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Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish

enduring infections and play a part in various diseases. Despite their deployment

of multiple tactics to evade the immune system, both localized and systemic

inflammatory responses are triggered by the innate immune system’s recognition

of them. Recent progress has offered more profound understandings of the

mechanisms behind the activation of the innate immune system by

herpesviruses, specifically through inflammatory signaling. This process

encompasses the initiation of an intracellular nucleoprotein complex, the

inflammasome associated with inflammation.Following activation,

proinflammatory cytokines such as IL-1b and IL-18 are released by the

inflammasome, concurrently instigating a programmed pathway for cell death.

Despite the structural resemblances between herpesviruses, the distinctive

methods of inflammatory activation and the ensuing outcomes in diseases

linked to the virus exhibit variations.The objective of this review is to

emphasize both the similarities and differences in the mechanisms of

inflammatory activation among herpesviruses, elucidating their significance in

diseases resulting from these viral infections.Additionally, it identifies areas

requiring further research to comprehensively grasp the impact of this crucial

innate immune signaling pathway on the pathogenesis of these prevalent viruses.
KEYWORDS

inflammasomes, herpesviruses, innate immunity, inflammatory factors,
signaling pathways
Introduction

The revelation of inflammasomes has revolutionized our comprehension of the innate

immune system. A sensor protein, along with a multicomponent complex comprising

ASC’s caspase recruitment domain and caspase-1, forms the fundamental components of

the classic inflammasome (1). The creation of this intricate structure results in the

generation of pro-inflammatory cytokines, specifically interleukin IL-1b and IL-18,
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alongside the cleavage and initiation of gasdermin D (GSDMD). In

instances where cells encounter pathogenic infections, the

inflammasome’s activation can be triggered (2–4).

IL-18 and IL-1b are primarily synthesized by myeloid cells,

including macrophages and dendritic cells. They play a crucial role

in orchestrating immune responses against both pathogens and

tissue damage (2).The induction of IL-1b serves as a vital early-stage
defense mechanism employed by the host against viral and bacterial

infections (5). Structurally resembling IL-1b, IL-18 primarily

functions by stimulating the secretion of interferon IFN-g from

Th1 cells. Collaborating with IL-12, IL-18 fosters Th1

differentiation, thereby triggering both adaptive and innate host

defense mechanisms against intracellular bacteria, viruses, and

fungi (3, 6, 7).

When cells are infected by pathogens, it can induce the

activation of inflammatory bodies. These entit ies are

predominantly constituted by receptor proteins, apoptosis-

associated speck-like protein containing CARD (ASC), and pro-

caspase-1. The inflammasome activation leads to the initiation of

caspase-1, processing and secreting mature proinflammatory

cytokines such as IL-1b and IL-18, subsequently inducing cell

pyroptosis (8, 9).

In 1992, the observation of rapid lytic cell death in bacterial-

infected macrophages marked a significant milestone, attributed to

the activity of caspase-1 (10). This phenomenon gained the term

“pyroptosis” in 2001, representing a lytic form of programmed cell

death. Pyroptosis in mammalian cells is widely recognized to rely on

gasdermins, a family of pore-forming proteins (11). his family

encompasses GSDMA, GSDMB, GSDMC, GSDMD, GSDME, and

GSDMF (PJVK/DFNB59). The identification of GSDMD as a

downstream effector of the inflammasome in 2015 further

solidified the understanding of pyroptotic mechanisms (12).

dditionally, inflammasome-independent mechanisms activate

other members of the gasdermin family, such as GSDMA and

GSDMB (13). Despite lacking the GSDMD cleavage sequence and

being non-substrates for caspase-11, the expression of the N-

terminal domain of all gasdermins induced pyroptosis in

HEK293T cells (14).

