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Xi’an, China, 4Genomics Institute, Geneplus-Shenzhen, Shenzhen, China, 5Department of Thoracic
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Introduction: T cell receptor (TCR) repertoires provide valuable insights into

complex human diseases, including cancers. Recent advancements in immune

sequencing technology have significantly improved our understanding of TCR

repertoire. Some computational methods have been devised to identify cancer-

associated TCRs and enable cancer detection using TCR sequencing data.

However, the existing methods are often limited by their inadequate

consideration of the correlations among TCRs within a repertoire, hindering

the identification of crucial TCRs. Additionally, the sparsity of cancer-associated

TCR distribution presents a challenge in accurate prediction.

Methods: To address these issues, we presented DeepLION2, an innovative deep

multi-instance contrastive learning framework specifically designed to enhance

cancer-associated TCR prediction. DeepLION2 leveraged content-based sparse

self-attention, focusing on the top k related TCRs for each TCR, to effectively

model inter-TCR correlations. Furthermore, it adopted a contrastive learning

strategy for bootstrapping parameter updates of the attention matrix, preventing

the model from fixating on non-cancer-associated TCRs.

Results: Extensive experimentation on diverse patient cohorts, encompassing

over ten cancer types, demonstrated that DeepLION2 significantly outperformed

current state-of-the-art methods in terms of accuracy, sensitivity, specificity,

Matthews correlation coefficient, and area under the curve (AUC). Notably,

DeepLION2 achieved impressive AUC values of 0.933, 0.880, and 0.763 on

thyroid, lung, and gastrointestinal cancer cohorts, respectively. Furthermore, it

effectively identified cancer-associated TCRs along with their key motifs,

highlighting the amino acids that play a crucial role in TCR-peptide binding.
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Conclusion: These compelling results underscore DeepLION2's potential for

enhancing cancer detection and faci l i tat ing personal ized cancer

immunotherapy. DeepLION2 is publicly available on GitHub, at https://github.

com/Bioinformatics7181/DeepLION2, for academic use only.
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1 Introduction

T cells are crucial elements in human immune system, capable

of recognizing and responding to various antigens, including

tumors, through their T cell receptors (TCRs) (1–3). In cancers,

specific TCRs with distinct characteristics emerge in patients’ T cell

repertoire, referred to cancer-associated TCRs (caTCRs) (4). These

caTCRs possess unique adaptations to interact with tumor-related

antigens, contributing to the immune response against cancer. They

also exhibit shared biochemical signatures among caTCRs targeting

the same cancer type or subtype, holding promise for cancer

detection and treatment (5–8). Although the precise biochemical

properties distinguishing caTCRs are still under exploration,

advancements in the Adaptive Immune Receptor Repertoire

sequencing (AIRR-seq) have revolutionized our understanding of

TCR repertoires at both individual and population levels,

generating vast sequencing data (9). Consequently, computational

frameworks have been developed to predict caTCRs, some to

differentiate cancer-associated repertoires from non-cancer ones

(10–18). By leveraging the data obtained through AIRR-seq, these

computational frameworks play a crucial role in early cancer

screening and the prediction of cancer immune responses and

immunotherapy effectiveness (15, 19). Moreover, they contribute

to detecting molecular residual diseases and interpreting tumor

mutation burdens, serving as pivotal biomarkers for assessing a

patient’s prognostic status (20–22).

Predicting caTCRs from AIRR-seq data has been defined as a

multi-instance learning (MIL) task, with individual TCRs as
ociated T cell receptor;
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‘instances’ and the entire repertoire as the ‘bag’ (17, 18, 23).

Current computational methods predominantly focus on the

complementarity determining region 3 (CDR3) of the TCRb
chain, involving two crucial components: CDR3 sequence feature

extraction and the application of MIL techniques. Regarding

sequence feature extraction, traditional methods, based on

similarity comparisons of entire sequences, faced challenges in

pinpointing specific amino acid residues, or ‘motifs,’ crucial for

antigen recognition (11, 13). To address this limitation, some

researchers preprocessed sequences into fixed-length overlapping

fragments (10, 12, 14). However, motif lengths remained variable,

constraining their performance (14). DeepLION first designed the

model that enables to accommodate motifs of various lengths,

surpassing existing methods in feature extraction (17). In the

context of applying MIL techniques, early methods primarily

considered the most significant CDR3 sequence, neglecting other

valuable sequences (10–15). To address this issue, DeepTCR

employed a multi-head attention mechanism, while DeepLION

used a linear classifier, assigning appropriate weights to CDR3

sequences in the repertoire (16, 17). To further tackle the issue of

a small fraction of caTCRs within the repertoire, MINN_SA applied

a sparsity constraint to the linear classifier’s output, focusing

attention on the caTCRs within the repertoire, and achieved

superior performance compared to popular MIL methods (15, 18).

Unfortunately, in the application of MIL techniques, there are

still two key issues that prevent accurate predictions from the

existing methods: their inadequate consideration of the

correlations among the TCRs within a repertoire, and the sparsity

of caTCR distribution. On one hand, TCRs with similar or even

identical CDR3 sequences can recognize different antigens based on

their distinct structural characteristics (24). Consequently, those

sequence-based methods are susceptible to misclassification in such

cases, including mislabeling non-cancer TCRs with similar or

identical sequences to caTCRs as caTCRs, resulting in false

positives. Fortunately, utilizing the context of TCRs, specifically

calculating the correlations between TCRs, enhances the inference

of TCR antigen-binding specificity and enables an accurate caTCR

prediction (25). While TransMIL effectively integrated the self-

attention mechanism within its MIL component to capture inter-

instance correlations, showing impressive performance in whole
frontiersin.org
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slide image classification (26), dedicated methods for caTCR

prediction remain to be developed. On the other hand, tumor-

infiltrating lymphocyte repertoires often contain over 80% of TCRs

lacking tumor reactivity, indicating the sparse distribution of

caTCRs (15, 27). In such cases, the self-attention mechanism

calculates a group of attention scores for a TCR compared to all

others, which may inadvertently allocate excessive attention to

unrelated TCRs, and further generate erroneous predictions. In

addition, insufficient samples from patients with the same cancer

type may impede the model’s ability to focus on the sparse caTCRs,

limiting the prediction performance of the self-attention

mechanism (25, 26).

