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of Dalian Medical University, Dalian, China, 3Institute (College) of Integrative Medicine, Dalian Medical
University, Dalian, China
Overcoming the immunosuppressive tumor microenvironment and identifying

widely used immunosuppressants with minimal side effects are two major

challenges currently hampering cancer immunotherapy. Regulatory T cells

(Tregs) are present in almost all cancer tissues and play an important role in

preserving autoimmune tolerance and tissue homeostasis. The tumor

inflammatory microenvironment causes the reprogramming of Tregs, resulting

in the conversion of Tregs to immunosuppressive phenotypes. This process

ultimately facilitates tumor immune escape or tumor progression. However,

current systemic Treg depletion therapies may lead to severe autoimmune

toxicity. Therefore, it is crucial to understand the mechanism of Treg

reprogramming and develop immunotherapies that selectively target Tregs

within tumors. This article provides a comprehensive review of the potential

mechanisms involved in Treg cell reprogramming and explores the application of

Treg cell immunotherapy. The interference with reprogramming pathways has

shown promise in reducing the number of tumor-associated Tregs or impairing

their function during immunotherapy, thereby improving anti-tumor immune

responses. Furthermore, a deeper understanding of the mechanisms that drive

Treg cell reprogramming could reveal new molecular targets for

future treatments.
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1 Introduction

Immune checkpoint blockade therapy has shown significant

advancements in cancer treatment. However, it is important to

recognize that this treatment can only cure a limited proportion of

patients, while the majority may not benefit from it and could

potentially experience autoimmune diseases and unforeseen

toxicities (1, 2). To address these challenges, we can focus on two

key aspects: overcoming the immunosuppressive tumor

microenvironment and improving local-specific antitumor

immunity (3–5). One potential target to achieve these goals is

Tregs. Additionally, cancer is strongly influenced by the presence

of immune cells and the levels of inflammatory cytokines. In tissues

experiencing inflammation, they are also important in avoiding

severe tissue injury (6, 7). However, immune cell malfunctions can

cause inflammation to advance into cancer.

Regulatory T cells (Tregs) are recognized as a specific subset of

CD4+ T cells. Foxp3 is a unique transcription factor (8). According to

their origin, we can divide them into thymic Tregs (tTregs)/natural

Tregs (nTregs) and peripheral Tregs (pTregs)/inducible Tregs

(iTregs) (9). Abul K Abbas et al. proposed a unified classification of

Tregs into tTregs and pTregs (10). The tTregs are produced by the

thymus and are tissue-intrinsic Tregs. After being stimulated by self-

antigens, they are transported to the periphery and exhibit inhibitory

activity against self-antigens (11, 12). pTregs are differentiated from

naïve T cells or conventional T cells in peripheral tissues, or induced

by TGF-b in vitro. pTregs play a role in preventing autoimmunity

caused by foreign antigens (13). According to the function and

phenotype of Tregs, they are divided into naïve Tregs (or resting

Tregs), effector Tregs (eTregs), and non-Tregs. Naïve Tregs

manifested as CD4+FOXP3low CD25hiTregs, eTregs manifested as

CD4+FOXP3hi CD25hiTregs, and non-Tregs manifested as

CD4+FOXP3low Tregs (14). Under steady-state conditions, naïve

Tregs have weak immunosuppressive functions and eTregs have

strong immunosuppressive functions. Non-Tregs have no

suppressive function and secrete pro-inflammatory factors (14). In

the inflammatory environment, nonTregs are also known as “exTreg”

or “exFoxp3” cells (15).

In the tumor microenvironment (TME), naïve Tregs and exTregs

will be converted into tumor-infiltrating Tregs (TI-Tregs) under

various stimuli. TI-Tregs have the same phenotype as eTregs (14).

This process is called Tregs reprogramming. Infiltration of

reprogrammed Tregs into tumors is associated with a negative

prognosis (16). Thus, targeting the reprogramming process of Tregs

and paying attention to their altered state in both inflammation and

cancer could potentially provide new perspectives for cancer

immunotherapy. Therefore, this article aims to deeply explore the

mechanism of reprogramming exTregs into immunosuppressive Tregs.

Recent research has shown that specific signaling molecules

found within the tumor microenvironment, along with factors

generated by immune cells and tumor cells, have the potential to

initiate the reprogramming of exTregs (17, 18). In the hypoxic, low-

glucose, and high-lactic acid conditions of the tumor

microenvironment, exTregs undergo metabolic adaptability

through reprogramming, gradually transitioning towards an
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immunosuppressive phenotype (19–21). Furthermore, Foxp3, the

most crucial transcription factor regulating Tregs, undergoes post-

translational modification involving methylation, acetylation,

glycosylation, phosphorylation, and ubiquitination. The function

and reprogramming of Tregs rely heavily on these regulatory

mechanisms (9, 22, 23).

This work aims to present a summary of the mechanism of

reprogramming exTregs into eTregs, from the following three

aspects: (1) signaling molecules and intracellular signaling pathways

in the tumor microenvironment; (2) metabolic and energy pathways

including glycolysis, amino acid metabolism, fatty acid oxidation

(FAO) and mevalonate pathways, mitochondrial oxidative

phosphorylation and complexes (OXPHOS), and metabolite

pathways in TME; (3) the modification of Foxp3 expression at the

transcriptional level, such as methylation, acetylation, glycosylation,

phosphorylation, and ubiquitination of Foxp3, affects the

immunosuppressive function of Tregs.

2 Immunosuppressive immune cells
within TME

Targeting specific immune cells, especially Tregs, and inhibiting

their immunosuppressive functions is a crucial approach in current

immunotherapy. Additionally, other immune cells such as

regulatory B cells (Bregs), regulatory dendritic cells (DCregs),

myeloid-derived suppressor cells (MDSCs), and tumor-associated

macrophages (TAMs) also possess immunosuppressive capabilities

(24). Bregs, which constitute only 10% of circulating B cells in

healthy individuals, exert their suppressive effects on autoreactive B

cells through the secretion of soluble molecules and the expression

of inhibitory molecules. However, due to the lack of a specific

transcription factor defining Bregs, there is currently limited

research in this area (25). DCregs, which are subpopulations of

DCs in central and peripheral lymph, exhibit lower levels of MHC

and costimulatory molecules on their surface. DCregs exert

immunosuppressive functions mainly by inducing the inactivation

of autoreactive T cells and Tregs differentiation, and increasing the

levels of inhibitory molecules and cytokines such as IL-10 (24, 26).

