteristics of ASD is to achieve the goal by scoring

immunity and cell matrix. Interestingly, there was a significant

difference in the immune score between the two groups, while the

ASD group showed a higher matrix score (Figure 2A). In order to

further clarify immune infiltration and understand the immune

characterization, we quantified the abundance of 22 kinds of

immune cells in the microenvironment (Figure 2B). Several

immune checkpoint genes found in the ASD group showed

higher levels, suggesting their potential as immunotherapy targets

in the future, including TLR9, TNFRSF4, CTLA4, TNFRSF9,

PDCD1 and PDCD1LG2 (Figure 2C). In addition, ASD showed

different expression levels in six immune cell subgroups, including

Plasma cells, CD8 cells, activated CD4 cells, resting NK cells,

Macrophages M0 and Macrophages M1. It is worth noting that,

unlike the significantly increased gene expression, macrophages of

immune cell subgroup M1 showed significantly high infiltration,

but M2 showed significantly low infiltration risk. Notably, unlike

the significantly increased gene expression, macrophages of

immune cell subgroup M1 showed significantly high infiltration,

but M2 showed significantly low infiltration risk.
3.2 WGCNA

We further applied WGCNA depth analysis to the merged data

set to extract the clinical phenotype related to ASD and immune

cells. When the threshold is 4, the scale-free network and

connectivity show the greatest compatibility (Figure 3A). Further

clustering tree algorithm divides ASD-related genes into six gene

modules, and each module is represented by a special color

(Figure 3B). Among them, cyan modules contain the most genes,

and have the most significant correlation with the poor prognosis of

ASD (R=0.49). Specifically, CD8 cells (R=0.97), endocrine cells

(R = 0.93) and fibers (r = 0.89) showed a strong positive

correlation (Figure 3C). Therefore, the cyan module was selected

as the hub module, and the hub gene was extracted from it by using

the selection criteria cor.MM>0.7 and cor.GS>0.4.
3.3 hub genes of cyan module and Single
cell sequencing analysis

In order to further clarify the diagnostic and therapeutic effects

of feature genes on ASD, we combined common machine learning

algorithms in pairs and evaluated the diagnostic ability of each

feature gene in predicting ASD progression in the internal dataset

through calibration curve and subject operating characteristic

(ROC) curve analysis. The AUC values of pairwise combination

in the training dataset ranged from 0.649 to 0.822, and we chose the
TABLE 1 RT-qPCR primer sequences.

Genes primer sequences

b-actin
F: CATGTACGTTGCTATCCAGGO

R: ATCCTTAATGTCACGCACGAT

IGF2R
F: GTGACCAGCAAGGCACAAATO

R: CACCAAGTAGGCACCACTAAG

UBN1
F: CCTGAATCCTGCGTTTTTGAAG

R: GCAGCGTTTGTGATCTGGTT

CFLAR
F: TCAAGGAGCAGGGACAAGTTA

R: GACAATGGGCATAGGGTGTTATC
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most appropriate RF+Ridge (AUC=0.811) as the final model

(Figure 4; Supplementary Table 1). Subsequently, we compared

the expression of key genes in wild-type and mutant ASD, and

tracked the changes in key genes according to the different ages of

the patients. The single-cell sequencing results indicate that the

transcriptome fragments of the 47 core genes exhibit a consistent

trend (Figure 5).
Frontiers in Immunology 06
3.4 Estimated genetic correlation

Genome-wide single nucleotide polymorphism (SNP)-based

heritability (eri was estimated to for ASD and Neutrophils.

Then, we found a significant positive genetic correlation between

them (r̂g = 0.123, P = 0.0003) by cross-trait genetic correlation

analysis. This link implies a possible common genetic cause
B

CA

FIGURE 3

Identification of ASD feature genes and functional enrichment analysis. (A) The interconnection between network genes shows scale-free network
distribution under soft threshold power. (B) Identification of co-expression gene modules. The branches of the dendrogram clustered into six
modules, each labeled with a unique color. (C) A heat map showing the correlation between modules and characteristic gene sets.
B