In summary, the current computational methods for caTCR

prediction are constrained by their limited consideration of the

correlations among TCRs in the repertoire and the sparsity of

caTCR distribution. To address these issues, we proposed a novel

MIL method called DeepLION2, which incorporated sparse self-

attention and contrastive learning, to enhance the prediction of

caTCRs using TCR sequencing (TCR-seq) data. It met the

requirement to consider TCR correlations and to identify sparse

caTCRs within the repertoire by utilizing a content-based sparse

attention mechanism. This mechanism focused only on the k most

relevant TCRs for each TCR, avoiding unnecessary attention on

unrelated TCRs. Additionally, we integrated a self-contrastive

learning strategy into model training to enhance the attention

matrix by focusing on sparse caTCRs and thereby improving

caTCR prediction. In our nested cross-validation evaluation,

DeepLION2 outperformed the state-of-the-art methods in caTCR

prediction and repertoire classification and achieved impressive area

under the receiver operating characteristic (ROC) curve (AUC)

values of 0.933, 0.880, and 0.763 on raw TCR-seq data of thyroid

cancer (THCA), lung cancer (LUCA), and gastrointestinal cancer

(GICA) patient cohorts, respectively. Moreover, it could effectively

identify caTCRs along with their key motifs, which are essential for

TCR-peptide binding. These results highlight its potential to advance

cancer research and facilitate personalized cancer immunotherapy.
2 Materials and methods

DeepLION2 set up a three-component workflow, comprising

data preprocessing, TCR antigen-specificity extraction, and MIL,

which closely resembled the workflow of DeepLION (17)

(Figure 1A). While the initial two parts of DeepLION2 employed

the same methodology as DeepLION for data preprocessing and

TCR antigen-specificity extraction, the main improvement was

observed in the MIL component. In the third part, DeepLION2

introduced a content-based sparse self-attention mechanism in

conjunction with contrastive learning to effectively aggregate TCR

features and embed the repertoire. It performed both self-attention

and sparse self-attention computations and compared the results to

optimize attention learning. By considering the relationships among

TCRs within the repertoire and the sparsity of caTCRs, it

significantly enhanced the aggregation process, enabling accurate

prediction of whether the TCR repertoire was cancerous or

non-cancerous.
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2.1 Data preprocessing

To effectively utilize TCR-seq data for caTCR prediction and

repertoire classification, preprocessing steps are necessary, involving

sequence filtering and embedding. Considering that existing studies on

TCRs predominantly focused on the b chain, we only kept the b chain

CDR3 sequences as the input of DeepLION2. During sequence

filtering, low-quality CDR3 sequences and those unrelated to cancer

were removed. As described in the previous studies (15, 17), the

following types of sequences were removed: I. sequences with

inadequate length (< 10) or excessive length (> 24), II. sequences

featuring special characters (X, +, *, etc.), III. incomplete sequences, not

commencing with cysteine (C) or culminating with phenylalanine (F),

IV. sequences with an unresolved variable gene locus, and V. sequences

appearing in the reference dataset from Xu’s study, frequently observed

in both healthy individuals and cancer patients. From the remaining

sequences, the N sequences with the highest abundance were selected.

In the sequence embedding process, sequences were encoded into

numerical matrices that effectively contained the antigen-binding

specificity of the CDR3 for downstream analysis. A sequence of

length l could be encoded into an l × d TCR matrix using a 20 × d

feature matrix, where each of the 20 amino acids was represented

by a feature vector of dimension d. Among popular feature matrices

(15, 28, 29), given that the Beshnova matrix contains more biochemical

information and has demonstrated good performance in methods like

DeepLION and DeepCAT, our method also adopted it for encoding

sequences of length l into an l × 15 TCR matrix.
2.2 TCR antigen-specificity extraction
considering the cancer-associated motifs
of different lengths

Properly extracting TCR antigen-specificity is essential for

identifying caTCRs, and various computational methods have

been used for this purpose. Compared with other methods,

DeepLION introduced a convolution network with convolutional

filters of different sizes to consider the key motifs of different lengths

in TCRs, resulting in improved performance (17). As a result,

DeepLION2 adopted a similar network architecture to DeepLION

to extract TCR antigen-specificity. It consisted of 14 convolutional

filters with different sizes that performed convolution operations on

the TCR matrix, generating corresponding convolution mappings.

The 1-max pooling function was then applied to reduce each

mapping dimension to 1. By concatenating these mapping results,

a feature with a dimension of 1 × 14 representing the TCR antigen-

specificity was obtained for each TCR. Finally, this process resulted

in an N × 14 matrix for each TCR repertoire.
2.3 Multi-instance learning properly
modeling the relationships among TCRs

2.3.1 Self-attention for calculating the correlation
scores between TCRs

Considering the relationships among TCRs within the

repertoire can better estimate the antigen-binding specificity of
frontiersin.org
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TCRs with similar/identical CDR3 sequences. Self-attention-based

models have proven to be quite effective in processing sequence data

and calculating relationship scores between instances in MIL.

Similar to these models, the self-attention mechanism in

DeepLION2 was formally defined as Equations (1, 2):

Q = XWq + bq,K = XWk + bk,V = XWv + bv ,  (1)

OSA = Attention(Q,K ,V) = sof tmax QKTffiffiffiffi
D0p

� �
V , (2)

where X ∈ RN�D was an input with N instances, whose dimension

was D (D = 14 in DeepLION2 due to the TCR feature matrix), Q ∈
RNq�D0

,  K ∈ RNkv�D0
and V ∈ RNkv�D0

were query, key and value

matrices obtained by linear transformation of X, where D 0 was the
dimension of the instance after transformation, and softmax(·) was

the activation function to normalize the results and get the final

output OSA ∈ RN�D0
. The output of softmax(QKT=

ffiffiffiffiffiffi
D 0p

) ∈ RN�N

could be seen as the attention score matrix computed, containing

the relationship scores between the corresponding instances. To

avoid weight concentration and gradient vanishing, the scalar factorffiffiffiffiffiffi
D 0p

was introduced (25).
Frontiers in Immunology 04
To improve the self-attention mechanism’s performance, a

preferred method is multi-head self-attention, formally defined as

Equations (3–5):

Q = Q1,Q2,…,Qhf g,K = K1,K2,…,Khf g,V = V1,V2,…,Vhf g,
(3)

Headi = Attention(Qi,K i,V i), (4)

OMHSA = MHSA(X) = Concat(Head1,Head2,…,Headh) : (5)

In the multi-head self-attention computation process, Q, K and V

were divided into h equal parts, where Qi, Ki and Vi ∈ RN�(D0=h)

were used to computed the ith attention head Headi ∈ RN�(D0=h).