Similarly, MDSCs, known for their immunosuppressive function,

inhibit T cell responses, induce Tregs, and differentiate into TAMs

(27, 28). TAMs have low expression of inhibitory molecules such as

MHCII and PD-1, thereby exerting immunosuppressive effects and

promoting tumor growth (29, 30).
3 The reprogramming mechanism of
exTregs to eTregs

Under normal circumstances, Tregs exhibit stability. However, in

specific conditions like an inflammatory tumor microenvironment,

certain Tregs undergo reprogramming (31). In most cancers, there is

infiltration of eTregs, while in some cancers, both eTregs and exTregs

are present (32). This review focuses on elucidating the mechanism of

exTregs reprogramming into eTregs from three distinct perspectives.
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3.1 Signaling molecules and pathways

Recent research has demonstrated that certain signaling

molecules within TME can cause exTregs to undergo

reprogramming (Figure 1). This reprogramming process can lead

to a transition of exTregs from their typical immunoregulatory state

to a state that promotes tumor growth.

3.1.1 TCR/CD28
The leukocyte surface differentiation antigen 28 (CD28)

costimulatory receptor forms microclusters with the T cell

receptor (TCR) and plays a dual role in the reprogramming of

Tregs (33). The TCR-CD28 microclusters trigger various

cytoplasmic signaling pathways, such as the induction of the

CARMA1-BCL10-MALT1 (CBM) complex. The CBM complex

further stimulates IKK-mediated NF-kB activation, which

subsequently activates the transcription factor NFAT and

promotes immunosuppression (34–37). In addition, TCR/CD28

costimulation can induce cytotoxic T-lymphocyte antigen-4

(CTLA-4). The high expression of CTLA-4 on Tregs supports its

immunosuppressive activity, so anti-CTLA-4 antibody has been

developed as an immune checkpoint inhibitor (38, 39).

Notably, TCR/CD28 can also subvert immunosuppression,

primarily through the phosphatidylinositol 3-kinase (PI3K)-AKT-

mammalian target of the rapamycin (mTOR) pathway. It is also

crucial for metabolism. In addition to TCR/CD28, sphingosine-1-

phosphate receptor 1 (S1PR1) and interleukin-2 receptor (IL-2R)
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can also activate the PI3K-AKT-mTOR1 signaling pathway (40,

41). AKT can inhibit the activity of transcription factors FOXO1

and FOXO3 and inhibit the expression of Foxp3 (42). mTORC1 can

bind with the transcription factor known as hypoxia-inducible

factor (HIF-1a). Additionally, HIF-1a exerts inhibitory effects on

the expression of Foxp3 (43, 44). Studies by Sharma et al. have

shown that neuropilin-1 (Nrp1) in Tregs can inhibit this pathway

through phosphatase and tensin homolog (PTEN), and lead to

increased nuclear translocation of FOXO1 and FOXO3a resulting in

increased Foxp3 expression and enhanced immunosuppression (45,

46). In addition, TCR/CD28 costimulation can also affect the

expression of Foxp3 through the nuclear receptor Nr4a,

extracellular signal-regulated kinase (ERK), Ca2+, and protein

kinases PKA and PKC (47, 48).
3.1.2 Transforming growth factor beta
TGF-b exerts its influence on Treg function through both

Smad-dependent and Smad-independent pathways, which may

have different effects in different contexts. Smad protein serves as

a downstream effector transcription factor in the TGF-b signaling

pathway. R-Smad is activated when activated TGF-b interacts with

its receptor. R-smad2 and r-smad3 form a complex with co-smad4

and bind to the CNS1 region of Foxp3 through the transcription

factor NFAT, thereby promoting Foxp3 expression (49, 50).

Apart from the Smad-dependent signaling pathway, the

activated TGF-b receptor (TGFbR) can recruit TAK1 (TGF-b-
activated kinase 1) to further activate the NF-kB pathway and
FIGURE 1

The crucial signals and pathways for the reprogramming of Tregs. Reprogramming of Tregs from inflammatory to immunosuppressive activity is
achieved through these signaling molecules and pathways (as highlighted by the lines and arrows in the figure).
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enhance Foxp3 expression (51). Moreover, TGF-b stimulates the

PI3K-AKT-mTOR pathway through the interaction of activated

TGFbRI and TGFbRII with p85 (the regulatory unit of PI3K), then

inhibits Foxp3 expression (52). Nrp1-activated PTEN can block the

PI3K-AKT-mTOR pathway. Moreover, TGFbR assembles the

ShcA-Grb2-SOS complex by phosphorylating ShcA and activates

the Ras-MEK-ERK pathway, and the MEK-ERK-dependent

pathway can inhibit Foxp3 expression (53). Through the TRAF6-

mediated pathway, TGF-b induces ubiquitination of p85, thereby

initiating the activation of AKT-mTOR and inhibiting Foxp3

expression (50).

Disruption of TGF-b signaling underlies inflammatory diseases

(54). In the early stages of cancer, TGF-b induces apoptosis in

precancerous cells and inhibits tumor cell proliferation. As tumors

progress, tumor-derived TGF-b can trigger tumorigenic and pro-

metastatic responses in cancer cells and stroma, including the

formation of an immunosuppressive tumor microenvironment

(55, 56). At this time, TGF-b can affect a variety of immune cells,

including inhibiting the proliferation and function of T cells,

inducing the differentiation of naïve T cells into regulatory T

cells, etc (54). At present, great progress has been made in

immunotherapy targeting TGF-b-mediated immunosuppression,

including TGF-b mRNA-directed agents, ligand traps, antibodies,

fusion proteins and small-molecule kinase inhibitors of TGFbRs
(57). Mouse model studies have shown a strong synergistic effect

between TGF-b pathway inhibitors and ICIs (58). In particular, the

anti-PD-L1/TGF-bR bispecific antibodies YM1 and BiTP can

effectively inhibit the effect of TGF-b-Smad, have better

anticancer effects than antibodies that antagonize TGF-b alone,

and can also restore the response to PD- L1 drug resistance (59–62).
3.1.3 IL family and transcription factor
STAT family

As a family of cytokines, the interleukin (IL) family is important

in TME. According to the homology of cytokines, the IL family can

be divided into IL-1, IL-2, IL-6, IL-10, IL-12, IL-17 families, etc. IL-

33 and IL-36, which are part of the IL-1 family, play a role in the

activation of Tregs (63, 64). IL-36g signals through the IL-36R,

MyD88, and NFkBp50 in CD4+ T cells, effectively inhibiting the

development of Foxp3-expressing Tregs (64). The STAT family, a

transcriptional activator, could control the expression of Foxp3. A

significant correlation between IL family and STAT family has been

observed (65–67). IL-2 is crucial for Treg function. The

combination of IL-2 and IL-2R phosphorylates and activates the

transcription factor STAT5, which in turn increases Foxp3

expression (68–70). CD25, a component of IL-2R, can be targeted

by daclizumab to effectively reduce the expression of Foxp3 and

increase the secretion of IFN-g (71, 72). This phenomenon could

potentially occur via the IFN-g-mediated polarization of Tregs

towards Th1-like effector T cells (Teffs) (73). Additionally, IL-2 is

also required for CD8+ T cells to remain activated and continue to

exhibit cytotoxic effects. Tregs, which have high IL-2R expression,

impede the activation of Teffs and induce apoptosis of these cells,

thereby mediating immune suppression (74, 75). Furthermore, IL-4
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activates STAT6 and inhibits the transcription of Foxp3, while IL-

12 has been found to regulate STAT4 and inhibit the expression of

Foxp3 (76–79).

