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Glioma, as the most frequently occurring primary malignancy in the central

nervous system, significantly impacts patients’ quality of life and cognitive

abilities. Ferroptosis, a newly discovered form of cell death, is characterized by

significant iron accumulation and lipid peroxidation. This process is

fundamentally dependent on iron. Various factors inducing ferroptosis can

either directly or indirectly influence glutathione peroxidase, leading to

reduced antioxidant capabilities and an increase in lipid reactive oxygen

species (ROS) within cells, culminating in oxidative cell death. Recent research

indicates a strong connection between ferroptosis and a range of

pathophysiological conditions, including tumors, neurological disorders,

ischemia-reperfusion injuries, kidney damage, and hematological diseases. The

regulation of ferroptosis to intervene in the progression of these diseases has

emerged as a major area of interest in etiological research and therapy. However,

the exact functional alterations and molecular mechanisms underlying

ferroptosis remain to be extensively studied. The review firstly explores the

intricate relationship between ferroptosis and glioma, highlighting how

ferroptosis contributes to glioma pathogenesis and how glioma cells may resist

this form of cell death. Then, we discuss recent studies that have identified

potential ferroptosis inducers and inhibitors, which could serve as novel

therapeutic strategies for glioma. We also examine the current challenges in

targeting ferroptosis in glioma treatment, including the complexity of its

regulation and the need for precise delivery methods. This review aims to

provide a comprehensive overview of the current state of research on

ferroptosis in glioma, offering insights into future therapeutic strategies and the

broader implications of this novel cell death pathway in cancer biology.
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Introduction

In 2003, Dolma and team identified a novel compound, erastin,

with a unique ability to selectively kill cancer cells expressing the

RAS gene, marking a departure from known cell death mechanisms

(1). This process lacked traditional signs like nuclear morphological

changes, DNA fragmentation, or caspase activation and was

unaffected by caspase inhibitors. Further studies by Yang and

Yagoda revealed that this type of cell death could be thwarted by

iron chelators, and they also discovered RSL3, another compound

capable of inducing the same cell death pattern (2, 3). In 2012,

Dixon et al. coined the term “ferroptosis” for this form of cell death

while investigating how erastin killed RAS-mutant cancer cells (4)

(see Figure 1). Ferroptosis is characterized morphologically by

decreased mitochondrial volume, denser mitochondrial bilayer

membranes, and often diminished or absent mitochondrial cristae

yet with an intact cell membrane, normal-sized nucleus, and no

chromatin condensation (2, 4–6). Biochemically, it involves the

depletion of intracellular glutathione (GSH) and a decrease in

glutathione peroxidase 4 (GPX4) activity , leading to

unmetabolized lipid peroxides (7–10). The presence of Fe2+

causes a Fenton-like oxidation of lipids, resulting in a surge of

ROS that promotes ferroptosis (2, 11, 12). Genetically, it’s regulated

by multiple genes, primarily those associated with iron homeostasis

and lipid peroxidation metabolism, though the specific mechanisms

are still under investigation.

Ferroptosis inducers are categorized into four groups. The first

includes erastin, which reduces GSH levels by inhibiting system Xc-

and affects voltage-dependent anion channels (VDACs) for

mitochondrial dysfunction. Erastin also enhances lysosomal-

associated membrane protein 2a, promoting chaperone-mediated

autophagy and GPX4 degradation (13–16). The second category,

with members like RSL3 and DPI7, directly inhibits GPX4 (17, 18).

The third category features FIN56, which induces ferroptosis by

promoting GPX4 degradation and binding to squalene synthase,

leading to coenzyme Q10 (COQ10) depletion and enhanced cell
Frontiers in Immunology 02
sensitivity to ferroptosis (19–21). Lastly, FINO2, resembling

artemisinin, causes ferroptosis through labile iron oxidation and

GPX4 inactivation (21–23). Research has also unearthed specific

ferroptosis inhibitors like ferrostatin-1 (Fer-1), liproxstatin-1, and

vitamin E, along with iron chelators, which prevent lipid peroxide

formation. In 2014, Skouta et al. found that Fer-1 inhibited cell

death in models of Huntington’s disease (HD), periventricular

white matter (PVL), and renal insufficiency, highlighting the

potential of ferrostatin in disease models and emphasizing the

significance of ferroptosis beyond cell culture (24). The discovery

of ferroptosis thus opens new avenues for understanding and

treating various diseases (see Figure 2).

Glioma, the most prevalent primary brain tumor, represents

about 50-60% of central nervous system (CNS) tumors and roughly

81%’, of all intracranial malignancies (25, 26). Compared to other

CNS tumors, gliomas exhibit notably higher recurrence rates. The

World Health Organization (WHO) grades gliomas from 1 to 4,

with grades 1 and 2 being low-grade and grades 3 and 4 as high-

grade gliomas (27). The median overall survival (OS) for patients

with low-grade gliomas is about 11.6 years, but this significantly

drops to around three years for grade 3 gliomas and approximately

15 months for those with grade 4 gliomas (28, 29). Despite current

treatments like surgical resection, radiotherapy, chemotherapy,

novel molecular targeted therapies, and immunotherapy, patient

outcomes remain largely unsatisfactory, with a dire prognosis. This

underscores the urgent need for new therapeutic approaches and

targets to enhance OS and life quality in glioma patients.

Traditionally, cell death includes necrosis, apoptosis, autophagy,

and pyroptosis (30). However, the recent focus has shifted to

ferroptosis, a novel non-apoptotic form of cell death caused by

iron-dependent lipid peroxidation, garnering increased research

interest (4, 31, 32). In this review, we will primarily concentrate

on the key molecular processes of ferroptosis and its possible effects

on the development and treatment of gliomas, especially GBM.