And then the outputs of h heads were concatenated as the final

attention output  OMHSA ∈ RN�D0
. To facilitate the stacking of self-

attention blocks, the output OMHSA was linearly transformed to the

output OMHSA
0 ∈ RN�D, whose dimension was the same as the

input X as Equation (6):

O
0
MHSA = OMHSAW

A + bA : (6)
B

A

FIGURE 1

DeepLION2 for accurate prediction of cancer-associated TCRs. (A) The workflow of DeepLION2 contained three parts: data preprocessing, TCR
antigen-specificity extraction, and multi-instance learning. In the data preprocessing, raw sequences of length l were embedded into the TCR matrix
with dimension l × 15 after sequence filtering. Then the antigen-specificity of each TCR was extracted by a convolutional network and the
corresponding feature was generated. In the last part, DeepLION2 used a content-based sparse self-attention to capture the correlations between
each TCR and its top k related TCRs. Moreover, it also performed self-attention calculation for self-contrastive learning, where the outputs of sparse
self-attention and self-attention were compared to improve attention learning. Finally, the attention output was linearly mapped and pooled to
generate the cancer score for the repertoire. (B) The computational details of content-based sparse self-attention used in DeepLION2. First, the
TCR-to-TCR affinity graph A was calculated with Q and K, measuring the correlation between TCRs. Then the index matrix I was derived with the
row-wise extraction operation, which recorded the k indices of the related TCRs for each TCR. In the subsequent computation of self-attention, the
k most relevant TCRs for each TCR were selectively considered, thereby mitigating the impact of less relevant TCRs. Finally, the output OCSA was
obtained after the computation of self-attention. MM, matrix multiplication; T, transposition.
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In the context of caTCR prediction, the input X of the self-

attention was the N × 14 TCR repertoire feature matrix, where each

row represented a TCR and N represented the total number of

TCRs. This mechanism calculated correlation scores between TCRs,

enabling the accurate extraction of cancer-associated biochemical

features and precise identification of caTCRs within the repertoire.

2.3.2 Content-based sparse self-attention
prioritizing top k related TCRs for each TCR

Due to the sparsity of caTCRs, calculating relationship scores

between all TCRs may inadvertently shift the focus toward non-

cancer-associated TCRs, thereby potentially reducing caTCR

prediction performance. To tackle this, the preferred solution is

sparse self-attention, which falls into two categories: position-based

and content-based approaches (30, 31). Position-based attention

restricts the attention matrix based on predefined position-related

patterns, but the distribution pattern of caTCRs in the repertoire

remains unknown. As a result, DeepLION2 incorporated the

content-based sparse attention to only consider the top k related

TCRs for each TCR in the repertoire (Figure 1B). The formal

definition was as Equations (7–11):

A = QKT, (7)

I = topkIndex(A), (8)

Qu = unsqueeze(Q),  Kg = gather(K , I),Vg = gather(V , I), (9)

OCSA = CSA(X) = squeeze(Attention(Qu,K g ,Vg)), (10)

O
0
CSA = OCSAW

A + bA : (11)

First, we derived the TCR-to-TCR affinity graph A ∈ RN�N via

matrix multiplication between Q and transposed K, where

measured the correlation of each TCR with other TCRs. And

then we pruned the affinity graph A by retaining only the first k

connections of each TCR based on the values of the elements in A

(i.e., the correlation between TCRs). The index matrix I ∈ RN�k

was derived with the row-wise extraction operation, which recorded

the k indices of the related TCRs for each TCR. Specifically, the ith

row of I included k indices of the most relevant TCRs for the ith

TCR. The gathered key and value matrices Kg and Vg ∈ RN�k�D0
,

which contained the top k TCR vectors for each TCR, were obtained

by gathering K and V with I (i.e., extracting the corresponding

elements according to the indices in I). For facilitating the following

matrix multiplication computations, the unsqueezed query matrix

Qu ∈ RN�1�D0
was obtained by ascending the dimension of Q.

Finally, the self-attention was applied on the Qu, Kg and Vg, and the

output OCSA ∈ RN�D0
was obtained after the squeeze operation.

Consistent with the multi-head self-attention, we obtained the final

output OCSA
0 ∈ RN�D after the linear transformation. In

conclusion, by precomputing TCR correlations before applying

traditional self-attention, DeepLION2 selectively considered the k

most relevant TCRs for each TCR, thereby mitigating the impact of

less relevant TCRs.
Frontiers in Immunology 05
2.3.3 Self-contrastive learning for robust
attention learning

Content-based sparse self-attention has shown excellent

performance on classification tasks when sufficient training data (>

one thousand samples) is available (31). However, obtaining TCR-seq

data from a sufficient number of patients with the same cancer type is

challenging, and if there isn’t enough training data, the model struggles

to focus on the sparse caTCRs in the repertoire. To address this

challenge, DeepLION2 incorporated self-contrastive learning in its

MIL component. We first assumed that each TCR within a

repertoire exclusively relates to others recognizing the same antigen,

signifying an attention score of 0 with unrelated TCRs. Based on this

assumption, we inferred that the output, despite lacking specific

constraints in self-attention calculation, would be identical to that

derived from sparse self-attention. To ensure this, we performed both

self-attention and sparse self-attention calculations and compared their

outputs using the mean square error loss function, in the aim to

minimize the discrepancy between the two outputs during the model

training. The loss function was defined as Equation (12):

LC = MSE(O
0
CSA,O

0
MHSA) =

1
N·Do

N

i=1
o
D

j=1
(oij − ô ij)

2, (12)

where oij and ô ij   were the elements of the i-th row and j-th column

in the output matrix O
0
CSA and O

0
MHSA. In the model training process,

by optimizing the loss function LC, the attention score matrix of the

sparse self-attention was constantly revised, where each TCR focused

only on relevant TCRs and ignored other TCRs. Consequently, this

strategy allowed DeepLION2 to focus more on the sparse caTCRs

within a repertoire with small sample sizes.

2.3.4 Decision layer for making prediction both
for TCRs and repertoires

The decision layer was designed to make the final predictions

for individual TCRs and the TCR repertoire. The output of the

content-based sparse self-attention O
0
CSA was linearly transformed

to integrate the features of each TCR, as Equation (13):

~y = Sigmoid (O
0
CSAW

D + bD), (13)

where WD ∈ RD�1 and bD ∈ RD were the weight and the bias of

the linear transformation, Sigmoid(·) was the activation function to

map the values to the interval (0, 1), and ~y ∈ RN�1 represented the

prediction scores of TCRs in the repertoire. And then the average

pooling was used to mapping the ~y into the TCR repertoire

prediction result as Equation (14):

~Y = P(Y = 1j~y) = 1
No

N

i=1

~yi, (14)

where P(Y = 1j~y) denoted the probability that the TCR repertoire is

associated with cancer (i.e., the probability that a patient has

cancer). When ~Y > 0:5, the repertoire was predicted to be cancer-

associated, and to be noncancerous otherwise.