C

A

FIGURE 2

Association between ASD subclasses and immune infiltration. (A) Heatmap describing the immune infiltration landscape in the two ASD subclasses.
(B) Boxplots describing the distribution of expression for the immune. (C) TME cells signatures (ns indicates no significance, *P < 0.05, **P < 0.01,
***P < 0.005).
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betweenthem. Hence, it is necessary to further investigate the

genetic mechanism.
3.5 Shared associated pleiotropic regions

Subsequently, pleiotropy analysis we sued by PLACO and

CPASSOC. Therefore, PLACO analysis identified 3187 statistically

significant regions (P < 5E-08) (Supplementary Table S2), with ASD

and Neutrophils. Similarly, we found that 13501 genes were

statistically significant (P < 5E-08) (Supplementary Table S3),
Frontiers in Immunology 07
with ASD and Neutrophils. In the end, we found that PLACO

and CPASSOC identified a total of 16 potential pleiotropic regions

(Supplementary Table 4).
3.6 Functional analysis for
pleiotropic regions

First, we performed gene enrichment analysis using FUMA for

the 16 pleiotropic regions identified. And the EQTL results indicated

that the differentially expressed genes were predominantly enriched

in tissues such as pancreas, liver, heart, blood, brain, and muscle

based on the analysis of expression levels (Supplementary Table 5).
3.7 Expression levels of hub genes

The comparison of serum mRNA expression levels between

patients with ASD and the normal population shows that, b-actin is

basically similar, while the mRNA levels of IGF2R, UBN1 and

CFLAR in plasma of children with ASD showed a significant

downward trend, and the difference was significant (P<0.05),

suggesting that the surge of transcriptome had an impact on the

development of nervous system (Figure 6).
4 Discussion

ASD is a neurodevelopmental condition characterized by

challenges in social interaction, verbal and nonverbal

communication, limited interests and behaviors, and repetitive

patterns (26, 27). These difficulties hinder the ability of children

with ASD to adapt to social and educational settings, impeding their

development and quality of life. Detecting and treating ASD early is

challenging due to its elusive early symptomatology, and untreated

ASD can result in cognitive impairment and compromise learning,

daily functioning, and self-care abilities (28, 29). There is a

consensus among experts that further elucidation of diagnostic

and treatable biomarkers of ASD is essential. Therefore, accurate

characterization and identification of efficient biomarkers are vital

for facilitating early diagnosis and successful treatment.

Interestingly, immunoinfiltration analysis showed that

inflammatory cells represented by neutrophils were closely related

to the occurrence of ASD. Subsequent WGCNA analysis further

supported the significant correlation between neutrophils and ASD.

It should be noted that we calculated the WGCNA of NK cells,

dendritic cells, monocytes and lymphocytes respectively, and the

results all indicated that there was no proper classification.

Therefore, the WGCNA of neutrophils is the most critical. To

further analyze the genomic characteristics of ASD subgroups, we

utilized WGCNA to construct a co-expression network for the

merged data sets. Through this approach, we discovered that the

cyan module was notably consistent, which further substantiates

our assumption. A metabolic-related enrichment analysis reveals

that the most abundant cyan modules are chiefly concentrated in
FIGURE 4

Common machine learning algorithms in pairs and evaluated the
diagnostic ability of each feature gene in predicting ASD progression
in the internal dataset through calibration curve and subject
operating characteristic (ROC) curve analysis.
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carbohydrate metabolism, particularly the TCA cycle. These

metabolic processes mainly occur in the mitochondrial region.

Conversely, any malfunctioning of mitochondria may result in

calcium channel imbalance, increased oxidative stress, and

reduced ability to cope with reactive oxygen species. Ultimately,

this can lead to neuronal damage during early childhood

development and can directly influence the social and

psychological well-being of ASD patients.
In this paper, we use a new method PLACO to determine the

common pleiotropic or common variation between inflammatory

level represented by neutrophils and ASD, and show how it can be

well applied to related traits or traits in sample overlap research.