Additionally, we will offer a summary of the difficulties associated

with using ferroptosis in glioma treatment and explore the
FIGURE 1

The development of ferroptosis in cancer research.
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therapeutic possibilities of leveraging ferroptosis to enhance

treatment outcomes.
Discovery and characteristics
of ferroptosis

The concept of “ferroptosis,” first introduced by Dixon and

others in 2012, was preceded by a similar type of cell death termed

“oxytosis” identified by Murphy and colleagues in 1989 (33).

Oxytosis, caused by cysteine depletion in neurons, was linked to

the inhibition of SLC7A11, a component crucial in ferroptosis. Both

oxytosis and ferroptosis share similarities like gene expression

patterns, lipoxygenase activity, and reactive oxygen species

accumulation (34). By 2003, a unique form of cell death in RAS-

expressing cancer cells, not prevented by caspase inhibitors but

mitigated by iron-chelating agents, was observed (1, 3). This led to

the discovery that RSL3, a RAS-selective lethal small molecule,

could also induce this iron-dependent cell death, which Dixon et al.

named ferroptosis (2).

Morphologically, ferroptosis is marked by mitochondrial changes

such as shrinkage and decreased cristae. Biochemically, it involves

oxidative stress and reduced antioxidative defense. The exact

mechanisms, particularly how phospholipid peroxidation triggers

ferroptosis and its specific epilipidomic patterns in different tissues

and diseases, are still being researched. Emerging research has begun

to reveal key regulators of ferroptosis. For instance, the glutathione/

glutathione peroxidase 4 pathway, ACSL4, and selenium’s protective

role against ferroptosis have been identified. The FSP1-CoQ10-NAD

(P)H pathway and the GCH1-BH4 pathway were also recognized as

GPX4-independent mechanisms influencing ferroptosis (35, 36).

Recently, the DHODH-CoQ10 axis in the mitochondrial inner

membrane and vitamin K’s role as an FSP1-dependent ferroptosis
Frontiers in Immunology 03
inhibitor were discovered, highlighting the expanding understanding

of this cellular process (37).
Molecular mechanisms of ferroptosis

In 1984, J.M. Gutteridge discovered that iron salts can initiate lipid

peroxidation by converting lipid peroxides into alkoxyl and peroxyl

radicals (38). He also found that iron, when combined with ethylene

diamine tetraacetic acid (EDTA), can start lipid peroxidation by

reacting with hydrogen peroxide (H2O2) to create hydroxyl radicals

(•OH) (38). This research laid the groundwork for understanding iron-

dependent cell death. Additionally, it was observed that external

glutamate can trigger cell death by inhibiting cystine uptake via xCT,

leading to reduced glutathione production. This process, known as

oxytosis, is reliant on oxidative stress and reactive oxygen species (ROS)

production and set the stage for the concept of ferroptosis.

In 2012, Brent R. Stockwell defined ferroptosis as a new form of

programmed cell death, specifically emphasizing its role in iron-

dependent cell death in cancer cells. The molecular mechanisms of

ferroptosis are distinct from other well-known forms of regulated

cell death (RCD). Key biochemical events in ferroptosis include the

accumulation of excess iron and ROS in cells, extensive lipid

peroxidation, inactivation of xCT, and the depletion of

glutathione and lipid repair enzymes. This understanding marks a

significant advancement in the study of cell death and its

implications in diseases like cancer (39–41).
Iron metabolism

Iron plays a crucial role in regulating ferroptosis, not only by

triggering the non-enzymatic Fenton reaction that directly oxidizes
FIGURE 2

Ferroptosis is significantly involved in a variety of systemic diseases, including disorders of the nervous system, cardiac diseases, hepatic diseases,
gastrointestinal conditions, pulmonary diseases, renal diseases, pancreatic disorders, among others.
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polyunsaturated fatty acid-phospholipids (PUFA-PLs), but also by

serving as a vital cofactor for enzymes involved in lipid

peroxidation, such as ALOX and POR (42–45). Under normal

circumstances, cells maintain a relatively stable level of labile iron

through a finely tuned balance of iron absorption, use, storage, and

export. However, disruptions in these iron metabolism processes

can either accelerate or inhibit ferroptosis, depending on whether

they increase or decrease the intracellular labile iron pool. For

instance, most intracellular iron is stored as inert iron within

ferritin. The autophagic breakdown of ferritin, known as

ferritinophagy, releases iron from ferritin into the labile iron pool.

Blocking NCOA4-mediated ferritinophagy lowers the labile iron

pool and thus inhibits ferroptosis (46, 47). On the other hand,

promoting ferritinophagy, such as by inhibiting cytosolic glutamate

oxaloacetate transaminase 1 (GOT1), increases the labile iron pool

and encourages ferroptosis. The exact mechanism by which GOT1

inhibition facilitates the release of labile iron through ferritinophagy

is still under investigation (48–50). For a more comprehensive

discussion on iron metabolism in the context of ferroptosis,

interested readers are directed to recent detailed reviews on the

subject (51).

Iron absorption and metabolism in the body can be

summarized as following. Firstly, iron is a crucial trace element

necessary for various biological functions in cells. Dietary iron is

mainly categorized into non-heme and heme iron, with the latter

being Fe2+ combined with protoporphyrin IX. Non-heme iron

primarily exists as ferric salts in the diet, which are converted to Fe2

+ by intestinal iron reductase. This Fe2+ is then absorbed by

intestinal epithelial cells (IECs) through the DMT1 transporter

and exits these cells via ferroportin 1 (FPN1) (52, 53). Once in

the bloodstream, Fe2+ is oxidized to Fe3+ by ceruloplasmin (CP)

and hephaestin (HP), and then binds to transferrin (Tf) for

transport (54). Tf-Fe3+ attaches to cell membranes via the
Frontiers in Immunology 04
transferrin receptor (TfR), internalizes into cells as endosomes,

and is reduced back to Fe2+ by STEAP3 in various cells before

entering the cytoplasm through DMT1 on the endosomal

membrane (55) (see Figure 3).