The host’s immune defense system identifies viral genomes and

various pathogenic agents, including pathogen-associated

molecular patterns (PAMPs), using pattern recognition receptors

(PRRs). This immediate defense mechanism is activated by PRRs

recognition, impacting the adaptive immune response (15). PRRs

encompass toll-like receptors (TLRs), retinoic acid-inducible gene-

like receptors (RLRs), nucleotide-binding domain-like receptors

(NLRs), and AIM2-like receptors (ALRs). TLRs can respond to

various ligands. Their activation leads to the stimulation of nuclear

factor-kappa B (NF-kB) and interferon regulatory factor 3/7 (IRF3/

7). The signaling of IRF3/7 initiates the production of type I

interferons (IFNs) and pro-inflammatory cytokines, which

include pro-IL-1b (16). The nuclear translocation of NF-kB
results in the gene transcription vital for inflammasome signaling,

encompassing pro-IL-1b, pro-IL-18, and pro-caspase-1 (17). It’s

noteworthy that the initiation of several inflammasomes doesn’t

indispensably depend on this initial activation step (18, 19). The

activation phase, as the second step, necessitates the sensor protein’s
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recognition of its corresponding signal. This leads to ASC

oligomerization, inflammasome assembly, and the cleavage of

pro-IL-1b and pro-IL-18 by caspase-1. Multiple sensor proteins

can initiate this activation step, detecting various PAMPs and

danger-associated molecular patterns (DAMPs). Typically, these

sensor proteins belong to the NLR family, like NLRP1, NLRC4, and

NLPR3 (20, 21). For instance, the activation of the NLRP3

inflammasome by herpes simplex virus 1 (HSV-1/HHV-1), and

the activation of the AIM2 inflammasome (17) by cytomegalovirus

(CMV/HHV-5) (20–22). Studies indicate that AIM2 can discern the

intricate structure of bacteria, viruses, and even the host’s double-

stranded DNA (dsDNA). This recognition, in turn, triggers

downstream inflammatory signaling pathways (23, 24). Upon

recognition of viral DNA by AIM2, it has the capability to enlist

the adaptor protein ASC, forming an inflammasome in conjunction

with caspase-1. The activated caspase-1 precisely cleaves pro-IL-1b
and pro-IL-18, resulting in the secretion of mature IL-1b and IL-18,

respectively (25). This activation of caspase-1 initiates the cleavage

of pro-IL-1b and pro-IL-18, leading to the subsequent release of

mature IL-1b and IL-18.

This review will concentrate on the canonical inflammasomes

dependent on caspase-1. Besides the cleavage of IL-1b and IL-18,

caspase-1 also induces the cleavage of GSDMD. Subsequently,

GSDMD creates pores in the plasma membrane, causing cell

death through pyroptosis and facilitating the release of IL-1b and

IL-18 (26).
Herpes virus is a common pathogen

Herpesviruses represent prevalent pathogens in the human

population, capable of inducing a variety of illnesses, spanning

from unnoticed infections to afflictions such as tumorigenesis,

retinitis, and fatal encephalitis. The virions of Human

Herpesviruses (HHVs) showcase a capsid with an icosahedral

structure, enveloping a genome consisting of double-stranded

DNA. Surrounding the capsid is a protein layer known as the coat,

devoid of structure, and an outer envelope comprising a lipid bilayer

decorated with glycoproteins. Classified into three subfamilies—a-,
b-, and g-herpesviruses—HHVs possess the unique ability to

establish latent infections that endure throughout an individual’s

lifetime (27). Herpesvirus A comprises HSV-1 and HSV-2. Although

the majority of immunocompetent individuals undergo a mild, self-

limiting illness after HSV infection, it may result in diverse conditions

like cold sores, genital herpes, herpes stromal keratitis, eczema

herpeticum, disseminated disease in newborns, meningitis, and

herpes simplex encephalitis (28). Despite displaying a wide cell

tropism, these viruses lay dormant in ganglia along the neural axis

until reactivation transpires, leading to the recurrence of viral

shedding or the manifestation of the disease (27). HSV-1 and

HSV-2 exhibit high prevalence rates in adults, infecting over half of

the population with either or both viruses (29–31). CMV, HHV-6A,

HHV-6B, and HHV-7 belong to the herpes b viruses. These viral

entities possess the capability to establish latent infections in

lymphocytes and other hematopoietic cells (32). In the United

States, cytomegalovirus infects approximately 40 to 60% of
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individuals by adulthood, attaining almost 100% seroprevalence in