The results suggest that the high level of neutrophil infiltration

combined with six core genes has a direct positive impact on the

occurrence of ASD, which greatly increases the probability of fetal

ASD. Machine learning algorithms, such as support vector

machine, svm), random forest, RF) and proximity algorithm, have

been widely used in clinic to make intelligent prediction and

decision by automatically learning experience from data, which

has played an important role in improving the diagnosis accuracy

and prognosis prediction of diseases, and has also been widely

reported in the field of nervous system diseases. But the related

research is more based on the simple use of a single learning

algorithm, rather than the joint application of multiple machine

learning algorithms. We combined the above methods and

calculated their accuracy, and finally found that RF+Ridge joint

prediction has the highest value. In our study, the highest accuracy

of machine learning prediction can reach 0.811, which indicates

that the model of this study can deeply combine the metabolism-

related genes and inflammatory cell subtypes of patients and

achieve the purpose of accurate diagnosis. Crucially, we use the

above two machines learning algorithms to further decrease the
Frontiers in Immunology 08
number of central genes. Finally, six central genes were identified,

including IGF2R, UBN1, TECPR2, CFLAR, FRAT2, and MME.

The aberrant activation of signaling cascades mediated by

insulin and the insulin-like growth factor (IGF) family has been

implicated in the pathophysiology of numerous ailments, including

diabetes, cancer, obesity, neurodegenerative disorders, and

musculoskeletal conditions (30–33). Within this extensive family,

the cation-independent mannose 6-phosphate receptor/insulin-like

growth factor II receptor (IGF2R) is commonly referred to as the

“scavenging receptor.” Its primary function involves stabilizing

local IGF levels through internalization and lysosomal

degradation (Figure 7). In the mammalian cerebral cortex, IGF2

plays a critical role as an antisense transcript, contributing to

neuron-specific epigenetic modifications associated with the

lineage of neural stem cells (34). In this study, the most

prominent disparity in hub genes manifests in UBN1, acting as a
FIGURE 5

Key gene expression levels at different time nodes.
FIGURE 6

The mRNA level of b-actin, IGF2R, UBN1, and CFLAR was detected
by qRT-PCR (*P < 0.05).
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constituent of the HIRA histone chaperone complex, primarily

tasked with binding and safeguarding basic histones against non-

specific interactions prior to their deposition into nucleosomes.

During embryonic development, the hira-1 mutation, particularly

in UBN1, incites mitochondrial stress, thereby potentially giving

rise to delayed impairments (35, 36). Notably, reported delayed

human diseases resulting from UBN1 overexpression encompass

Alzheimer’s disease, Parkinson’s disease, and type 2 diabetes.

Crucially, especially with regard to intellectual development,

UBN1 plays a pivotal role in preserving alkaline histones.

Furthermore, our subsequent qPCR findings indicate a significant

increase in UBN1’s serum free mRNA levels in ASD children,

aligning with the lower levels observed in the mut group through

single-cell sequencing. In this study, the most significant is the

significant increase of CFLAR, especially when the blood

neutrophils of ASD patients are maintained at a high level,

suggesting the potential risk of neonatal higher CFLAR inducing

ASD in inflammatory response.

As far as we know, this is the first study to classify ASD from the

perspective of the methods. The screening and verification of

distinctive genes provide potential molecular targets for further

investigating the mechanism of ASD. However, there are some
Frontiers in Immunology 09
shortcomings in this study. First, the comparison of characteristic

genes only comes from the blood of human volunteers, and the

sample size is small. Secondly, there is a lack of in-depth mechanism

exploration based on experimental animals. Finally, including death

records in the included population may lead to some bias in our

results, and the grid analysis of hub genes needs to be further

validated in vitro and in vivo experiments. Therefore, the above

issues are also a hallmark of our future research.

In conclusion, our study yields unprecedented insights into the

molecular and genetic heterogeneity of ASD through a

comprehensive bioinformatics analysis. Furthermore, six essential

genes, namely IGF2R, UBN1, TECPR2, CFLAR, FRAT2, and MME,

have been successfully identified and validated. These valuable

findings hold significant implications for tailoring personalized

ASD therapies. Ultimately, our endeavor aims to enhance our

comprehension of the fundamental mechanisms governing ASD

and facilitate the development of efficacious treatments for this

intricate disorder.
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IGF2R regulates oxidative phosphorylation by changing intracellular
pH, and then affects the expression of inflammatory factors.
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