Heme iron, a component of hemoglobin and myoglobin, has a

less clear absorption mechanism. It’s believed that heme iron

ingested is broken down by heme oxygenase in intestinal cells,

releasing free ferric iron. Subsequently, a significant amount of Fe2+

accumulates in the cytoplasm, forming a labile iron pool crucial for

processes like ferroptosis (56, 57). Excessive intracellular iron, in the

presence of H2O2, triggers the Fenton reaction, leading to ROS

formation such as •OH, which induces lipid peroxidation and hence

ferroptosis (58–60). Iron responsive element binding protein 2

(IREB2) is an important regulator of iron metabolism and may

influence sensitivity to ferroptosis (61–63). Autophagy also plays a

role in iron regulation, affecting the recruitment of ferritin to

autophagosomes for lysosomal degradation, thus releasing free

iron (64–66). For example, ferritinophagy, facilitated by the cargo

receptor NCOA4, specifically targets the ferritin heavy chain 1

(FTH1), releasing iron into autophagosomes for degradation (67).

Conversely, a decrease in intracellular Fe2+ levels can hinder

ferroptosis, as seen when erastin-induced ferroptosis is reduced

following the knockout of autophagy-related genes ATG5 or ATG7

(68, 69). Therefore, iron metabolism is integral to the process

of ferroptosis.
Lipid metabolism

Lipid peroxidation stands out as a key characteristic and the

primary mechanism that drives ferroptosis. Reactive oxygen species

(ROS) generated through the Fenton reaction interact with

polyunsaturated fatty acids (PUFAs) in cell or organelle
FIGURE 3

Iron absorption and metabolism in the body. Fe2+, ferrous cation; Fe3+, ferric cation; Dcytb, duodenal cytochrome b; DMT1, divalent metal
transporter 1; FPN1, ferroportin 1.
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membranes, resulting in the formation of toxic phospholipid

hydroperoxides (PLOOHs) and triggering ferroptosis (70–72).

Various factors contribute to the process of lipid peroxidation,

including enzymes such as acyl–coenzyme A synthetase long-chain

family member 4 (ACSL4), lysophosphatidylcholine acyltransferase

3 (LPCAT3), and lipoxygenases (LOXs) (73–75). ACSL4, vital for

lipid metabolism, and LPCAT3, key in catalyzing the reacylation of

lysophospholipids to phospholipids, play crucial roles (76–78).

They activate free long-chain PUFAs, facilitate the conversion of

lysophosphatidylcholine (LPC) to lecithin, mediate the synthesis of

oxidized phospholipids in cell membranes, and thus influence

ferroptosis. ACSL4 specifically esterifies arachidonic acid (AA)

into acyl-coenzyme A (acyl-CoA), essential for PUFA

biosynthesis, which is pivotal in lipid peroxidation and

ferroptosis. LOXs are critical regulators in this process. They

significantly impact the onset of ferroptosis by promoting lipid

autoxidation and are indicative of a cell’s sensitivity to ferroptosis

(74, 79). Therefore, in the context of ferroptosis, lipid peroxidation

leads to cell death by disrupting the lipid bilayer structure of cellular

and organelle membranes (see Figure 4).
Mitochondrial metabolism

Mitochondrial metabolic processes play a crucial role in

initiating ferroptosis (80). One key aspect is the generation of

mitochondrial reactive oxygen species (ROS), essential for lipid

peroxidation and the onset of ferroptosis. Mitochondria are

significant cellular sources of ROS, where electron leakage from

complexes I and III of the electron transport chain leads to the

formation of superoxides. These superoxides are then converted

into hydrogen peroxide (H2O2) by superoxide dismutase (81). The

H2O2 reacts with labile iron through the Fenton reaction to
Frontiers in Immunology 05
produce hydroxyl radicals, which in turn drive the peroxidation

of polyunsaturated fatty acid-phospholipids (PUFA-PLs) (81, 82).

Additionally, mitochondrial electron transport and proton

pumping, crucial for ATP production, also play a role in

promoting ferroptosis (83–86). Under conditions where ATP is

depleted, AMP-activated protein kinase (AMPK) phosphorylates

and inhibits acetyl-CoA carboxylase (ACC), leading to a

suppression of PUFA-PL synthesis and thus blocking ferroptosis.