The whole model DeepLION2 was end-to-end trainable, and

the loss function L used for model training was defined as

Equations (15, 16):
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LM = CE (~Y ,Y) = −½Y · log(~Y) + (1 − Y) · log(1 − ~Y)�, (15)

L = LM + LC , (16)

where L consisted of the main loss function LM and the self-

contrastive learning loss function LC. By optimizing the log-

likelihood function LM, DeepLION2 learned to predict whether a

repertoire is cancer-associated. Additionally, a constraint term LC

was optimized to enhance the learning of sparse self-attention and

improve prediction performance.

The trained DeepLION2 not only predicted the cancer status of

patient samples but also identified caTCRs within a repertoire

through the TCR score vector ~y. Each element ~yi in the vector

represented the probability that the ith TCR in the repertoire is a

caTCR. In a predicted cancerous repertoire, the probability ~yi served

as a reliable indicator: the higher the probability, the stronger the

likelihood that the corresponding TCR is associated with cancer.

Conversely, regardless of their respective probabilities, every TCR in

a predicted noncancerous repertoire is unassociated with cancer.

Additionally, DeepLION2 could also identify the key motifs of

caTCRs by calculating the motif scores according to the weight

parameters of the trained model.
3 Results

To evaluate the performance of DeepLION2, we conducted

experiments on diverse cohorts of patients with various cancer

types. We first described in detail the experimental data,

comparison models, evaluation metrics, and cross-validation

approach. Then we specifically assessed the enhancement of the

MIL component of DeepLION2 using preprocessed real data.

Furthermore, we applied DeepLION2 to raw TCR-seq data to

assess its performance when predicting the caTCRs and

repertoires. Finally, we demonstrated the key TCRs with their

motifs from the raw data based on the trained models.
3.1 Collecting data

We utilized two real datasets encompassing more than 10

cancer types for our experiments. The first dataset was obtained

from The Cancer Genome Atlas (TCGA) database, comprising

paired tumor and normal tissue samples from patients with ten

distinct cancer types (32). These samples underwent preprocessing

steps, including next-generation sequencing, TCR reconstruction

techniques, and TCR encoding algorithms, as outlined in previous

studies (33). Xiong et al. utilized this dataset in their review to

evaluate the performance of existing MIL methods in cancer

detection tasks, while Kim et al. also employed it for comparisons

with other methods (18). Therefore, we employed this dataset to

evaluate the MIL component of DeepLION2.

The second dataset was collected from the clinical database of

Geneplus Technology Ltd. in Shenzhen (Geneplus) (34–36). It

consisted of raw TCR-seq data samples, including peripheral

blood mononuclear cell and tumor-infiltrating lymphocyte
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samples from patients with THCA, LUCA, and GICA.

Addit ional ly , non-cancer individual peripheral blood

mononuclear cell samples were included as the control cohorts.

The LUCA samples encompassed samples of two cancer subtypes:

lung squamous cell carcinoma (LUSC) and lung adenocarcinoma

(LUAD), while the GICA samples were from patients of esophageal,

gastric, colorectal, hepatocellular, and pancreatic cancers. Detailed

information regarding the experimental data can be found

in Table 1.
3.2 Comparison model settings, evaluation
metrics and validation approaches

To assess the enhancements introduced by DeepLION2, we

compared it with several state-of-the-art methods: DeepTCR (16),

DeepLION (17), MINN_SA (18), TransMIL (26), and BiFormer

(31) (Table 2). DeepTCR, DeepLION, and MINN_SA are

embedded-space MIL methods specifically designed for TCR

prediction. Due to their MIL design, DeepTCR is widely used in

TCR studies, whereas DeepLION has been demonstrated to

outperform earlier caTCR prediction methods, including

DeepCAT (15). MINN_SA further took into account the sparsity

of caTCRs and utilized sparse attention to selectively focus on the

key TCRs within the repertoire while disregarding others, which has

proven to perform better than popular existing MIL methods in this

task. By contrast, TransMIL and BiFormer are not specific for TCR

prediction. TransMIL employed the self-attention mechanism to

consider inter-instance correlations and achieved significant

improvement in whole slide image classification. BiFormer, a

recent content-based sparse attention method in the field of

computer vision, introduced bi-level routing attention and

achieved higher classification accuracy than other self-attention-

based methods. In order to ensure a fair comparison, we modified

their network to predict TCRs by utilizing the same TCR feature

extraction component as DeepLION2 and keeping only one layer as

the MIL component.

The hyperparameters of DeepLION2 contained the number of

selected TCRs in date preprocessing N, the dimension D 0 and the

head number h of self-attention/sparse self-attention, the ratio of

sparse self-attention kr (kr = k/N), as well as the learning rate lr and

the epoch number e of model training. In the experiments,

alignment with DeepLION, N, lr, and e were set to 100, 0.001,

and 500, whereas D 0, h, and kr were set to 10, 1, and 0.05 for low

computational cost. For the comparison methods, we utilized the

default hyperparameters, and DeepTCR only accepted TCRb
sequences as input.

To assess the performance of DeepLION2 and the comparison

models, we employed commonly used performance metrics in

machine learning and statistical analysis within the biomedical

field. These metrics included accuracy (ACC), sensitivity (SEN),

specificity (SPE), Matthews correlation coefficient (MCC), and

AUC. ACC, SEN, SPE, and MCC could be formally defined as

Equations (17–20):

ACC = TP+TN
TP+TN+FP+FN , (17)
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SEN = TP
TP+FN , (18)

SPE = TN
TN+FP , (19)

MCC = TP�TN−FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

p ,   (20)

where TP is the number of correct predictions in the positive

samples, whereas FN is the number of wrong predictions in the

positive samples, and TN is the number of correct predictions in the

negative samples, whereas FP is the number of wrong predictions in

the negative samples. Among the metrics, MCC is a correlation

coefficient that quantifies the relationship between the true class and

the prediction results, ranging from -1 to 1.