It is worth noting that IL-6, IL-10, IL-23, IL-26, IL-27, and IL-35

can regulate STAT3 and participate in the JAK-STAT pathway,

which in turn affects the expression of Foxp3 (80–85). This suggests

that STAT3 can be activated by various cytokines, leading to an

impact on Tregs. The effects of certain factors on Tregs can be the

opposite, such as the pro-inflammatory properties of IL-6 and the

anti-inflammatory properties of IL-10. This suggests that STAT3

may play different roles in Tregs (80). Among these factors, IL-26 is

a constituent of the IL-10 family, while IL-23, IL-27, and IL-35 are

part of the IL-12 family. The influence of IL-27 on the promotion or

suppression of Tregs is influenced by multiple factors and requires

further investigation (84).

3.1.4 Glucocorticoid-induced tumor necrosis
factor receptor

Glucocorticoid-induced tumor necrosis factor receptor (GITR),

a TNFR, acts as a costimulatory molecule and has high expression

levels on Tregs. Antibodies targeting GITR have shown promising

antitumor effects. These antibodies not only reduce the number of

Tregs but also disrupt the reprogramming of Tregs and their

immunosuppressive function (86–88). In the inflammatory tumor

microenvironment, the transcription factor Helios plays an

important role in maintaining the stability of Tregs (89, 90).

Treatment with anti-GITR drugs decreases Helios expression,

consequently downregulating Foxp3 expression, as well as

reducing IL-10 levels and increasing IFN-g levels (91–93).

3.1.5 OX40
In addition to TCR signaling, the TNF receptor OX40 can also

activate IkB kinase b (IKKb), causing c-Rel and RelA to be

translocated to the nucleus. This activation participates in the

NF-kB pathway and regulates Foxp3 expression (51, 94).

Furthermore, OX40 can activate the Akt and Stat5 pathways,

causing temporary proliferation of Tregs and reducing Foxp3

expression levels. However, this will lead to a relative deficiency

of IL-2. The use of IL-2 agonists can rescue this situation, enabling

Tregs to exert their immunosuppressive function (95). OX40 can

also up regulate the expression of BATF and BATF3 in CD4+T cells,

and inhibit the expression of Foxp3 by histone deacetylases SIRT1/7

(96). In addition, under the action of OX40 agonist, the expression

of transcription factor interferon regulatory factor 1(IRF1) and the

production of IL-10 of Tregs were inhibited, inhibiting the

immunosuppressive function of Tregs (97, 98).

3.1.6 Aryl hydrocarbon receptor
2 ,3 , 7 , 8 - t e t r ach lo rod ibenzo-p-d iox in (TCDD) , an

environmental pollutant, exhibits a strong affinity for the AhR

(99). AhR serves as a crucial transcription factor that regulates

genes associated with inflammation and subsequently influences

Tregs. According to recent scientific investigations, it has been

uncovered that TCDD possesses the capability to stimulate AhR.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1345838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1345838
Consequently, AhR forms a connection with the DRE sequence

situated within the Foxp3 promoter, effectively augmenting the

expression of Foxp3 (99, 100). L-kynurenine (Kyn), a tryptophan

metabolite of indoleamine 2,3-dioxygenase (IDO), interacts with

AhR to enhance the expression of Foxp3 (101).

3.1.7 Cdc42 GTP enzyme
Cdc42 is a Rho family GTPase. Recent studies have shown that

inhibiting Cdc42 GTPase or its direct downstream effector WASP

can disrupt the reprogramming of Tregs and stimulate anti-tumor

immunity. In terms of mechanism, inhibition of Cdc42 and its

direct downstream effector WASP works by promoting the non-

canonical signaling cascade GATA-binding protein 3 (GATA3)-

carbonic anhydrase I (CAI). CAI-mediated pH changes induce anti-

tumor T cell immunity (102).

3.1.8 IDO signaling
Under inflammatory conditions, dendritic cells (DCs) signal

IDO, which reduces tryptophan concentrations near Tregs. The

decline in tryptophan levels triggers the activation of GCN2 kinase,

which hinders the functioning of the mTORC2 complex and

impedes its phosphorylation of Akt at Ser473 (45, 103). The

signaling of Akt in Tregs leads to the impairment of their

immunosuppressive function (104–106). IDO signaling inhibits

Akt, upregulates transcription factor FOXO3a, and promotes Treg

reprogramming into an immunosuppressive phenotype.
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3.1.9 Chemokine receptor 8
The CC chemokine CCL1 receptor CCR8 is selectively

expressed on Tregs in TME and is associated with poor tumor

prognosis (107). The CCR8-CCL1 pathway can increase STAT3

expression and FOXO1 entry into the nucleus, thereby increasing

Foxp3 expression. In addition, CCR8-CCL1 can also increase the

expression of CD39 and IL-10, jointly promoting Treg

reprogramming and enhancing immunosuppressive ability

(108, 109).
3.2 Metabolic and energy pathways

Metabolic and energy pathways play a crucial role in the

survival and functioning of cells. Similar to other immune cells,

Tregs in TME are activated and regulate their metabolic pathways

to ensure biosynthesis and energy metabolism for their survival

(Figure 2). The metabolic characteristics of the TME are often

characterized by hypoxia, low glucose levels, and increased lactate

production. Under conditions of inflammation, exTregs signal via

the TLR1/2 pathway to enhance glycolysis by triggering the

expression of Glut1 in a manner that relies on mTORC1.

Simultaneously inhibiting Foxp3 expression and promoting

glycolysis by affecting mTORC2 and cMyc. At the same time, the

fatty acid oxidation pathway is inhibited. After exTregs are

reprogrammed into eTregs with immunosuppressive functions,
FIGURE 2

Metabolic and energy pathways reprogrammed by Tregs. After exTregs are reprogrammed into eTregs with immunosuppressive functions, Foxp3
regulates Treg cell metabolism by promoting FAO and inhibiting glycolysis. Meanwhile, amino acid metabolism, mevalonate metabolism and
OXPHOS are promoted.
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Foxp3 controls the metabolic activities of Treg cells by promoting

FAO while restricting glycolysis by inhibiting the signaling

pathways of c-Myc and mTORC2. Additionally, amino acid

metabo l i sm, meva lona te metabo l i sm, and ox ida t ive

phosphorylation are improved (18–21).