Conversely, when ATP levels are sufficient, AMPK activation is

inefficient, resulting in the activation of ACC and promotion of

PUFA-PL synthesis and ferroptosis (85, 86). Furthermore,

mitochondria’s role in biosynthetic pathways, such as the

tricarboxylic acid (TCA) cycle and anaplerotic reactions (like

glutaminolysis), contributes to ferroptosis (83). These processes

likely drive ferroptosis through the promotion of ROS, ATP, and/or

PUFA-PL generation (87–89). Hence, the multifaceted functions of

mitochondria in bioenergetics, biosynthesis, and ROS generation

are central to driving mitochondrial lipid peroxidation and

ferroptosis (80).
The xCT and GPX4

Environmental stresses like high temperature and hypoxia can

trigger iron reactions, necessitating cells to establish defense

mechanisms against ferroptosis. The most classic defense against

ferroptosis involves the antioxidant axis consisting of xCT,

glutathione (GSH), and GPX4. xCT, a transmembrane protein,

comprises the light-chain solute carrier family 7 member 11

(SLC7A11) and the heavy-chain solute carrier family 3 member 2

(SLC3A2, also known as CD98hc or 4F2hc) (90, 91). SLC7A11, the

primary functional unit of xCT, regulates the intake of extracellular

cysteine (Cys) into cells and the export of intracellular glutamic acid
FIGURE 4

Ferroptosis involves two primary molecular pathways. (Left) The pathway of lipid metabolism and (Right) the xCT/GPX4 pathway. Key components
include ACSL4 (long-chain fatty acid CoA ligase 4), PUFA (polyunsaturated fatty acid), LPCAT3 (lysophosphatidylcholine acyltransferase 3), PUFA-CoA
(polyunsaturated fatty acid coenzyme A), ALOXs (lipoxygenases), PUFA-PL (phospholipid containing polyunsaturated fatty acid), TCA (tricarboxylic
acid cycle), GSH (glutathione), GSSG (glutathione disulfide), and GPX4 (glutathione peroxidase 4).
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(Glu). SLC3A2 helps maintain xCT’s stability by anchoring and

stabilizing SLC7A11 (92).

Cysteine is converted into reduced GSH alongside Glu and

glycine (Gly) under the influence of glutamate cysteine ligase (GCL)

and glutamylcysteine synthetase (GCS) (93, 94). Beclin 1 can

suppress xCT activity, thereby promoting ferroptosis, by directly

binding to SLC7A11 (95). GPX4, a crucial enzyme in preventing

ferroptosis, reduces toxic phospholipid hydroperoxides (PLOOH)

to non-toxic phospholipid alcohols (PLOH) in membranes, using

GSH (96). The inhibitor 2-cyano-3,12-dioxooleana-1,9 (11)-dien-

28-oic acid (CDDO) helps prevent the specific degradation of GPX4

through chaperone-mediated autophagy (CMA). It does so by

affecting the interaction between heat shock protein 90 (HSP90)

and lysosomes, thus inhibiting cell ferroptosis (13). However, this

inhibition can be counteracted by suppressing the mammalian

target of rapamycin (MTOR) pathway, which may lead to GPX4

degradation and promote ferroptosis (97). Consequently, xCT,

GPX4, and GSH are key regulators and have a significant impact

on the control of ferroptosis (see Figure 4).
FSP1-CoQH2 system

The FSP1-CoQH2 system has challenged the earlier belief that

GPX4 was the sole defense mechanism against ferroptosis. Recent

studies have shown that ferroptosis suppressor protein 1 (FSP1, also

known as AIFM2) works independently of GPX4 to protect against

ferroptosis (98, 99). FSP1, located on the plasma membrane and

other subcellular compartments, is crucial in this role. Its presence

on the plasma membrane is both necessary and sufficient for its

function in ferroptosis suppression (98, 99). FSP1 acts as an NAD

(P)H-dependent oxidoreductase, reducing ubiquinone (also known

as coenzyme Q or CoQ) to ubiquinol (CoQH2). CoQH2, apart from

its known role in mitochondrial electron transport, can intercept

lipid peroxyl radicals, thus inhibiting lipid peroxidation and

ferroptosis (98, 99). The generation of a non-mitochondrial

CoQH2 pool by FSP1 as radical-trapping antioxidants plays a key

role in its anti-ferroptosis activity (98, 99). Though CoQ is mainly

produced in mitochondria, it is also found in non-mitochondrial

membranes, including the plasma membrane (100–102). The exact

sources of non-mitochondrial CoQ used by FSP1 in ferroptosis

defense are yet to be determined.
DHODH-CoQH2 system

Additionally, the DHODH-CoQH2 system has been identified

as another mitochondria-localized defense mechanism. This

system, mediated by dihydroorotate dehydrogenase (DHODH),

can compensate for the loss of GPX4 in detoxifying

mitochondrial lipid peroxidation (36). DHODH, an enzyme in

pyrimidine synthesis, reduces CoQ to CoQH2 in the inner

mitochondrial membrane (36). When GPX4 is acutely

inactivated, DHODH activity increases, leading to more CoQH2

production which neutralizes lipid peroxidation and protects

against mitochondrial ferroptosis. Inactivating both mitochondrial
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GPX4 and DHODH leads to significant mitochondrial lipid

peroxidation and ferroptosis (36). Notably, while mitochondrial

GPX4 and DHODH can substitute for each other in reducing

mitochondrial lipid peroxidation, cytosolic GPX4 and FSP1

cannot, likely due to their non-mitochondrial localization.

These findings suggest a model where ferroptosis defense

systems are divided into two main categories: the GPX4 system

and the CoQH2 system, each further divided into non-

mitochondrial and mitochondrial components. For instance,

cytosolic and mitochondrial GPX4 are part of the GPX4 system,

while non-mitochondrial FSP1 and mitochondrial DHODH belong

to the CoQH2 system. This division is presumably due to the need

to mitigate lipid peroxides in mitochondria and the unique double-

membrane structure of mitochondria, which limits the effectiveness

of defense systems located in other compartments (103). However,

further research is required to fully understand this

compartmentalization model in ferroptosis regulation and

reconcile it with some conflicting findings, such as the significant

localization of cytosolic GPX4 in the intermembrane space of

mitochondria (104). The role of cytosolic GPX4 in mitochondria

and its potential impact on suppressing mitochondrial lipid

peroxidation needs further investigation.
GCH1–BH4 system

Recent research has highlighted the role of GTP cyclohydrolase

1 (GCH1) as a key player in regulating ferroptosis (105, 106). GCH1

is involved in the rate-limiting step of the biosynthesis pathway for

tetrahydrobiopterin (BH4), a cofactor for aromatic amino acid

hydroxylases and other enzymes (107). BH4, aside from its role

as a cofactor, is a radical-trapping antioxidant capable of capturing

lipid peroxyl radicals, thus contributing to the inhibition of

ferroptosis independently of its cofactor function (106). It is

suggested that GCH1 helps prevent ferroptosis in two ways:

firstly, through the generation of BH4 as a radical-trapping

antioxidant, and secondly, via the GCH1-mediated production of

coenzyme QH2 (CoQH2) and phospholipids (PLs) containing two

polyunsaturated fatty acid (PUFA) tails. This is notable because

most PUFA-PLs typically exhibit an asymmetric structure, with a

PUFA tail at the sn-2 position and a saturated fatty acid tail at the

sn-1 position (105, 106). The specific subcellular location where the

GCH1-BH4 system functions, however, is still to be determined.

This discovery adds another layer to the complex regulatory

network of ferroptosis and underscores the multifaceted nature of

cellular defense mechanisms against this form of cell death.
Ferroptosis in the
tumor microenvironment

Recent studies have revealed the significant role of the tumor

microenvironment (TME), particularly its immune cells, in

determining the occurrence of tumor-cell ferroptosis (108). CD8+

cytotoxic T cells, key players in antitumor immunity within the

TME, release interferon-g (IFNg), which inhibits cystine uptake in
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cancer cells by downregulating SLC7A11 expression (109). This

action enhances lipid peroxidation and ferroptosis in tumors.

Intriguingly, IFNg also suppresses SLC7A11-mediated cystine

transport in macrophages, indicating that IFNg can regulate

SLC7A11 in both cancer and non-cancer contexts. Furthermore,

combining immune checkpoint inhibitors (ICIs) with cyst(e)inase

intensifies T cell-mediated antitumor responses by synergistically

promoting tumor ferroptosis. This suggests that ferroptosis plays a

crucial role in T cell-mediated antitumor activity, and targeting

SLC7A11 in conjunction with ICIs could be a promising cancer

treatment strategy (108).

Ferroptotic cancer cells release various immunostimulatory

signals like high mobility group box 1 (HMGB1), calreticulin,

ATP, and phosphatidylethanolamine (110–112). These signals aid

dendritic cell maturation, enhance macrophage phagocytosis of

ferroptotic cancer cells, and boost the infiltration of CD8+ T cells

into tumors. Early ferroptotic cells, after short-term treatment with

a GPX4 inhibitor, can induce dendritic cell maturation and activate

antitumor immunity, similar to a vaccination effect (111). This

supports the notion of ferroptosis as a form of immunogenic

cell death.

Ferroptosis induction in certain immunosuppressive cells also

enhances antitumor immunity. Regulatory T (Treg) cells, which

usually suppress tumor surveillance, are resistant to ferroptosis due

to GPX4 induction (113, 114). However, inducing ferroptosis in

Treg cells through Gpx4 deletion contributes to antitumor

immunity. Similarly, targeting myeloid-derived suppressor cells

(MDSCs) for ferroptosis, by inhibiting ASAH2-mediated

suppression of the p53–haeme oxygenase 1 (HMOX1) axis,
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activates tumor-infiltrating cytotoxic CD8+ T cells and suppresses

tumors (114, 115). Tumor-associated macrophages (TAMs) that

exhibit an M2-like phenotype and suppress antitumor immunity

are more vulnerable to ferroptosis induced by GPX4 inhibition than

M1-like TAMs, which promote antitumor immunity (116).

Inducing ferroptosis in M2-like TAMs without affecting M1-like

TAMs could overcome the immunosuppressive TME and enhance

cancer immunotherapy (117, 118) (see Figure 5).

However, evidence also suggests that ferroptosis can promote

tumor growth in the context of tumor immunity. Gpx4-deficient T

cells from specific knockout mice rapidly accumulate lipid

peroxides upon activation, leading to ferroptosis (119). CD8+ T

cells from tumors, but not from lymph nodes, show substantial lipid

peroxide accumulation, indicating a vulnerability to ferroptosis.