K-fold cross-validation is a widely used validation approach for

assessing model generalization. In K-fold cross-validation, the

dataset was randomly divided into K equal parts, and K

validations were performed, with each part serving as the test
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data while the remaining parts were used for training. This

process ensures that the entire dataset is evaluated, providing an

average performance estimation for the model. Unfortunately, it has

been reported that K-fold cross-validation may yield skewed

performance estimates when dealing with small sample sizes (17,

37, 38). To overcome this limitation, a refined technique called K-

K’-fold nested cross-validation was introduced. This enhanced

approach aims to generate robust and unbiased performance

estimates, irrespective of dataset size. In each of the K validations

within the nested cross-validation, the training data was further

divided into K’ equal parts, and K’-fold cross-validation was

performed to select the final models. As a result, considering the

small sample size of the dataset used in the experiments, a 5-4-fold

nested cross-validation approach was adopted to validate the

performance of the models in our experiments.
3.3 Sparse self-attention and contrastive
learning improves multi-instance learning
for prediction of cancer-associated TCRs
and repertoires

DeepLION2 concentrated on optimizing the MIL component to

raise caTCR prediction accuracy. To achieve this improvement,

content-based sparse self-attention was added, which helps to find

important TCRs in the repertoire. Furthermore, the quality of

attention-based learning outcomes was improved through the use

of self-contrastive learning. To validate the effectiveness of these

improvements, we compared the MIL component of DeepLION2

with those of other models using the TCGA dataset. Given that the

relationship among TCRs and caTCR sparsity is not considered by

either DeepTCR or DeepLION, we selected only DeepLION as a

representative. For a fair comparison, we directly tested the models
TABLE 2 Summary of the comparison models.

Model
Specific for
TCR
prediction?

Considering
correlations
among
instances?

Considering
the sparsity of
instance
distribution?

DeepTCR √ × ×

DeepLION √ × ×

MINN_SA √ × √

TransMIL × √ ×

BiFormer × √ √
TABLE 1 The details of the data used in the experiments.

Dataset Disease Disease size Control size Total size Data source

TCGA

BRCA 202 202 404 (33)

DLBC 45 45 90 (33)

ESCA 166 166 332 (33)

KIRC 202 202 404 (33)

LUAD 202 202 404 (33)

LUSC 202 202 404 (33)

OV 202 202 404 (33)

SKCM 202 202 404 (33)

STAD 202 202 404 (33)

THYM 108 108 216 (33)

Geneplus

THCA 170 260 430 (34)

LUCA 184 260 444 (36)

GICA 151 260 411 (35)
TCGA, The Cancer Genome Atlas; BRCA, breast invasive carcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; KIRC, kidney renal clear cell
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;
THYM, thymoma; THCA, thyroid cancer; LUCA, lung cancer; GICA, gastrointestinal cancer.
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using 5-4-fold nested cross-validation on preprocessed samples

from 10 different cancer types, without any additional processing.

The validation results for all models across the ten cancer types were

analyzed in terms of AUC and visualized in Figure 2. Additionally,

the results including all metrics can be found in Supplementary

Table 1. To facilitate comparison, the mean validation results for all

metrics, across the ten cancer types, were summarized in Table 3.

These results could provide a comprehensive overview of the

performance of the models, allowing for a detailed assessment of

their effectiveness in predicting caTCRs.

According to Figure 2, although DeepLION2 had slightly lower

performance compared to DeepLION on LUSC samples and

TransMIL on skin cutaneous melanoma samples, it generally

performed better than the other four models in terms of average

AUC validation results across the other eight patient cohorts. The

results in Table 3 also demonstrated that DeepLION2 achieved the

highest average performance in terms of ACC, SPE, MCC, and AUC

among the five models evaluated across the ten cancer types, whereas it

obtained the second-highest SEN. As shown in Table 3, the results

highlighted that DeepLION and MINN_SA, which did not consider

the correlations among TCRs, exhibited lower SPEs compared to the

other models. This suggested that they may be more susceptible to

making incorrect predictions on negative samples and having higher

false positive rates. On the other hand, TransMIL, which incorporated

self-attention to capture TCR correlations, showed higher ACC, SPE,

MCC, and AUC, indicating superior classification ability. While

BiFormer utilized sparse self-attention to address the sparsity of

caTCR distribution, its performance declined compared to

TransMIL, probably because of erroneous attention learning brought

on by the small sample size. In contrast, DeepLION2 leveraged self-

contrastive learning to enhance sparse self-attention learning, resulting

in improved predictions of caTCRs and repertoires in terms of all

metrics. As a result, the MIL component of DeepLION2 excelled in

effectively identifying caTCRs within the repertoire for caTCR

prediction by combining sparse self-attention and contrastive learning.

It is noteworthy that the models’ performance varied among

cancer types and that they underperformed in some cases, like
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LUSC (Figure 2). These variations are, in part, due to the TCR

feature extraction method. The autoencoder may not have

appropriately focused on the motifs when extracting features

from the samples in the TCGA dataset in the previous processing

(33). Consequently, poor feature extraction resulted in poor

prediction performance. On the other hand, this phenomenon

might have been influenced by the heterogeneity among cancer

types. Simultaneously, we conjectured that, despite their similar

functions, caTCRs in the repertoires of cancer types with low

performances differed significantly in sequence form as a result of

the structural folding of proteins. The variation in sequences of

caTCRs made it difficult for computational methods to predict

with accuracy.
3.4 DeepLION2 advances prediction of
cancer-associated TCRs and repertoires
based on TCR sequencing data

To thoroughly assess the models’ performance in predicting

caTCRs and TCR repertoires using raw TCR-seq data, we

conducted experiments on the Geneplus dataset. We employed 5-

4-fold nested cross-validation to test all the models on the THCA,

LUCA, and GICA patient cohorts from the Geneplus dataset. The

AUC results of the models on the three cohorts are shown in

Figure 3, and the validation results of all metrics are shown

in Table 4.

DeepLION2 showed superior performance compared to the

other models in Figure 3, with higher average AUC validation

results across the three cancer patient cohorts. The results in Table 4

further confirmed DeepLION2’s consistent superiority, achieving

impressive AUC values of 0.933, 0.880, and 0.763 for the THCA,

LUCA, and GICA samples, respectively. Compared to DeepTCR,

DeepLION and MINN_SA, TransMIL, BiFormer, and DeepLION2

exhibited better overall prediction performance by considering the

correlations among TCRs in the repertoire. BiFormer, which

addressed the sparsity of caTCRs and aimed to exclude unrelated
FIGURE 2

The AUC results of models on 10 cancer type samples from TCGA. BRCA, breast invasive carcinoma; DLBC, lymphoid neoplasm diffuse large B-cell
lymphoma; ESCA, esophageal carcinoma; KIRC, kidney renal clear cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; OV, ovarian serous cystadenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; THYM, thymoma; AUC,
area under the receiver operating characteristic curve.
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TCRs, achieved higher ACCs, SENs, MCCs, and AUCs than

TransMIL. However, its SPE performance on LUCA and GICA

was weaker. To enhance attention learning, DeepLION2 employed

self-contrastive learning during training, resulting in significant

improvement in SPE metrics compared to BiFormer without

compromising SEN metrics.