3.2.1 PI3K-Akt-mTORC1 axis
The PI3K-Akt-mTORC1 axis plays an important role in both

signaling and metabolism. It is important to highlight that there

exists a negative feedback regulatory mechanism between the PI3K-

Akt-mTORC1 axis and Foxp3. This pathway can suppress the

expression of Foxp3 through transcription factors. Conversely,

increased expression of Foxp3 directly inhibits the pathway,

resulting in reduced glycolysis and increased OXPHOS and FAO.

The Tregs reprogramming process is regulated by the crucial PI3K-

Akt-mTOR pathway, which includes important molecules such as

AMPK, PTEN, CD28, and HIF-1a (21). Inhibiting PI3K and

mTORC1, PTEN and AMPK serve as upstream regulators to

enhance Foxp3 expression, thereby playing a significant role in

the modulation of Tregs reprogramming (110, 111). The loss of the

phosphatase PTEN results in a defect in reprogramming, causing

immunosuppressive Tregs to transform into pro-inflammatory

Tregs. CD28 promotes the activation of the PI3K-Akt-mTOR

pathway (112). Additionally, HIF-2a inhibits HIF-1a and reduces

the inhibition of Foxp3 expression by HIF-1a (113).

The mTOR is an important eukaryotic cell signal. Its expression

has an impact on Treg formation, proliferation, and activity (114). It

also plays an important role in autoimmune disorders and cancer.

Sirolimus, often known as rapamycin, is a first-generation mTOR

inhibitor. In autoimmune diseases, Treg depletion, mislocalization, or

impaired function canbeobserved (115, 116).This canbe improvedby

rapamycin (117). In contrast, the anticancer effect of rapamycin

exceeds its immunosuppressive effect on tumor development (118).

A plausible hypothesis is that rapamycin modifies the metabolic and

protein synthesis of cancer cells to a greater extent thanTregs’ function

(119–121). It’s also important to remember that rapamycin-mediated

mTORblockagemaybeparticularly effective in certain formsof cancer

that are preceded by autoimmune inflammation, such as mTOR-

dependent cirrhosis that precedes hepatocarcinogenesis in patients

with transaldolase deficiency (122, 123).

3.2.2 Glycolysis
Under inflammatory conditions, TLR1/2 receptors on the

surface of exTregs activate the PI3K-Akt-mTORC1 pathway,

induce the expression of glucose transporter 1 (Glut1), and

promote glycolysis (124). After the surface receptor CD28 is

activated, it upregulates glucokinase (GCK) through the mTORC2

pathway and promotes glycolysis (125). IL-2R inhibits Foxp3

expression by inhibiting the transcription factors FOXO1 and

FOXO3 through Akt (126–128). Nevertheless, the glycolysis

inhibition in question arises when Foxp3 effectively dampens the

PI3K-Akt-mTORC1 axis via feedback regulation (124). In parallel,

the expression of the vital transcription factor Myc is suppressed by

Foxp3, leading to the inhibition of glycolysis (129). After
Frontiers in Immunology 06
reprogramming of exTregs, Foxp3 expression is upregulated and

the glycolysis pathway is inhibited.

3.2.3 Amino acid metabolism
Treg reprogramming is largely dependent on amino acid

metabolism. For instance, research conducted by Hao Shi et al.

showed that arginine and leucine interact with the GTPases Rag A/

B and Rheb 1/2. These proteins are necessary to maintain the

adaptability of mitochondria and lysosomes, as well as for the

expression of Treg suppressor gene signatures (130). Additionally,

glutamine, glycine, and cysteine stimulate the expression of Foxp3

and enhance the immunosuppressive ability of Tregs through the

activation of glutamate cysteine ligase (Gclc). At the same time, they

inhibit serine, which negatively controls Treg function (131).

3.2.4 Fatty acid oxidation and
mevalonate metabolism

FAO is essential in promoting the reprogramming of Tregs and

improving their immunosuppressive functions. The activation of IL-

2R triggers the JAK-AMPK pathway, leading to the activation of FAO

(132, 133). Simultaneously, PD-1 increases FAO by upregulating the

expression of CPT1A and inducing the production of endogenous

lipids. Moreover, the accumulation of free fatty acids (FFA) in TME

activates fatty acid-binding protein (FABP) andCD36, thereby further

promoting FAO. Notably, loss of CD36 weakens immunosuppressive

function (21, 134).

The activation of the mevalonate pathway can be facilitated by

liver kinase B1 (LKB1). LKB1 activates the mevalonate pathway by

either upregulating the mevalonate gene or regulating intracellular

cholesterol homeostasis (135). The mevalonate pathway metabolite

geranylgeranyl pyrophosphate (GGPP) enhances STAT5

phosphorylation through IL-2 signaling, which is crucial for

reprogramming Tregs to acquire immunosuppressive capabilities

(135). Notably, the expression of mevalonate metabolic enzymes, as

well as cholesterol synthesis and protein geranylgeranylation, is

regulated by SREBP (sterol regulatory element binding protein)/

SCAP (SREBP cleavage activating protein) signaling, thereby

further supporting the mevalonate pathway (21, 136).

3.2.5 Mitochondrial OXPHOS and
mitochondrial complexes

The TME is rich in ROS, which is produced duringmitochondrial

OXPHOS. These ROS can activate NF-kB in Tregs and enhance the

expression of the transcription factor NFAT. NFAT then binds with

the non-coding sequence 2 (CNS2) of the upstream enhancer of the

Foxp3gene, leading to increased expression of Foxp3 and contributing

to the reprogramming of Tregs (137). Furthermore, Foxp3 has the

ability to enhance mitochondrial OXPHOS through the upregulation

of genes and proteins involved in the electron transport systemwithin

mitochondria (138).

Mitochondrial electron transport chain (ETC) complexes, which

are involved inOXPHOS, have been found to have an impact onTregs

function. The mitochondrial respiratory chain consists of five

complexes. Alessia Angelin et al. conducted a study that revealed
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that mitochondrial complex I (also known as CI or NADH) could

decrease the immunosuppressive function of Tregs (129). Similarly,

Samuel EWeinberg et al. discovered thatTregs lacking complex III still

maintained stable expression of Foxp3. However, there was a decrease

in the expression of genes linked to Treg function (139). Additionally,

in glucose-deprived TME, Tregs deficient in mitochondrial

transcription factor A (Tfam) showed a decline in the expression of

Foxp3, potentially attributed to increased methylation within the

TSDR region of the Foxp3 site (140).