This could weaken antitumor immunity and aid tumor growth

(120). CD36, which mediates fatty acid uptake in tumor-infiltrating

CD8+ T cells, induces lipid peroxidation and ferroptosis,

compromising antitumor immunity. Blocking CD36 or

ferroptosis in CD8+ T cells restores their antitumor activity, while

treating them with GPX4 inhibitors leads to impaired antitumor

effects (121). Furthermore, T follicular helper (TFH) cells, a CD4+ T

cell subset favoring antitumor immunity, are highly susceptible to

ferroptosis, with GPX4 being crucial for their survival and function

(122). The synergistic enhancement of antitumor immunity by

targeting SLC7A11 along with ICIs may be due to the limited

effect of Slc7a11 knockout or cystine deprivation on T cell viability

or antitumor effects, possibly because of SLC7A11’s low expression

and non-essential role in T cells (123). The contrasting effects of

GPX4 deletion versus SLC7A11 deletion on T cell function are not
FIGURE 5

The role of ferroptosis in anti-tumour immunity. Ferroptosis has a dual role to play in antitumour immunity, dependent on the nature of the immune
cell. (A) In the context of tumor immunity, CD8+ T cells secrete IFNg, which activates the INFR pathway, leading to the suppression of SLC7A11
expression via STAT1. This process enhances ferroptosis in cancer cells. Additionally, macrophage-derived TGFb1 suppresses the xCT system
through SMAD proteins, further inducing lipid ROS-dependent ferroptosis through the GSH-GPX4 pathway. Consequently, ferroptotic glioma cells
emit DAMPs (like HMGB1 and AA), which encourage the attraction and activation of immune cells. (B) Conversely, DAMPs such as HMGB1, KRAS-
G12D, and 8-OHG influence the behavior of macrophages within the tumor milieu. Specifically, KRAS-G12D interacts with AGER on macrophage
surfaces, leading to M2 macrophage polarization. This could potentially impede the effectiveness of the immune system's response against the
tumor. IFN-g, interferon-g; INFR, interferon receptor; STAT1, signal transducer and activator of transcription 1; GSH, glutathione; GPX4, glutathione
peroxidase 4; DAMPs, damage-associated molecular patterns; HMGB1, high mobility group protein B1; AA, arachidonic acid; 8-OHG, 8-
hydroxyguanosine; AGER, advanced glycosylation end product-specific receptor.
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fully understood but might be related to SLC7A11’s limited role in

these cells (124, 125).
Therapeutic strategies
targeting ferroptosis

Small molecules to induce ferroptosis
in cancer

System Xc− plays a significant role in the survival and growth of

many tumor cells, making it a potential target for cancer treatment.

Erastin, known for inhibiting system Xc−, reduces glutathione

(GSH) levels and induces ferroptosis. A notable discovery in

Dixon’s 2012 study was that erastin led to ROS accumulation in

NRAS-mutant HT-1080 fibrosarcoma cells, and this cell death was

hindered by the iron chelator deferoxamine, indicating erastin’s role

in inducing ferroptosis (4, 96, 126, 127). Further research

highlighted the importance of the RAF/MEK/ERK signaling

pathway in erastin-triggered ferroptosis in RAS-mutated cancers

(128). Derivatives of erastin, like piperazine erastin and imidazole

ketone erastin (IKE), have been developed to address erastin’s

limitations, such as poor water solubility and unstable in-vivo

metabolism. For instance, IKE has been effectively used in

treating diffuse large B cell lymphoma (DLBCL) in the SUDHL6

xenograft animal model (129).

Sorafenib, a multi-kinase inhibitor used in treating advanced

renal cell carcinoma, thyroid carcinoma, and hepatocellular

carcinoma, is another inducer of ferroptosis. Its cytotoxicity to

hepatocellular carcinoma was negated when treated with an iron

chelator (130). However, some cancer cell lines have developed

resistance to sorafenib, as seen in hepatocellular carcinoma cells

with retinoblastoma (Rb) protein, where sorafenib-induced

ferroptosis was inhibited (131). Additionally, the anti-

inflammatory drug sulfasalazine (SAS) can induce ferroptosis in

glioma cells by inhibiting system Xc− (132).

Some cancer cel ls induce ferroptosis through the

transsulfuration pathway instead of system Xc− . GPX4

inactivation can eliminate these tumor cells, as seen with (1S,

3R)-RSL, which induces ferroptosis through direct GPX4

inhibition, and FIN56, which promotes ferroptosis by degrading

GPX4 (133). Ferroptosis can also be induced by increasing the

labile iron pool (LIP). Compounds like BAY 11-7085 can induce

ferroptosis through the Nrf2-SLC7A11-HO-1 pathway, and

overexpression of heme oxygenase-1 (HO-1), encoded by

HMOX1, has been observed in MDA-MB-231 breast cancer

and DBTRG-05MG glioblastoma cells (134). Increased TF

expression and decreased FPN-1 expression, mediated by

compounds like siramesine and lapatinib, can also induce

ferroptosis. Autophagy contributes to this process by degrading

ferritin in cancer cells. The cargo receptor nuclear receptor

coactivator 4 (NCOA4) is significant in the autophagic turnover

of ferritin in ferroptosis. In pancreatic cancer cells, NCOA4

overexpression inhibited FIH1 expression and promoted

erastin-induced ferroptosis (47). Further research is necessary
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treatment through ferroptosis. Besides these, more small

molecules are being studied for their potential to induce

ferroptosis in cancer therapy (see Figure 6).
Nanoparticle inducers of ferroptosis
in cancer

Nanotechnology applications, particularly due to their unique

physicochemical properties, have garnered significant interest in

recent years. Many nanomaterials, including iron-containing

nanoparticles, leverage the Fenton reaction for their functionality.

For instance, Chen and colleagues developed a tumor-targeted

nanoparticle called a‐enolase targeting peptide modified Pt-

prodrug loaded Fe3O4 nanoparticles (ETP-PtFeNP). Treatment

of tumor cells with ETP-PtFeNP resulted in increased ROS

generation, enhanced immunogenicity, and a robust anti-tumor

immune response (135). Additionally, a novel nanoparticle named

SRF@FeIIITA (SFT) has been shown to be effective in inhibiting

tumor progression. This nanoparticle combines photodynamic

therapy (PDT) and ferroptosis by loading methylene blue (MB)

into SFT. This is achieved by depositing tannic acid (TA) and Fe3+

onto SRF nanocrystals, enabling a dual-therapy approach (136).