In comparison to the prediction performances on the

preprocessed samples of the TCGA dataset (Figure 2, Table 3 and

Supplementary Table 1), DeepLION2 could produce more accurate

predictions on these raw TCR-seq data because of the proper TCR

antigen-specificity method. The AUC values of the predictions on

three cohorts of the Geneplus dataset were all higher than the

average AUC value of the predictions on the TCGA dataset (0.933,

0.880, and 0.763 for THCA, LUCA, and GICA > 0.735 for TCGA).

Considering comparisons between samples of the same cancer type,

the AUC value of the prediction on the LUCA cohort, consisting of

LUAD and LUSC samples, was much higher than those on the

LUAD and LUSC samples of the TCGA dataset (0.880 for LUCA >

0.639 and 0.498 for LUAD and LUSC). Although DeepLION2

performed exceptionally well on THCA samples, its performance

was comparatively lower on the other two samples. This could be

attributed to the inclusion of multiple cancer types or subtypes

within the positive samples of LUCA and GICA, as well as the

specificity of caTCRs for different cancer types/subtypes.

Nevertheless, DeepLION2 consistently demonstrated high SPEs
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across all three cohorts, indicating its potential for cancer

screening. Overall, DeepLION2 showcased a more accurate

prediction of caTCRs and repertoires using TCR-seq data from

patients with the same cancer type.
3.5 DeepLION2 unveils cancer-associated
TCRs with key motifs for antigen-specific
recognition in cancer repertoires

DeepLION2 could not only accurately predict the cancer status

of patient samples but also identify caTCRs using TCR scores.

Additionally, it could pinpoint key motifs of TCRs by calculating

motif scores based on the weights of the trained model. In our

experiments, we employed the trained models on test samples from

THCA patient cohorts to reveal the associated cancer-specific TCRs

along with their motifs.

Initially, we selected TCRs with identical CDR3 sequences but

from samples with different labels to assess whether considering

inter-TCR correlations could enhance the model’s performance

when encountering these TCRs. The prediction results of

DeepLION and TransMIL on these TCRs are shown in

Figure 4A. DeepLION, without considering TCR correlations,

yielded ambiguous predictions for these TCRs, hovering around

0.5. In contrast, when employing self-attention to account for inter-
FIGURE 3

The AUC results of models on 3 cancer type samples from Geneplus. THCA, thyroid cancer; LUCA, lung cancer; GICA: gastrointestinal cancer; AUC,
area under the receiver operating characteristic curve.
TABLE 3 Mean results of models across 10 cancer type samples from TCGA.

DeepLION MINN_SA TransMIL BiFormer DeepLION2

ACC 0.631 ± 0.066 0.629 ± 0.054 0.655 ± 0.058 0.627 ± 0.067 0.673 ± 0.057

SEN 0.592 ± 0.112 0.672 ± 0.117 0.585 ± 0.130 0.580 ± 0.129 0.596 ± 0.139

SPE 0.671 ± 0.085 0.580 ± 0.118 0.722 ± 0.072 0.676 ± 0.123 0.751 ± 0.129

MCC 0.266 ± 0.131 0.258 ± 0.114 0.317 ± 0.113 0.264 ± 0.135 0.367 ± 0.112

AUC 0.669 ± 0.067 0.663 ± 0.049 0.703 ± 0.054 0.678 ± 0.077 0.735 ± 0.066
The maximum values of the evaluation metrics among the comparison models are shown in bold. ACC, accuracy; SEN, sensitivity; SPE, specificity; MCC, Matthews correlation coefficient; AUC,
area under the receiver operating characteristic curve.
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TCR correlations, TransMIL provided distinct predictions based on

their contextual information. It is worth noting that TransMIL

predicted low scores for TCRs with the CDR3 sequence

“CASSSSGTYGYTF” from cancer and non-cancer samples, which

suggested that within the cancer repertoire, this specific TCR might

be considered as a background TCR unrelated to cancer.

Then, we analyzed the prediction results of DeepLION2 for

TCRs with their motifs. We identified TCRs with scores above 0.5

within the cancer cohorts, indicating their potential likelihood of

being caTCRs. The results indicated that the predominant length of

the highest-scoring motif, most contributing to antigen-specificity

within each of these TCRs, is 3 (Figure 4B). This finding is

consistent with previous methods of preprocessing sequences into

3-length fragments to identify crucial motifs (10, 12). However,

when considering all positive motifs detected by DeepLION2 (motif

score > 0.5), their lengths ranged from 2 to 7, aligning with ratios

observed in previous X-ray crystal structure analyses (Figure 4B)

(14). Consequently, for TCR antigen-specificity extraction, it is

essential to consider motifs of various lengths.

Ultimately, based on the scores of all positive motifs, we computed

the amino acid weights of TCRs with a score > 0.999, which were

highly probable caTCRs (Figure 4C). This analysis unveiled specific

sequence segments DeepLION2 prioritized during predictions. Our
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assessment of 41 TCRs revealed the model’s consistent emphasis on the

middle and rear sections of sequences, with less focus on the initial

section containing similar amino acids like “CA” or “CS”. Moreover, it

exhibited limited attention towards the final amino acid, “F,” except in

certain specific combinations. Given our typical expectation of a greater

emphasis on the middle sections of sequences due to their higher

diversity, it’s intriguing that DeepLION2 directed its focus toward the

rear sections of specific TCRs. While the diversity of amino acids in the

CDR3 tail region is generally lower compared to those in the middle,

and the rear sections of different TCRs might display higher similarity,

certain scenarios suggest that amino acids in the rear sections could

interact with specific parts of the antigenic peptide, potentially serving

unique binding functions. On one hand, in many recent studies on

TCR-peptide binding prediction, the prediction approaches have more

or less reported a focus on amino acids in the rear sections of CDR3

sequences (16, 39, 40). On the other hand, some specific motifs in the

rear sections were observed to appear more frequently in caTCRs

compared to other cancer-unrelated TCRs, implying that we cannot

ignore their important role in the cancer-associated antigen-binding

process. For instance, the motif “NVLT”, frequently identified in the

rear sections by DeepLION2 (presented in 9 out of 41 TCRs), appeared

in 4.9% (145/2969) of caTCRs within theMcPAS-TCR database, which

is higher than the 2.1% (652/30714) occurrence observed in other
TABLE 4 The validation results of models on 3 cancer type samples from Geneplus.