certain global regions (33, 34). Among them, CMV holds clinical

significance, emerging as the primary culprit behind neonatal

complications and occurrences in immunosuppressed populations

(32, 35, 36). Encephalitis caused by acute HHV-6 may stem from

inherent immune system anomalies related to the virus. Isolated

acute HHV-6 infection can lead to encephalitis in individuals with

inherited primary immunodeficiencies, especially those with

autosomal recessive (AR) partial IRAK-4 deficiency. The

manifestation of severe viral diseases, notably HHV-6 encephalitis

upon acute infection, characterizes AR IRAK-4 deficiency (37).

The g Herpesvirus subfamily includes the EBV/HHV-4 and

KSHV/HHV-8. Worldwide, EBV affects 70% to 95% of adults,

typically acquired during childhood. It predominantly dwells in

memory B cells. Although initial infection frequently shows no

symptoms, it has the potential to induce mononucleosis in

adolescents and adults. This condition is characterized by

manifestations such as fever, malaise, myalgia, pharyngitis, palatal

petechiae, cervical lymphadenopathy, splenomegaly, and atypical

lymphocytosis (38).BV is also correlated with numerous malignant

tumors, and EBV is associated with diverse malignancies, including

nasopharyngeal carcinoma (NPC) and Burkitt lymphoma (BL) (27,

39, 40). Varied expression of latent EBV genes in oral SCC, ranging

from 15% to 70%, has been reported, but the role of EBV in oral

squamous cell carcinoma (SCC) remains uncertain (41, 42). KSHV

displays higher seroprevalence in sub-Saharan Africa (30%-50%)

and the Mediterranean region. It serves as a prevalent pathogen in

AIDS-related malignant tumors, such as Kaposi’s sarcoma (KS),

primary effusion lymphoma (PEL), multicenter Castleman’s disease

(MCD), and KSHV inflammatory cytokine syndrome (KICS).

These conditions predominantly impact individuals with

compromised immune function (43, 44).

The impact of inflammasome
activation varies in diseases caused
by herpesviruses

Inflammasome activation is a prevalent occurrence during viral

infections. Throughout the viral infection progression, it

participates in recognizing innate immunity and initiating

inflammatory responses. Recent studies have documented

instances of inflammasome activation in infections induced by

influenza virus, hepatitis C virus, human immunodeficiency virus

(HIV), and herpesviruses (45–48). Subsequently, we shall delineate

the influence of inflammasome activation in the course of

alphaherpesvirus infections.

Data derived from mouse models of HSV-1 and HSV-2

infection strongly affirm the vital function of inflammasome

activation in averting and alleviating diseases. Mice with an IL-1b
knockout (KO) exhibit markedly increased susceptibility to lethal

HSV-1 encephalitis when contrasted with wild-type (WT) mice

(49). This emphasizes the paramount significance of IL-1b,
generated by monocytes/macrophages in the early stages of

infection, in providing protection against excessive disease

manifestation (50). Similarly, research indicates the advantageous
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role of IL-18 in activating Natural Killer (NK) cells, offering defense

against fatal HSV-1 pneumonia and HSV-2 genital disease (51–55).

Furthermore, IL-18 potentially aids in ameliorating ocular lesions

associated with herpetic stromal keratitis (HSK) (56). In a study

utilizing the mouse HSK model, it was observed that mice lacking

NLRP3 (NLRP3 KO) exhibit more pronounced HSK lesions

compared to their wild-type (WT) counterparts (57). Research

also suggests that HSV-1 initiates Gasdermin D-dependent

pyroptosis through the activation of NLRP3 inflammasomes in

microglial cells in mice, resulting in the generation of IL-1b and

caspase-1. The suppression of HSV-1-induced Gasdermin D-

dependent pyroptosis can be achieved by inhibiting the activation

of NLRP3 inflammasomes in microglial cells (58).