Nanomaterials can also trigger ferroptosis through the

manipulation of GSH metabolism. Arginine-capped manganese

silicate nanobubbles (AMSNs), for example, have been developed

to efficiently deplete GSH (137). This efficiency is attributed to their

high surface area to volume ratio. In-vivo studies have

demonstrated that AMSN treatment can suppress the growth of

Huh7 xenograft tumors by downregulating GPX4. The effectiveness

of AMSN-induced ferroptosis can be inhibited by the ferroptosis

inhibitor liproxstatin-1, highlighting the potential of these

nanomaterials in targeted cancer therapy through the induction

of ferroptosis.
Ferroptosis modulation for tumor
sensitization to anticancer therapies

Drug resistance presents a significant hurdle in chemotherapy

treatment, but the use of ferroptosis inducers might offer a way to

surmount this challenge. Incorporating ferroptosis agonists with

chemotherapy drugs could emerge as an innovative approach to

cancer therapy (137). Persister cells, which are cancer cells that

survive after multiple rounds of chemotherapy, exhibit

downregulated Nrf2-targeted genes (138). Accelerating ferroptosis

in these cells can be achieved by inhibiting intracellular NF2 and

the hippo signaling pathway (139). Moreover, persister cells typically

show reduced levels of glutathione (GSH) and nicotinamide adenine

dinucleotide phosphate (NADPH), making them more susceptible to

lipid peroxidation. GPX4 inhibitors have been found to be particularly

effective against these cells. Therefore, inducing ferroptosis in persister

cells may be a promising strategy to overcome their drug resistance,

offering a new avenue in the fight against cancer.
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Ferroptosis-associated antitumor
combination therapy

There have been limited studies on combining ferroptosis

inducers with other anti-tumor therapies for clinical treatment,

with many investigations still in the experimental phase. An

important aspect in cancer cells, especially when the oxygen

concentration is above 3–8% as found in most tissues, is the iron-

sulfur cluster biosynthetic enzyme NFS1. Its high expression is often

observed in well-differentiated adenocarcinomas. Research by

Alvarez SW’s group suggested that inhibiting NFS1, along with

suppressing cysteine transport, could induce ferroptosis in tumor

cells (140). Interestingly, some tumors that are resistant to certain

chemotherapy drugs show a heightened sensitivity to ferroptosis

inducers. For instance, pancreatic cancer cells, known for their

resistance to chemotherapy-induced apoptosis, demonstrate

considerable sensitivity to artemisinin-induced ferroptosis. Thus,

ferroptosis inducers emerge as a promising strategy for cancer

therapies, particularly for types of cancer that are resistant to

conventional treatments.
Targeting ferroptosis to prevent
tumor metastasis

In terms of preventing tumor metastasis, targeting ferroptosis

could be a potential approach. Clinical treatment of tumor metastasis

is complex due to factors like tumor heterogeneity, oncogene activity,

epithelial-mesenchymal transition (EMT), and the microenvironment

of metastatic sites (141). Since cancer metastasis can be inhibited by

high intracellular oxidative stress, ferroptosis, which involves the

accumulation of such stress, may be an effective strategy.

Nanoparticles present a substantial advantage in treating cancer

metastasis due to their relatively low risk compared to locally
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injected agents (142). For example, a metal–organic network

encapsulating the p53 plasmid (MON-p53) was developed using

coordination between ferric iron (Fe3+) and tannic acid (TA).

Treatment with MON-p53 showed the potential to suppress cancer

cell migration in in-vitro wound healing assays, suggesting its possible

role in inhibiting tumor metastasis (143, 144). Moreover,

mesenchymal cancer cells, known for their metastatic potential and

resistance to anti-cancer treatments, could be rendered more sensitive

to chemotherapy and thus reduce metastasis. Antagonizing the NF2-

YAP pathway, which promotes ferroptosis by up-regulating

modulators like ACSL4 and transferrin receptor (TFRC), offers a

new perspective on treating mesenchymal or metastatic cancer cells,

which are highly sensitive to ferroptosis (139).
Challenges of ferroptosis in glioma

Ferroptosis plays a critical role in the growth and treatment of

gliomas, but its mechanisms require further exploration (145).

Unlike most regulated cell death (RCD) effector molecules, which

are typically proteases or porins such as caspases in apoptosis and

mixed lineage kinase domain-like protein (MLKL) in necroptosis,

the effector molecules in ferroptosis are less clear (146–148).

Phospholipid hydroperoxides (PLOOH) are currently considered

the primary executors of ferroptosis, yet it’s uncertain if there are

additional effector molecules downstream of PLOOH (103, 149).

The interaction between ferroptosis and other RCD forms is also

not fully understood. Some aspects of ferroptosis, like lipid

peroxidation and regulators including GPX4 and SLC7A11, are

also involved in other RCD types. Ferroptosis may influence the

tumor immune microenvironment (TIME), affecting glioma

development and treatment (see Figure 7).

Currently, biomarkers like GPX4, ACSL4, P53, and FTH1 are

used in diagnosing and treating gliomas, but they are not definitive
FIGURE 6

The iron maiden. Autophagy is an essential, ancient mechanism that preserves balance within cells by eliminating harmful components. It serves a
dual function in determining cell fate, being implicated in both survival and death processes. Recent findings have shown that autophagy contributes
to the initiation of ferroptosis, an iron-dependent form of cell death characterized by the build-up of toxic lipid peroxides. This review sheds light on
the interaction between autophagy and ferroptosis and proposes that understanding this relationship could open new avenues for cancer
treatment strategies.
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standards (35, 150). Reliable biomarkers that can accurately predict

tumor response to ferroptosis induction, especially those detectable

in-patient blood, urine, feces, and tumor tissue, are urgently needed.

It’s also unclear which glioma patients are more susceptible to

ferroptosis treatments. Assessments combining iron levels,

gene expression, and mutations might help identify patients

who would benefit most from ferroptosis, such as those with

gliomas overexpressing SLC7A11 being potential targets for

SLC7A11 inhibitors.