3.2.6 Tumor microenvironment metabolites
Metabolites in the TME also affect Tregs function. As an active

derivative of vitamin A, retinoic acid (RA) enhances the expression

of Foxp3 by stimulating IL-2 to activate either the downstream JAK/

STAT5 pathway or the downstream SMAD signaling pathway via

TGF-bR (141, 142). However, there is some controversy

surrounding this mechanism. In a different study, it has been

observed that the absence of endogenous RA signaling actually

enhances the suppressive ability and metabolic adaptation of Tregs.

This enhancement was achieved through the stimulation of STAT5

and mTORC1 signaling (143).
3.3 Post-translational modification
of Foxp3

Proteins ’ posttranslational modifications (PTMs) are

important for linking cellular signaling to functional
Frontiers in Immunology 07
characteristics. PTM refers to the enzymatic process that

alters proteins after their synthesis. The Foxp3 protein consists

of three functionally significant domains: the N-terminal domain,

the zinc finger and leucine zipper regions, and the C-terminal

forkhead domain. The stability of Foxp3 expression and

Tregs’ immunosuppressive role are facilitated by methylation,

acetylation, and glycosylation of the protein (Figure 3). On the

other hand, the effects of phosphorylation and ubiquitination are

more complex, having both positive and negative impacts (9,

22, 23).

3.3.1 Methylation
Protein methylation is the enzymatic transfer of a methyl group

to certain residues of a protein, such as lysine or arginine.

Additional residues that can undergo methylation include

histidine, cysteine, and asparagine (144). The methylation of the

Foxp3 is significantly impacted by the arginine methyltransferase

(PRMT) family members, including PRMT1 and PRMT5 (22).

Specifically, PRMT1 adds asymmetric dimethylarginine to Arg-48

and Arg-51 of Foxp3. The immunosuppressive ability of Tregs is

greatly reduced when the methylation of these two sites is inhibited

(145). Similarly, symmetric dimethylarginines on Foxp3’s Arg-27,

Arg-51, and Arg-146 are catalyzed by PRMT5. Among these

modifications, methylation silencing on Arg-51 can restrict the

inhibitory function (146), potentially because RPMT5 regulates the

production of the IL-2R’s g chain (CD132) (147). Furthermore,

PRMT5 can also methylate SREBP1, which can regulate cholesterol

biosynthesis, as mentioned previously (148).
FIGURE 3

Post-translational modification of Foxp3. Numerous regulatory factors can post-translational modify Foxp3. A brief illustration is presented here,
outlining their basic mechanism. Methylation (PRMT1 and PRMT5), acetylation and deacetylation (CBP, p300, TIP60, HDAC), phosphorylation (CDK2,
PIM1, PIM2, NLK, PP1), ubiquitination, deubiquitination, and SUMO (RNF31, STUB1, TRAF6, USP1), glycosylation (OGT, OGA).
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3.3.2 Acetylation and deacetylation
Acetylation is a PTM primarily observed on histones and

other cellular proteins. Acetyl groups are added to proteins

through histone acetyltransferase (HAT), now referred to as

acetyltransferase (KAT), which enhances Foxp3 expression and

immunosuppression. Conversely, histone deacetylase (HDAC),

now known as lysine deacetylase (KDAC), catalyzes the opposite

reaction, negatively regulating Foxp3 expression and impairing the

immunosuppressive function of Tregs (22, 149). The coordination

of Treg formation, function, and reprogramming is greatly aided by

these enzymes.

The main HATs involved in Treg acetylation are p300, CBP,

and TIP60. Acetylation of Foxp3 by p300 increases the levels of

Foxp3 and prevents its degradation by proteases (150). Three

acetylation sites, including K31, K262, and K267, have been

found using mass spectrometry investigation (151). The loss of

p300 leads to a decrease in the immunosuppressive ability of Tregs

and an enhancement of anti-tumor immunity (152, 153). CBP, a

paralog of p300, also has a significant function in controlling the

activity of Treg in specific inflammatory conditions (154). TIP60

and p300 collaborate to control the functioning of Foxp3. p300

forms an interaction with TIP60 and facilitates the autoacetylation

of TIP60 at K327. Such adjustment elevates the robustness of the

TIP60 protein and accelerates the acetylation process of Foxp3.

Similarly, TIP60 also amplifies p300 acetylation and the activity of

HAT. When TIP60 and p300 are both present (e.g., at K179 and

K227 sites), acetylation of Foxp3 becomes more pronounced (155).

Furthermore, if the forkhead domain of Foxp3 undergoes mutation,

it disrupts the binding between Foxp3 and TIP60, leading to a

reduction of Tregs’ function. Still, this can be reversed by allosteric

modifiers that strengthen the interaction between Foxp3 and TIP60

(156, 157).

There are four distinct categories into which HDACs can be

classified. HDACs of class I, class II, and class IV function through

the dependence on zinc ions (Zn2+). Conversely, sirtuins, known as

class III HDACs, make use of nicotinamide adenine dinucleotide

(NAD) as a coenzyme (158). For the execution of their role, Class I

HDAC1 and HDAC2 attach themselves to the N-terminal section

of Foxp3 (159). HDAC3 knockout mice have been found to have

significantly impaired immunosuppressive function (160). Class II

HDACs include HDAC6,7,9,10. The lack of HDAC6 enhances the

expression of numerous genes associated with Tregs, such as IL-10,

Lag3, and STAT3, thereby greatly enhancing the suppressive

capability of Tregs (161, 162). In the TCR signaling scenario, the

separation of HDAC9 from Foxp3 disrupts STAT5 acetylation,

which subsequently hinders the functioning of Foxp3 (163–165).

On the other hand, HDAC10 facilitates the deacetylation of Foxp3

at Lys-31 (166). The specific mechanism behind these processes is

still unknown, though. Class III SIRT1 is a NAD-dependent enzyme

that negatively regulates TIP60 acetylation (167, 168). This

regulatory process can be disrupted by mammalian sterile 20-like

kinase 1 (MST1) (150, 169). Additionally, Class IV Zn2+-dependent

HDAC11 can co-associate with Foxp3 and contribute to its

deacetylation (165, 170).
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3.3.3 Phosphorylation
Protein kinases engage in phosphorylation to covalently attach

a phosphate group to a protein’s serine (S), threonine (T), or

tyrosine (Y) residue. This process is reversible. Among them,

cyclin-dependent kinase (CDK2), proto-oncogene serine/

threonine protein kinase (PIM1, PIM2) and protein phosphatase

1 (PP1) negatively regulate Foxp3 expression. Kinase NLK

positively regulates Foxp3 expression (22).