Nevertheless, certain investigations propose that inflammasome

activation might be harmful to the host during HSV-1/HSV-2

infections. For instance, the presence of IL-1b has the potential to

stimulate HSV-1 proliferation in neurons (59). In a mouse model of

herpetic keratitis, highly virulent HSV-1 induces a stronger

inflammatory response associated with severe corneal lesions. The

virulence of HSV-1 is implicated in the synchronized early

induction of NLRP3, NLRP12, and IFI16 inflammasomes, leading

to destructive inflammatory responses, which are associated with

increased cleavage of Caspase-1, IL-1b, and IL-18 (60). In a model

of encephalitis, HSV-1 infection led to decreased inflammation and

lower mortality in mice lacking ASC and NLRP3, as opposed to the

WT mice (61). Furthermore, in a model of genital infection, the

pathology of HSV-2 is linked to IL-18 (62). These findings indicate

varied inflammasome activation roles in distinct diseases, possibly

associated with the disease nature, its progression, or other

undisclosed factors.

Limited documentation exists regarding inflammasome

activation in the context of VZV infection. The initiation of

NLRP3 inflammasome assembly and the production of IL-1b by

VZV occur in diverse human cell lines that facilitate VZV

replication. In a model involving skin xenografts in severe

combined immunodeficiency (SCID) mice, VZV prompts the

activation of the NLRP3 inflammasome (63). In a VZV-related

postherpetic neuralgia (PHN) rat model, diminishing the secretion

of IL-1b and IL-18 proves advantageous in alleviating PHN. This

implies that the activation of the inflammasome may inflict harm in

the context of PHN (64). Nevertheless, the question of whether

inflammasome activation benefits the host in VZV infection or is

essential for efficient virus dissemination remains uncertain.

The impact of inflammasome activation amid CMV infection

remains somewhat ambiguous. HCMV demonstrates the capability

to invade nearly all organs and cells within the body, residing within

arterial smooth muscle cells and vascular endothelial cells. This

presence results in vascular lesions linked to diverse cardiovascular

diseases. In a particular investigation, it was observed that CMV

infection induces the upregulation of ETAR by suppressing the

expression of miRNA-1929-3p in the host. This, in turn, triggers the

activation of the NLRP3 inflammasome, fostering the proliferation

of vascular smooth muscle cells and contributing to the initiation

and progression of hypertension (65). Consequently, these findings

indicate a pivotal role of NLRP3 in cardiovascular diseases induced

by CMV.
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HHV6 encompasses two distinct viruses, HHV6A and HHV6B,

prevalent in the human population. A limited-scale investigation

did discern a potential association between the copy number of

HHV-6 and the levels of IL-1b in children experiencing febrile

convulsions. Earlier research has demonstrated the detection of

HHV-6 DNA in the bloodstream of a minor fraction of patients

undergoing febrile convulsions. Furthermore, elevated IL-1b
concentrations are observable in the saliva of convulsing children.

Notably, the copy number of HHV-6 exhibits a positive correlation

with IL-1b levels in saliva (66). It is widely believed that systemic

HHV6 infection with high levels of HHV6 and viremia can induce

acute myocarditis. In another study reported, mild myocarditis was

not associated with the presence of low levels of HHV6 DNA, and

the NLRP3 pathway did not appear to be modulated (67). Herpes

simplex virus type 1 (HSV-1) infects more than 50% of the global

population, and infection of the cornea with HSV-1 can lead to

subclinical inflammation, which can develop into mild epithelial

herpetic keratitis, or it can spread deeper in the corneal stroma and

develop into more severe inflammatory disease. In coulon et al.,

expression levels of NLRP3, NLRP12, and IFI16 inflammatory

bodies were associated with severe corneal inflammatory herpes

disease (68).

Concerning the activation of inflammasomes in EBV-related

illnesses, the onset of EBV-induced infectious mononucleosis

results in an upsurge of IL-18 levels in plasma and a substantial

increase in IL-18 within lymphoid tissue (69). Similarly, children

experiencing acute EBV infection exhibit elevated IL-1b levels in their
tonsils (70). These initial investigations propose a correlation between

acute EBV infection and inflammasome-driven cytokines within the

body. In a recent examination, tumor cells positive for EBV

demonstrated a high expression of HMGB1 and sustained the

presence of the EBV-dissolving switch ZEBRA through NLRP3.