Ferroptosis has a dual role in tumor development and

treatment. While it promotes glioma cell death, it can also

diminish the efficacy of glioma treatments by increasing Treg

cells, neutrophils, and M2-polarized macrophages in the TIME,

thus suppressing antitumor immunity (151). Tumor cells

undergoing ferroptosis might induce stress in surrounding tumor

cells, enabling them to avoid ferroptosis by secreting cytokines

(149). The nature of substances released by tumor cells post-

ferroptosis and their effects on the surrounding cells and TIME

require further investigation (128, 152). More evidence is needed to

confirm whether cytokines released after ferroptosis enable

surrounding glioma cells to evade immune surveillance and

regulate TIME (152, 153).
Discussion

Targeting ferroptosis open up exciting avenues in cancer, but

there are still unsolved questions in this field. Firstly, iron plays

multiple roles in ferroptosis, and its function extends beyond redox

reactions. A widely accepted model suggests iron is involved in
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generating lipid reactive oxygen species (ROS), either through

Fenton chemistry or via iron-dependent oxidases (154). Iron’s

necessity in ferroptosis might also reflect its role as a cofactor for

various metabolic enzymes involved in ROS generation, such as the

LOX family of enzymes or prolyl 4-hydroxylase isoform 1 (PHD1)

(155, 156).

Secondly, the exact molecular executor of ferroptosis is not

entirely clear. The oxidative fragmentation of polyunsaturated fatty

acids (PUFAs) and resulting membrane lipid damage might be

sufficient to induce cell death, possibly through plasma membrane

permeabilization and damage to intracellular organelle membranes.

Alternatively, the fragmented products of oxidized PUFAs, such as

the toxic 4-hydroxynonenal (4-HNE), might promote death by

reacting with and inactivating essential cellular proteins. The

detoxification of 4-HNE by aldo-keto reductase family 1, member

C (AKR1C), and its regulation by NRF2, indicates that 4-HNE

accumulation may be a key ferroptotic driver (157, 158). However,

the possibility of a specific death-inducing protein or protein

complex activated downstream of lipid-ROS accumulation cannot

be ruled out, warranting further research (159).

Thirdly, identifying molecular markers for cells undergoing

ferroptosis remains challenging. Current methods mainly rely on

observing increased cellular ROS and the effectiveness of ferroptosis

inhibitors or iron chelators in preventing cell death. The mRNA

expression of prostaglandin E synthase 2 (PTGS2) and ChaC

glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1)

has been found to elevate in cells undergoing ferroptosis (35, 159).

However, these markers are not practical for use in live cells or

intact tissues. An increase in heme oxygenase-1 (HO-1) expression

upon erastin-mediated ferroptosis induction has been observed, but
FIGURE 7

The role of ferroptosis in glioma immunity involves a complex interaction of immune cells and molecular pathways. CD8+ T cells produce
interferon-gamma (IFNg), activating the interferon receptor (INFR) which then suppresses SLC7A11 transcription through STAT1, promoting
ferroptosis in tumor cells. Macrophages release TGFb1, which via SMAD proteins, downregulates system xCT, leading to lipid ROS-induced
ferroptosis through the glutathione (GSH) and glutathione peroxidase 4 (GPX4) axis. Ferroptotic glioma cells release damage-associated molecular
patterns (DAMPs) like HMGB1 and arachidonic acid (AA), which attract and activate immune cells. Conversely, DAMPs like HMGB1, KRAS-G12D, and
8-hydroxyguanosine (8-OHG) can alter macrophage function in the tumor microenvironment. Notably, KRAS-G12D interaction with the AGER
receptor on macrophages promotes M2 macrophage polarization, potentially hindering antitumor immunity.
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the universality of this marker across different cells and initiation

pathways needs further validation (160). Thus, there is an ongoing

search for more reliable ferroptosis markers for in vivo studies.

Fourthly, regarding the evolutionary aspect of ferroptosis, it

poses an interesting question. Considering that iron-dependent

oxidative metabolism has been a crucial part of life for billions of

years, ferroptosis might indeed be one of the most ancient forms of

programmed cell death. This suggests that evolutionary forces

might have driven organisms to utilize this ROS/iron-driven cell

death process for their own benefit, an intriguing area for further

research and exploration.

In addition, recent studies have identified cuproptosis as a newly

identified form of programmed cell death, which plays vital roles in

tumorigenesis. Some researchers have shown that ferroptosis might

interact with either cuproptosis or necroptosis. For example, it was

demonstrated by Lifeng F. et al. that ferroptosis inducers enhance

copper-induced cell death through depleting intracellular

glutathione in liver cancer cells (161). While both ferroptosis and

cuproptosis processes involve metal ions and contribute to cell death,

their exact interrelationship is still under investigation. The distinct

mechanisms suggest potential therapeutic targets in diseases where

dysregulation of cell death is a factor. However, it’s important to note

that research in these areas, especially cuproptosis, is still evolving,

and the full extent of their relationship and implications in human

health and disease are not yet fully understood.

Ferroptosis, as a novel mode of programmed cell death, is

distinct from other types of regulated cell death due to its iron-

dependent lipid peroxidation accumulation. This review highlights

the regulatory mechanisms of ferroptosis and its multifaceted roles

in the development and progression of glioma. Ferroptosis not only

triggers the death of glioma cells but also influences their growth,

invasion, migration, and resistance.

However, challenges such as poor blood-brain barrier (BBB)

penetration and potential compensatory mechanisms limit the

effectiveness of ferroptosis agents in glioma therapy. To address

these challenges, it has been proposed that nanoengineered systems

could improve the targeted delivery of drugs, thereby enhancing the

effectiveness of glioma treatments. Despite the promising
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advantages of ferroptosis in treating glioma, there is a need for

multidisciplinary collaboration to further investigate its benefits and

drawbacks. Such research is crucial for evaluating the potential

value of targeting ferroptosis in clinical applications.
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