CDK2, PIM1, and PIM2 each inhibit Treg immunosuppressive

function through distinct mechanisms. Four cyclin-dependent

kinase motifs (Ser/Thr-Pro) are present in the N-terminal

repressor domain of Foxp3. Cyclin E interacts with CDK2 and

phosphorylates Foxp3 at these sites, resulting in decreased stability

of Foxp3 protein and reduced suppressive function of Tregs (171,

172). In contrast, PIM1 and PIM2 have no effect on the decrease in

stability of Foxp3. Instead, they impact its activity of binding to

DNA and interacting with other co-factors. The crucial role of DNA

binding for Foxp3 is fulfilled by its forkhead domain (FHD). PIM1

phosphorylates Foxp3 at Ser-422, which is situated in the C-

terminal region of FHD (173). Foxp3’s interaction with co-factors

such as HDAC7, TIP60, and Eos depends on its N-terminal region.

PIM2 phosphorylates Ser-33 and Ser-41 within the N-terminal

region of Foxp3 (174, 175). Additionally, lymphocyte-specific

protein tyrosine kinase (LCK) phosphorylates Foxp3 at Tyr-342,

which inhibits cell invasion. However, the functional impact of LCK

phosphorylation on Foxp3 remains unclear (176).

How PP1 affects Foxp3 expression and Treg function remains a

topic of debate (9, 23, 177). According to Hong Nie et al.’s study,

during inflammatory circumstances, PP1 dephosphorylated Foxp3

at Ser-418 of FHD, leading to a reduction in Foxp3 expression

(178). On the other hand, Nemo-like kinase (NLK) was found to

promote Foxp3 expression. NLK phosphorylates Foxp3 and

prevents its degradation by the ubiquitin ligase Stub1 (179, 180).

3.3.4 Ubiquitination, deubiquitination, and small
ubiquitin-like modifier

Ubiquitination, a process mediated by a sequence of enzymes,

denotes the covalent attachment of ubiquitin to target proteins. This

intricate procedure necessitates the synergies of three distinct

ubiquitin enzymes: E1 ubiquitin-activating enzyme, E2 ubiquitin-

conjugating enzyme, and E3 ubiquitin ligase. Substrate proteins can

undergo monoubiqu i t ina t ion or po lyub iqu i t ina t ion .

Monoubiquitination takes place when a solitary ubiquitin

molecule binds to a lone Lys residue of the target protein,

whereas polyubiquitination entails the concurrent labeling of

various Lys residues of the target protein by a solitary ubiquitin

molecule (181–183). The three enzymes responsible for

ubiquitinating Foxp3 are RNF31, Stub1, and TRAF6, each serving

different functions.

RNF31, a crucial E3 ligase found in the LUBAC complex (linear

assembly complex of ubiquitin chains), holds a vital function in

facilitating the monoubiquitination of Foxp3. This particular

protein actively participates in numerous immune signaling

pathways and carries substantial implications in Tregs (184–188).
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In addition to regulating TCR signaling, RNF31 also facilitates

Foxp3 monoubiquitination, resulting in heightened Foxp3

expression and improved immunosuppressive function in

Tregs (189).

Stub1 and TRAF6 are involved in the polyubiquitination of

Foxp3. Stub1 mediates K48 polyubiquitination at multiple sites,

leading to the degradation of Foxp3 and a reduction in Treg

suppressive activity (180). Additionally, Stub1 can also mediate

K27 polyubiquitination on CARMA1 in the CBM complex, so

aiding in the NF-kB’s activation (190). On the other hand,

TRAF6, a cyclic E3 ligase, is responsible for mediating

inflammation-related signaling (191). K63 polyubiquitination on

Foxp3 at Lys-262 is mediated by TRAF6, but the exact mechanism

of its impact on Foxp3 still requires further investigation (192).

Deubiquitinase (DUB) can reverse the reversible process of

ubiquitination. DUB removes ubiquitin from substrate proteins

(193). Several proteins, including USP7, USP21, USP22, and

USP44, have been discovered to directly interact with Foxp3.

USP7 prevents the ubiquitin-dependent degradation of Foxp3

protein by removing the K48 polyubiquitination tag. Additionally,

it promotes the interaction of TIP60 with Foxp3, thereby preserving

the level of expression of Foxp3 and the immunosuppressive ability

of Treg (194). Similarly, USP21, USP22, and USP44 also

deubiquitinate Foxp3, preventing its degradation (195–199).

Small ubiquitin-like modifiers are small molecules that can be

covalently bound to other proteins through a cascade reaction

mediated by enzymes. This process is known as SUMO. SUMO

does not involve the proteolysis of targeted proteins but rather plays

a crucial part in regulating diverse biological processes. It is

important to note that the SUMO process is reversible. For

instance, ROS induced by TCR signaling controls the protein

stability of the deubiquitinating enzyme SENP3, thereby

mediating the deubiquitinating modification of the Foxp3

transcription factor BACH2 and its activity in maintaining the

immunosuppressive function of Tregs (200).

3.3.5 Glycosylation
Glycosylation is a type of PTM that involves attaching glycans

to proteins. Observations demonstrate a direct link between the

suppressive activity of Tregs and glycosylation, indicating a positive

correlation (201, 202). O-GlcNAc glycosylation modification

specifically refers to the addition of a single monosaccharide

modification to the serine and/or threonine residues of a protein.

O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are

enzymes that catalyze this modification in opposite directions.

There are several O-GlcNAcylation locations in Foxp3, which

facilitate the expression of Foxp3 by regulating the IL-2/STAT5

pathway following glycosylation (203). It is significant to highlight

that the glycosylation of c-Rel, another transcription factor, has

been demonstrated to diminish its interaction with Foxp3 and

inhibit Foxp3 expression (204). Moreover, O-GlcNAcylation

could oppose ubiquitination, resulting in the enhancement of

Foxp3 protein stability (205).
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4 Immunotherapy targeting
Treg reprogramming

With the advancement of cancer immunotherapy and the in-

depth exploration of the TME, cancer treatment has experienced a

revolution. In TME, Treg is a major therapeutic target. There are

currently seven immunotherapies targeting Tregs, such as (1)

depleting TI-Tregs, (2) preventing the migration of Tregs into

tumors, (3) sensitizing TI-Tregs to inhibitory receptor blockade,

(4) targeting costimulatory signals on TI-Tregs, (5) targeting Treg

cytokine secretion, (6) altering Treg stability, (7) disrupting exTreg

reprogramming (206). As shown in Table 1, we summarized

potential targets that may act on Tregs reprogramming.
5 Conclusion

After extensive research, there has been a better understanding of

Tregs. In the inflammatory microenvironment, Tregs are influenced by

signalingmolecules,metabolic conditions, and Foxp3 post-translational

modifications. As a result, they undergo reprogramming and transform

into immunosuppressive Tregs, which enhances immunosuppressive

ability. Tregs are now a prominent target in the realm of cancer

immunotherapy. By influencing the reprogramming of Tregs, it is

possible to effectively reduce their immunosuppressive function,

mitigate the negative effects of Treg reprogramming on

immunotherapy in inflammatory conditions, and partially prevent the

severe autoimmune consequences that may arise from Treg

depletion therapy.