This mechanism facilitated the replication and release of virions

(71). Furthermore, the connection between the activation of the EBV

replication switch and EBV PTLD, mediated by diabetes-associated

inflammatory bodies, is evident in these correlations (72).

Substantial evidence indicates the activation of inflammasomes

in diseases induced by KSHV. The herpes virus KSHV is linked to

Kaposi’s sarcoma, characterized as an angioplastic tumor formation

that necessitates a consistent IL-1b environment. Functioning as a

cytoplasmic sensor for foreign molecules, the inflammasome can

independently trigger caspase-1 activation and the maturation of

IL-1b cytokine. This, in turn, establishes a stable environment

conducive to the development of angioplastic tumors (73). Earlier

research has also identified elevated IL-1b levels in KS patients, and

when introduced to cultured KS cells, IL-1b actively promotes

tumorigenesis (74, 75). In summary, these findings suggest that

inflammasome activation seems to promote tumorgenesis. In

addition, these discoveries imply that inflammasome activation

appears to contribute to tumorigenesis. Additionally, during the

latent infection phase of KSHV, the activation of inflammatory

bodies and IL-1b inhibit the reactivation of KSHV from latency,

favoring the incubation of KSHV (73). Table 1 summarizes the

effects of various inflammasome activations on herpes virus-

associated disease.
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Infection with herpesviruses can
trigger multiple inflammasomes

In herpesvirus pathogenesis, the pivotal roles of IL-1b and IL-18
necessitated the use of additional methods to illustrate the direct

activation of the inflammasome by HSV-1. Early investigations into

the AIM2 inflammasome unveiled that HSV-1 triggers its activation

in macrophages, independently of the dsDNA sensor (76).

Subsequently, the viral protein VP22 was identified as a specific

inhibitor of the AIM2 inflammasome during HSV-1 infection (77),

suggesting the participation of alternative sensors in HSV-1

infection. Notably, NLRP3 consistently takes center stage in HSV-

1 inflammasome activation, as observed in keratinocytes (78),

human foreskin fibroblasts (HFFs) (22), and macrophages (79).

The mechanism through which HSV-1 activates NLRP3 involves

the stimulator of interferon genes (STING), which recruits NLRP3

to the endoplasmic reticulum, initiating inflammasome activation

by modulating K48- and K63-linked polyubiquitination (80). The

activation of other inflammasomes by HSV-1 is contingent upon

the specific infection models employed.

The proposed role of the AIM2 inflammasome involves

functioning in keratinocyte infection and specific mouse models
TABLE 1 the effects of various inflammasome activations on herpes
virus-associated disease.

virus Effect on clinical disease reference

HSV-1 IL-1b has a protective effect against encephalitis
caused by HSV-1.

(49, 50)

HSV-
1/
HSV-2

IL-18 facilitates the activation of natural killer cells
and provides protection against fatal HSV-1
pneumonia and HSV-2 genital disease.

(51–55)

IL-1b induces the proliferation of HSV-1 in
neurons, leading to more severe herpetic keratitis
in mice.

(59, 60)

In a model of encephalitis, HSV-1 infection led to
decreased inflammation and lower mortality in mice
lacking ASC and NLRP3, as opposed to the
WT mice.

(61)

VZV Reducing the release of IL-1b and IL-18 was
beneficial for improving post-herpes zoster neuralgia
in mice infected with vzv.

(64)

CMV CMV infection can activate the NLRP3
inflammasome and promote the occurrence and
development of hypertension.

(65)

HHV6 IL-1b was positively correlated with HHV-6 copy
number in saliva of children with convulsion.

(66)

EBV Ebv-induced infectious mononucleosis results in
elevated levels of IL-18 in plasma and maintains the
expression of EBV-dissolving switch ZEBRA via
NLRP3, thus promoting the replication and release
of virions.

(69–72)

KSHV Inflammasome activation and IL-1b can inhibit the
reactivation of KSHV from the incubation period,
promote the incubation period of KSHV, and
promote the development of tumors.