THCA

DeepTCR DeepLION MINN_SA TransMIL BiFormer DeepLION2

ACC 0.733 ± 0.036 0.835 ± 0.039 0.740 ± 0.087 0.816 ± 0.043 0.840 ± 0.024 0.886 ± 0.035

SEN 0.481 ± 0.230 0.722 ± 0.101 0.542 ± 0.306 0.704 ± 0.111 0.729 ± 0.059 0.751 ± 0.091

SPE 0.891 ± 0.170 0.908 ± 0.016 0.874 ± 0.090 0.887 ± 0.052 0.911 ± 0.041 0.973 ± 0.022

MCC 0.457 ± 0.066 0.650 ± 0.087 0.447 ± 0.191 0.612 ± 0.091 0.662 ± 0.050 0.765 ± 0.075

AUC 0.860 ± 0.042 0.892 ± 0.043 0.843 ± 0.053 0.888 ± 0.036 0.917 ± 0.012 0.933 ± 0.044

LUCA

DeepTCR DeepLION MINN_SA TransMIL BiFormer DeepLION2

ACC 0.721 ± 0.080 0.750 ± 0.072 0.655 ± 0.051 0.757 ± 0.063 0.768 ± 0.050 0.809 ± 0.050

SEN 0.393 ± 0.186 0.653 ± 0.109 0.620 ± 0.341 0.687 ± 0.123 0.716 ± 0.088 0.736 ± 0.089

SPE 0.968 ± 0.044 0.810 ± 0.082 0.711 ± 0.208 0.814 ± 0.070 0.812 ± 0.050 0.865 ± 0.037

MCC 0.463 ± 0.102 0.470 ± 0.158 0.358 ± 0.092 0.505 ± 0.114 0.525 ± 0.098 0.606 ± 0.091

AUC 0.836 ± 0.013 0.791 ± 0.075 0.788 ± 0.033 0.820 ± 0.067 0.836 ± 0.039 0.880 ± 0.030

GICA

DeepTCR DeepLION MINN_SA TransMIL BiFormer DeepLION2

ACC 0.657 ± 0.034 0.650 ± 0.021 0.647 ± 0.033 0.681 ± 0.073 0.708 ± 0.032 0.715 ± 0.061

SEN 0.084 ± 0.093 0.292 ± 0.134 0.050 ± 0.076 0.286 ± 0.172 0.470 ± 0.078 0.288 ± 0.139

SPE 0.983 ± 0.027 0.865 ± 0.077 0.993 ± 0.016 0.922 ± 0.054 0.854 ± 0.092 0.970 ± 0.033

MCC 0.132 ± 0.137 0.193 ± 0.074 0.084 ± 0.141 0.243 ± 0.203 0.362 ± 0.090 0.379 ± 0.074

AUC 0.666 ± 0.085 0.617 ± 0.063 0.654 ± 0.067 0.704 ± 0.053 0.724 ± 0.024 0.763 ± 0.032
The maximum values of the evaluation metrics among the comparison models are shown in bold. THCA, thyroid cancer; LUCA, lung cancer; GICA: gastrointestinal cancer; ACC, accuracy; SEN,
sensitivity; SPE, specificity; MCC, Matthews correlation coefficient; AUC, area under the receiver operating characteristic curve.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1345586
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qian et al. 10.3389/fimmu.2024.1345586
TCRs (24). As a result, it’s logical for DeepLION2 to focus on the

amino acids in the rear sections of CDR3 sequences, implying their

potential significance in recognizing cancer-related antigens.

For further analysis of the identified TCRs and motifs by

DeepLION2, we cross-referenced them with the CEDAR and

McPAS-TCR databases, renowned for their collection of known

caTCRs (24, 41). We first searched for the 41 TCRs in two

databases, but we didn’t find identical sequences in either caTCRs or

TCRs unrelated to cancer, which may be due to the high diversity of

TCRs. Meanwhile, because different types of cancer are highly

heterogeneous, it is reasonable that these 41 TCRs specific to THCA

were not present in these databases for cancer, containing few TCRs for

THCA. Next, upon investigating the motifs that DeepLION2

highlighted in the databases, we observed that certain motifs revealed

by DeepLION2 appeared in caTCRs in both two databases. And we

also observed that some motifs occurred more frequently in caTCRs

compared to other TCRs, such as “NVLT” as previously mentioned.

Some motifs, such as “QDPGS” and “QDPGN” (in #10 and 18 TCRs),

were even exclusive to caTCRs in theMcPAS-TCR database, indicating

their potential as THCA-specific biomarkers and promising targets for

cancer immunotherapy. Furthermore, the model’s preference for non-

adjacent amino acids inmost TCRs could be attributed to the structural

folding of proteins, where amino acids binding to antigen peptides are

not sequentially adjacent.
3.6 Impact of hyperparameters on
DeepLION2 prediction performance

Hyperparameters play a crucial role in the performance of a

model. We conducted ablation experiments about the important

hyperparameters D 0, h, kr in DeepLION2 to validate their influence

on model performance. In each group of ablation experiments, we
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changed only the hyperparameters to be observed while keeping the

other hyperparameters unchanged and employed 5-4-fold nested

cross-validation to test the models on the THCA patient cohorts.