Existing technology and approaches are making great efforts to

address the inadequacies of various immunotherapies. Considering the

current negative consequences of Treg depletion-induced

autoimmunity, there are a number of ways to effectively induce

tumor immunity by targeting specific Tregs without triggering severe

autoimmune reactions. The first one is to selectively target effector Treg

cells in tumor tissues, thereby retaining naïve Tregs in other tissues that

are needed to prevent autoimmunity. The second aims to adjust the

extent and duration of Treg depletion. The third method is to inject

Treg-depleting antibodies directly into the tumor tissue. In addition,

when Tregs depletion is used in combination with other

immunotherapies, Tregs should be depleted or their suppressive

activity should be weakened before other treatments (such as

immunosuppressants and vaccination) (242).

In targeted Tregs reprogramming, multi-omics approaches

combined with novel computational tools can be applied to target

various signals and molecules on Tregs (243–245). It enables a

better understanding of the gene regulatory networks regulating

Treg function, as well as the identification of additional biomarkers

that define Tregs function in the TME. This could go a long way

toward new therapies targeting Tregs without affecting immune

homeostasis in various cancers (206).

The drawback of targeted post-translational modifications is

that they are difficult to selectively target because they are present in
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TABLE 1 Targeting potential targets of Tregs reprogramming.

Method Target Drug Mechanism Combination therapy References

Signal molecules
and

signaling
pathways

MALT1/
CBM complex

Mepazine

The disruption of Malt1 caspase activity by
mepazine leads to impaired CTLA-4 expression and

suppressive function in Tregs associated with
improved tumor control.

Combination therapy of MALT1
inhibitor- meprazine and anti-

PD-1 ICI.
(207, 208)

IL-2R Daclizumab

The binding of IL-2 and IL-2R leads to the
phosphorylation and activation of transcription
factor STAT5, promoting Foxp3 expression and

Treg immune suppression.

IL-2 has been used in
combination with adoptive cell
therapy (ACT) for the treatment

of melanoma.

(69, 71)

S1P
PF-

429242, FTY720

The sphingosine-1-phosphate receptor (S1PR1) can
activate the PI3K-AKT-mTOR1 pathway, disrupting

immune suppression.
N/A (209–211)

PTEN VO-OHpic
PTEN can block the PI3K-Akt-mTOR1 pathway

and disrupt Treg immunosuppression.
N/A (111, 212)

GITR DTA-1

GITR becomes an attractive target for cancer
immunotherapy after the agonistic anti-GITR

antibody DTA-1 is shown to block the suppressive
effects of Tregs.

Synergistic antitumor responses
by combined GITR activation and

sunitinib in metastatic renal
cell carcinoma.

(91, 213)

TGF-b Ibalizumab
Blocking TGF-b signaling in Tregs remodels the

tumor microenvironment and inhibits
cancer progression.

Manganese synergizing anti-TGF-
b/PD-L1 bispecific antibody

YM101 to overcome
immunotherapy resistance in

non-inflamed cancers.

(50, 214, 215)

OX40
Rocatinlimab,
amlitelimab

OX40 is also able to activate the Akt and STAT5
pathways in Tregs, resulting in decreased Foxp3

expression levels.

Combined OX40 agonist and PD-
1 inhibitor immunotherapy

improves the efficacy of vascular
targeted photodynamic therapy in

a urothelial tumor model.

(95, 216, 217)

AHR CH223191

AHR targeting in IDO/TDO-expressing tumors
counteracts a regulatory T cell/macrophage
suppressive axis and synergizes with immune
checkpoint blockade to hinder tumor growth.

N/A (101, 218)

IDO 1-MT

IDO signaling inhibits Akt, upregulates
transcription factor Foxo3a, and promotes Treg

reprogramming into an
immunosuppressive phenotype.

The application of IDO inhibitors
combined with RT may have a

synergistic effect by
relieving immunosuppression.

(106, 219)

CCR8 ML604086
The CCR8-CCL1 pathway enhances the

immunosuppressive ability of Treg by upregulating
the expression of FOXP3, CD39, and IL-10.

Therapeutic depletion of CCR8+
tumor-infiltrating regulatory T
cells elicits antitumor immunity
and synergizes with anti-PD-

1 therapy.

(108, 109,
220, 221)

Metabolic
reprogramming

Glycolysis Metformin

Metformin treatment leads to mTORC1 activation
and metabolic reprogramming of Tregs toward
glycolysis, which leads to reduced inhibitory
function and induces apoptosis of Tregs.

Metformin promotes antitumor
immunity via endoplasmic-

reticulum-associated degradation
of PD-L1.

(222, 223)

OXPHOS
Rotenone,
oligomycin

Rotenone and oligomycin can inhibit the oxidative
phosphorylation of Tregs in tumors, thereby

disrupting their immunosuppressive function. Their
anti-cancer properties have been proven.

N/A (224)

FAO
Soraphen

A, pioglitazone

Soraphen A and pioglitazone can inhibit the FAO of
Tregs in tumors, thereby disrupting their

immunosuppressive function. Their anti-cancer
properties have been proven.

N/A (225, 226)

Mevalonate
pathway

Simvastatin

Simvastatin can inhibit the mevalonate pathway of
Tregs in tumors, thereby disrupting their

immunosuppressive function. Their anti-cancer
properties have been proven.

N/A (227, 228)

HIF-1a N/A (229–233)

(Continued)
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both cancerous and normal cells on a large scale. The issue with

metabolic reprogramming that targets Tregs is the same (21).

Furthermore, targeting post-translational modifications is more

common in hematological malignancies and lacks application in

solid tumors. In recent studies, proteolytic targeting chimeras

(PROTACs) have been used as an innovative technology to target

parts of proteins that could not be targeted before. They affect Tregs

function by connecting target protein ligands and E3 ubiquitin
Frontiers in Immunology 11
ligase ligands, promoting rapid ubiquitination and consequent

degradation of target proteins (246–248).