(73–75)
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(60, 81). In HFFs, the sensing of HSV-1 by IFI16 is thought to

trigger inflammasome activation. However, neither AIM2 nor IFI16

is deemed necessary for inflammasome activation in macrophages

(63, 82). During HSV-1 infection in mice, proteins like NLRP12

experience upregulation, yet their essentiality for or direct

participation in HSV-1-induced inflammasome activation remains

uncertain (83). Although NLRP3 appears to be the primary

inflammasome activated in HSV-1 infection, there is a possibility

of other inflammasomes being activated in specific cell types

or tissues.

Aside from the acknowledged AIM2-inhibitory role of VP22, it

remains uncertain whether HSV-1 encompasses additional

elements for inflammasome inhibition or regulation. ICP0 is

believed to diminish the induction of NLRP3 and IFI16 in HFFs,

while replication-dependent factors might impede NLRP3

inflammasome activation in macrophages (84, 85). The direct

influence of inflammasome activation on HSV-1 replication is not

clear, creating an open field of investigation into viral regulation of

inflammasome activation.

Limited research has delved into the mechanism of VZV-

induced inflammasome activation. Data indicates its activation of

the NLRP3 inflammasome in at least three cell types permissive for

VZV replication in vitro (86).

Though CMV is recognized for robustly triggering innate

immune signaling, recent discoveries indicate that CMV’s

activation of the inflammasome relies on AIM2 and is bolstered

by STING (87). In vitro, the growth of CMV is impeded by IL-1b,
and CMV’s immediate early 86 kDa protein (IE-86) restrains the

release of IL-1b from cells infected by CMV (88). This underscores

the vital significance of inflammasome regulation during CMV

infection, influencing both the viral life cycle and pathogenesis.

EBV infection induces the elevation of IFI16 and NLRP3

inflammasomes in both primary and latent infections, confirming

their activation by EBV and subsequent facilitation of IL-1b
maturation. IFI16, an innate immune sensor situated in the

nucleus and irrespective of DNA sequence, detects the nuclear

replication process of EBV within infected nuclei (73, 89). Upon

recognition, it forms an inflammasome complex with ASC and pre-

caspase-1, initiating the synthesis of IL-1b and IL-18. Additionally,

infection with Herpes simplex virus (HSV) also instigates the

creation of NLRP3 inflammasomes and consequent IL-1b
production in human TH-1 cells, fibroblasts, and melanoma cells

(61). Remarkably, AIM2 does not contribute to NLRP3

recruitment, underscoring distinct secretion pathways for various

inflammasome types. In the absence of AIM2, EBV infection

activates the NLRP3 inflammasome complex through caspase-1

activation, fostering the maturation of IL-1b and IL-18 (81, 90).

Macrophages play a crucial role in PRV replication, acting as

the primary source of proinflammatory cytokines. Past studies have

revealed that PRV infection initiates GSDMD-dependent

pyroptosis through the assembly of two inflammasomes: the

NLRP3 inflammasome and IFI16 inflammasome. This process is

characterized by the release of lactate dehydrogenase (LDH) and the

secretion of IL-1b (91). Viral proteins, including SARS-CoV-2 N

and E proteins, can activate the NLRP3 inflammasome, leading to
Frontiers in Immunology 05
excessive inflammation. This implies that viral replication or

protein production is vital for PRV-induced inflammatory

responses, as it triggers the NLRP3 inflammasome and

contributes to cell death in PRV-infected 3D4/21 cells. The

activation of the NLRP3 inflammasome is also observed in the

brains of mice infected with PRV, resulting in the formation of the

NLRP3-ASC-CasP1 complex. To further investigate this process,

we will establish a porcine NLRP3 inflammasome system by

transfecting plasmids encoding the three components of the

inflammasome (NLRP3, ASC, CASP1), along with the pro-IL-1b
substrate (92). In summary, PRV infection triggers both NLRP3

inflammasome activation and IL-1b secretion.