The metric AUC was used to evaluate the models and the validation

results are shown in Figure 5. According to the results, we observed

that the model performance was overall stable and unaffected by

these hyperparameter changes. It is worth noting that multi-head

self-attention did not achieve a higher accuracy than one-head self-

attention in caTCR prediction, which may be due to the small

sample size of TCR-seq data. Among the other hyperparameters, N

was discussed in DeepLION (17) and set to 100 for the tradeoff

between model performance and computational cost. lr was usually

set to 0.001, whereas due to the use of validation sets and the early

stopping approach, e would not affect the model performance as

long as the model converged during the training process.
4 Discussion

In this study, we developed a novel deep MIL learning method,

named DeepLION2, for improving the prediction of caTCRs and

repertoires, which incorporated content-based sparse attention and

contrastive learning in its MIL part. Compared to the existing methods,

it used sparse self-attention to fully consider the correlations among

TCRs and avoided incorrectly predicting TCRs with the same/similar

CDR3 sequences as caTCRs. Furthermore, to ensure that the model

correctly focused on caTCRs, it used the self-contrastive learning

mechanism to improve attention learning. To validate the

improvement of DeepLION2, we collected patient samples of more

than ten cancer types from TCGA and Geneplus. The results indicated

that DeepLION2 generally outperformed the comparison models

across the preprocessed ten cancer samples from TCGA. Moreover,

the results on the raw TCR-seq data of three cancer patient cohorts
B

C
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FIGURE 4

DeepLION2 unveils cancer-associated TCRs with key motifs for antigen-specific recognition in cancer repertoires based on the THCA patient
cohorts. (A) The DeepLION and TransMIL predictions, the probability that a sequence is cancer-associated, on TCRs with identical sequences but
from samples with different labels. Sequences from cancer repertoires are indicated by red, whereas those from non-cancer repertoires are
indicated by blue. (B) The length distributions of the highest scoring motifs and all positive motifs (motif score > 0.5) in each TCR based on the
predictions of DeepLION2. (C) DeepLION2 reveals top scoring TCRs (TCR score > 0.999, totally 41 sequences) and visualizes their key motifs. Larger,
red-colored amino acids signify the model’s prediction of a more substantial role in antigen-binding.
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from Geneplus also highlighted that DeepLION2 could advance the

prediction of caTCRs and repertoires, where its AUC values reached

notably 0.933, 0.880, and 0.763 on the THCA, LUCA and GICA

patient cohorts, respectively.

To mitigate overfitting concerns, we took several steps in our

experiments. Firstly, we simplified the model structure by using only

one-layer self-attention/sparse self-attention, which helps prevent

overfitting when the training data is limited. Additionally, we

incorporated random dropout with a rate of 40% during training, a

well-established technique known for effectively reducing overfitting

and widely used in various machine learning models (42).

Furthermore, we employed the early-stopping approach to prevent

the model from overtraining. By monitoring the model’s performance

on validation sets, we stopped the training process at an appropriate

time to avoid performance degradation on the test sets (43). This

approach helps ensure that the model generalizes well to unseen data.

Moreover, the utilization of nested cross-validation, a robust and

unbiased validation technique, further reinforced the outstanding

performance of DeepLION2 in predicting caTCRs. By validating the

model on multiple folds of the data, we obtained reliable and

comprehensive performance estimates, enhancing the confidence in

the model’s predictive capabilities.

In the comparison experiments conducted on both the TCGA and

Geneplus datasets, DeepLION2 consistently outperformed existing

methods. This can be attributed to its utilization of content-based

sparse self-attention to effectively model the correlations among TCRs,

along with the incorporation of self-contrastive learning to enhance

attention learning. Notably, as described in Section 3.4, the

performance of the models on the preprocessed samples from the

TCGA dataset was inferior to that on the raw TCR-seq samples from

the Geneplus dataset. This discrepancy can be attributed to the

differences in the approaches used for TCR antigen-specificity
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extraction between the two datasets. In the TCGA dataset, stacked

auto-encoders were employed for TCR feature extraction. However,

this approach did not take into account the key motifs of different

lengths present in the TCR CDR3 sequences. On the other hand, the

raw TCR-seq samples from the Geneplus dataset were processed using

a convolutional network with filters of different sizes, allowing for the

handling of fragments with varying lengths in TCRs. Hence, the

methodology used for TCR antigen-specificity extraction plays a

crucial role in predicting caTCRs, and it is this aspect that

contributes to the outstanding performance of DeepLION2.

While proficiently discerning cancer-associated patient

repertoires, DeepLION2 concurrently identifies caTCRs within these

repertoires, shedding light on keymotifs. Themodel’s emphasis on the

rear sections of CDR3 sequences from the 41 TCRs in THCA patient

cohorts aligns with previous research more or less focusing on the

amino acids in such sections. Notably, certain motifs occurring more

frequently in caTCRs compared to non-cancer-related TCRs

underscore the significance of DeepLION2’s attention to these rear-

section amino acids. It is crucial not to overlook these amino acids

when studying TCR-peptide binding. It’s worth noting that

DeepLION2’s focus on the 41 TCRs and their motifs does not

necessarily imply their direct association with cancer or involvement

in binding to cancerous antigens. The attention mechanism indicates

the features contributing to the classification between cancerous and

non-cancerous repertoires, suggesting potential caTCRs and amino

acids relevant to cancer antigen recognition and binding. For a deeper

analysis, we cross-referenced these results with existing cancer

databases. Due to the vast diversity of TCRs and the heterogeneity

of cancers, the 41 TCRs from THCA did not appear in the caTCR or

non-cancer-related TCR lists in the databases. Nevertheless, certain

motifs identified by DeepLION2 were found in caTCRs in both

databases. Additionally, some motifs were more prevalent in
B

C D

A

FIGURE 5

The AUC results of models with different hyperparameters on THCA samples. (A) The AUC results of the DeepLION2 models with different ratios of
sparse self-attention. (B) The AUC results of the DeepLION2 models with different dimensions of self-attention. (C) The AUC results of the
DeepLION2 models with the dimension of self-attention as 10 and different head numbers of self-attention. (D) The AUC results of the DeepLION2
models with the dimension of self-attention as 20 and different head numbers of self-attention.
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caTCRs, with a few exclusive to caTCRs. These findings hint at the

potential of these motifs as THCA-specific biomarkers, supporting the

validity of slicing TCRs into motifs for consideration.

In future work, we aim to further validate the performance of

DeepLION2 by applying it to a broader range of cancer types. We

acknowledge that the performance of DeepLION2 experienced a

decline when samples contained multiple cancer types and when

the size of the training samples was smaller. To address this, we plan

to enhance the model to more effectively extract the specificity of

caTCRs from limited data, thereby improving its performance in

such scenarios. Furthermore, we recognize that the presence of

noise in TCR-seq data poses a limitation on the model’s

performance. This is an important issue that we intend to address

in future research. By developing techniques to mitigate the impact

of noise in TCR-seq data, we aim to enhance the robustness and

accuracy of DeepLION2 for predicting caTCRs and advancing its

practical utility in clinical settings. In addition, it has been

recognized that the a chain, a constituent of the TCR along with

the b chain, also plays a significant role in the recognition of

antigens. For a more comprehensive understanding of the antigen

recognition mechanism of the TCR, we will further consider the a
chain and develop models to support the analysis of both chains.
5 Conclusion

DeepLION2 is a groundbreaking deep MIL framework that

integrates content-based sparse attention and contrastive learning to

capture TCR correlations in a repertoire. It outperforms existing

methods in accurate caTCR and repertoire prediction from TCR-seq

data. Additionally, it can unveil potential caTCRs and their crucial

motifs. DeepLION2 enables effective repertoire classification,

potentially supporting cancer detection and facilitating personalized

cancer immunotherapy.
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