However, there are still some issues that we need to explore

further. (1) Are there other mechanisms affecting Tregs

reprogramming? (2) Can tumor-specific Treg-targeted therapy be

achieved without affecting tissue Tregs? (3) How much impact do

different inflammation and cancer types have on Tregs? We believe

that in the future, with continued in-depth research on Tregs,
TABLE 1 Continued

Method Target Drug Mechanism Combination therapy References

CDMP-TQZ,
YC-1, PX-

478,
echinomycin

The absence of HIF-1a in Tregs increases
mitochondrial metabolism and immune

suppression, but reduces migration ability,
ultimately leading to a decrease in the number of

Tregs in the tumor.

Tfam N/A
Tfam deletion in Tregs reduces intratumoral Tregs,
their Foxp3 expression, and suppressive function,

leading to better tumor control.
N/A (140)

Mitochondrial
respiratory

chain
complex III

N/A

Genetic inactivation of mitochondrial respiratory
chain complex III can lead to loss of Treg

suppressive function and marker genes without
altering Foxp3 expression. Ultimately, it can inhibit

tumor growth.

N/A (139)

CD36 AP5055

CD36 deletion in Tregs decreases intratumoral
Tregs, and their suppressive function, while

promoting their production of IFN-g and TNF in
association with improved tumor control.

Combination of anti-CD36 and
anti-PD-1 treatment or anti-PD-1
treatment in Treg-specific CD36-

deficient mice resulted in
improved tumor control and

prolonged survival.

(134, 234)

PRMT1 Doxycycline
PRMT1 promotes arginine methylation of Foxp3,
thereby promoting the inhibitory function of Tregs.

The combination therapy of
PRMT1 inhibitors and anti-PD-1

antibodies enhances the
therapeutic effect of anti-tumor

therapy in vivo.

(145, 235)

PRMT5 DS-437
The pharmacological inhibition of PRMT5 by DS-
437 inhibits the methylation of FOXP3 and reduces

the immunosuppressive function of Tregs.
N/A (146)

p300 C646
Conditional Treg deletion or pharmacological

inhibition (C646) of p300 increases the intratumor
Teff: Treg ratios and led to tumor growth control.

The p300/CBP inhibition
enhances the efficacy of

programmed death-ligand 1
blockade treatment in

prostate cancer.

(152, 236)

Posttranslational
modification

TIP60

Small molecule
inhibitors of
Usp7(Usp7i),

including P5091
and P0217564

The deubiquitinase Usp7 controls the level of
histone acetyltransferase Tip60 and to a lesser

extent controls the level of Foxp3. Gene deletion or
pharmacological inhibition of Usp7 can impair the

immunosuppressive function of Tregs.

The combination therapy of anti-
PD-1 monoclonal antibody and
Usp7i has better anti-tumor
effects than Usp7i alone.

(195)

PP1 PPP1R11

The loss of PPP1R11 induced resistance toward
Treg-mediated suppression in T cells as measured

by gene and protein expression of T cell
stimulation-induced cytokines IL-2 and IFN-g.

N/A (237)

RNF31 HOIPIN-8
RNF31 can lead to increased Foxp3 expression and
enhanced immunosuppressive function of Treg cells.

N/A (189, 238)

TRAF6 Traf6i(6877002)
TRAF6 inhibitor boosts antitumor immunity by

impeding regulatory T cell migration in the Hepa1-
6 tumor model.

OX40-TRAF6 axis promotes
CTLA-4 degradation and is a
potential therapeutic target for
the improvement of T-cell-
based immunotherapies.

(239–241)
NA: Not Applicable.
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significant progress will be made in the field of tumor

immunotherapy, benefiting millions of cancer patients.
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246. Békés M, Langley DR, Crews CM. Protac targeted protein degraders: The past is
prologue.Nat RevDrugDiscovery (2022) 21(3):181–200. doi: 10.1038/s41573-021-00371-6

247. Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, et al.
Development of protacs to target cancer-promoting proteins for ubiquitination and
degradation. Mol Cell Proteomics MCP (2003) 2(12):1350–8. doi: 10.1074/
mcp.T300009-MCP200

248. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ.
Protacs: chimeric molecules that target proteins to the skp1-cullin-F box complex for
ubiquitination and degradation. Proc Natl Acad Sci United States America (2001) 98
(15):8554–9. doi: 10.1073/pnas.141230798
frontiersin.org

https://doi.org/10.1016/j.nano.2020.102278
https://doi.org/10.1016/j.archoralbio.2021.105129
https://doi.org/10.1038/s41467-023-38443-3
https://doi.org/10.1038/s41388-020-1270-z
https://doi.org/10.1002/jlb.2a0618-228r
https://doi.org/10.1016/j.xcrm.2022.100655
https://doi.org/10.1016/j.intimp.2019.105965
https://doi.org/10.1038/s41423-023-01093-y
https://doi.org/10.1016/j.canlet.2020.05.021
https://doi.org/10.1016/j.canlet.2020.05.021
https://doi.org/10.1038/cr.2016.151
https://doi.org/10.18632/aging.205044
https://doi.org/10.18632/aging.205044
https://doi.org/10.3389/fphar.2023.1244752
https://doi.org/10.3389/fphar.2023.1244752
https://doi.org/10.3389/fendo.2022.1039786
https://doi.org/10.1038/s41573-021-00371-6
https://doi.org/10.1074/mcp.T300009-MCP200
https://doi.org/10.1074/mcp.T300009-MCP200
https://doi.org/10.1073/pnas.141230798
https://doi.org/10.3389/fimmu.2024.1345838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point?
	1 Introduction
	2 Immunosuppressive immune cells within TME
	3 The reprogramming mechanism of exTregs to eTregs
	3.1 Signaling molecules and pathways
	3.1.1 TCR/CD28
	3.1.2 Transforming growth factor beta
	3.1.3 IL family and transcription factor STAT family
	3.1.4 Glucocorticoid-induced tumor necrosis factor receptor
	3.1.5 OX40
	3.1.6 Aryl hydrocarbon receptor
	3.1.7 Cdc42 GTP enzyme
	3.1.8 IDO signaling
	3.1.9 Chemokine receptor 8

	3.2 Metabolic and energy pathways
	3.2.1 PI3K-Akt-mTORC1 axis
	3.2.2 Glycolysis
	3.2.3 Amino acid metabolism
	3.2.4 Fatty acid oxidation and mevalonate metabolism
	3.2.5 Mitochondrial OXPHOS and mitochondrial complexes
	3.2.6 Tumor microenvironment metabolites

	3.3 Post-translational modification of Foxp3
	3.3.1 Methylation
	3.3.2 Acetylation and deacetylation
	3.3.3 Phosphorylation
	3.3.4 Ubiquitination, deubiquitination, and small ubiquitin-like modifier
	3.3.5 Glycosylation


	4 Immunotherapy targeting Treg reprogramming
	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References