Bovine herpesvirus 1 (BoHV-1) is a viral pathogen that induces

inflammation in cattle by infiltrating and inflaming tissues. In the

course of acute infection, two essential components for

inflammasome formation, namely the DNA sensor IFI16 and

NLRP3, are triggered in bovine kidney cells. IFI16 can be

identified in punctate particles within the cytoplasm and nucleus

(93). During productive infection, there is a notable surge in the

number of cells exhibiting positive results for caspase 1, an enzyme

activated subsequent to inflammasome formation. These

discoveries indicate that BoHV-1 infection instigates

inflammasome formation and furnishes proof of caspase 1

activation. However, the influence of caspase 1 on CRIB cell-

induced infection is not substantial, underscoring the necessity

for further research to comprehend the mechanism of BoHV-1-

induced inflammasome.

KSHV has been discovered to harbor DNA and transcripts in

various human cell types, including B cells, endothelial cells,

epithelial cells, macrophages, and keratinocytes. In the course of

KSHV infection, the inflammasome’s activation necessitates IFI16

and results in the conversion of pre-IL-1b into active IL-1b (94).

The expression of IFI16 in endothelial cells correlates with ASC, a

crucial participant in inflammasome assembly. The process involves

the oligomerization and pre-recruitment of caspase-1 through ASC

upon the recognition of diverse stimuli by sensor proteins. Caspase-

1 self-cleavage leads to the formation of active caspase-1 p10/p20

tetramers. Following activation, caspase-1 cleaves the inactive pre-

forms of IL-1b and IL-18, releasing these cytokines (90). The

indispensable role of IFI16 or ASC in virus-induced caspase-1

processing was demonstrated using short hairpin RNA (shRNA)

targeting them. Previously, IFI16 was not regarded as an

inflammasome activator due to its inability to effectively activate

the inflammasome when overexpressed, in contrast to AIM2

function (91). IFI16 expression in endothelial cells is associated

with ASC which plays a crucial role in the assembly of

inflammasomes. Inflammasome assembly involves the

oligomerization and pre-recruitment of caspase-1 through ASC

upon recognition of various stimuli by sensor proteins. The self-

cleavage of caspase-1 leads to the production of active caspase-1

p10/p20 tetramers. Subsequently, activated caspase-1 cleaves the

inactive pre-forms of IL-1b and IL-18 to secrete these cytokines

(95). The essential role of IFI16 or ASC in virus-induced caspase-1

processing was demonstrated using short hairpin RNA (shRNA)

targeting them.Previously, IFI16 was not considered as an
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inflammasome activator due to its inability to constructively

activate the inflammasome when overexpressed, unlike AIM2

function (77). The activation of the AIM2 inflammasome is

triggered by DNA, resulting in caspase-1 activation and the

release of pro-inflammatory cytokines IL-1b and IL-18, which

play crucial roles in the host’s innate immune response against

various pathogens. Despite some viruses employing strategies to

counteract the inflammasome-mediated induction of pro-

inflammatory cytokines, their relevance in vivo remains unclear.

Polymorphisms in regulatory proteins within the IL-18 pathway,

including IL-18 receptor and IL-18 receptor helper proteins, have

been reported to be associated with positive HSV-1, HSV-2, and

human cytomegalovirus seropositivity (73, 96). However, the

intricate interactions between KSHV and inflammasome

responses have not been fully elucidated yet.
Conclusions

The current data emphasizes the importance of the interaction

between herpesviruses and inflammasome signaling. This

interaction influences not only the viral life cycle but also the

development of diseases associated with herpesviruses. However,

it is evident that the mechanism of inflammasome activation and its

consequences on the host are distinct for each herpesvirus,

potentially varying within specific infected cells or tissues.

Consequently, findings from studies on one herpesvirus cannot be

extrapolated to other members of the herpesvirus family and must

be approached with caution when considering other infection

models for the same virus. Further exploration into the

implications of inflammasome activation on diseases induced by

herpesviruses, as well as the ways in which herpesviruses trigger and

regulate inflammasomes, is imperative. This is especially crucial as

inflammasome modulators progress through clinical trials. The

open question remains whether these therapeutics can enhance

herpesvirus-related diseases or potentially exacerbate these

pathologies. HHV infections are widely prevalent, and it is still

crucial for the scientific community to thoroughly investigate their
Frontiers in Immunology 06
impact on herpesvirus-related diseases before the extensive

application of inflammasome modulators.
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