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Longitudinal changes in DNA
methylation during the onset of
islet autoimmunity differentiate
between reversion versus
progression of
islet autoimmunity
Patrick M. Carry1,2,3*, Lauren A. Vanderlinden2,
Randi K. Johnson2,3, Teresa Buckner2,4, Andrea K. Steck5,
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Oliver Fiehn9, Marian Rewers5 and Jill M. Norris2
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Health, Aurora, CO, United States, 3Department of Biomedical Informatics, School of Medicine,
University of Colorado, Aurora, CO, United States, 4Department of Kinesiology, Nutrition, and
Dietetics, University of Northern Colorado, Greeley, CO, United States, 5Barbara Davis Center,
Department of Pediatrics, University of Colorado, Aurora, CO, United States, 6Department of
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7Department of Medicine, University of Colorado, Aurora, CO, United States, 8Department of
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Background: Type 1 diabetes (T1D) is preceded by a heterogenous pre-clinical

phase, islet autoimmunity (IA). We aimed to identify pre vs. post-IA

seroconversion (SV) changes in DNAm that differed across three IA progression

phenotypes, those who lose autoantibodies (reverters), progress to clinical T1D

(progressors), or maintain autoantibody levels (maintainers).

Methods: This epigenome-wide association study (EWAS) included longitudinal

DNAm measurements in blood (Illumina 450K and EPIC) from participants in

Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, one or

more islet autoantibodies on at least two consecutive visits. We compared

reverters - individuals who sero-reverted, negative for all autoantibodies on at

least two consecutive visits and did not develop T1D (n=41); maintainers -

continued to test positive for autoantibodies but did not develop T1D (n=60);

progressors - developed clinical T1D (n=42). DNAm data were measured before

(pre-SV visit) and after IA (post-SV visit). Linear mixed models were used to test

for differences in pre- vs post-SV changes in DNAm across the three groups.

Linear mixed models were also used to test for group differences in average

DNAm. Cell proportions, age, and sex were adjusted for in all models. Median

follow-up across all participants was 15.5 yrs. (interquartile range (IQR):

10.8-18.7).

Results: The median age at the pre-SV visit was 2.2 yrs. (IQR: 0.8-5.3) in

progressors, compared to 6.0 yrs. (IQR: 1.3-8.4) in reverters, and 5.7 yrs. (IQR:

1.4-9.7) in maintainers. Median time between the visits was similar in reverters 1.4
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yrs. (IQR: 1-1.9), maintainers 1.3 yrs. (IQR: 1.0-2.0), and progressors 1.8 yrs. (IQR:

1.0-2.0). Changes in DNAm, pre- vs post-SV, differed across the groups at one

site (cg16066195) and 11 regions. Average DNAm (mean of pre- and post-SV)

differed across 22 regions.

Conclusion: Differentially changing DNAm regions were located in genomic

areas related to beta cell function, immune cell differentiation, and immune

cell function.
KEYWORDS

DNA methylation, type 1 diabetes (T1D), DAISY, islet autoimmunity, reversion
1 Introduction

T1D is an autoimmune disorder with significant long-term

morbidity. The pre-clinical phase is defined by the appearance of

autoantibodies against pancreas cell antigens, termed islet

autoimmunity (IA). There is strong evidence to support

autoantibodies as a biomarker of T1D risk (1). However, IA is

dynamic. While progression to T1D or multiple autoantibodies has

been well characterized, a subset of individuals lose autoantibody

positivity (2) and revert back to an autoantibody negative state.

Autoantibody reversion was first described by Spencer et al (3) in a

cohort of 685 individuals with a first degree relative affected by T1D.

After 5 years, 7/20 developed T1D, 1 remained AB positive and 12/

20 reverted. Transient autoantibody positivity has been described in

several additional studies (4–6). However, these historical studies

describing the transient nature of autoantibodies are difficult to

interpret due to the development of more accurate autoantibody

tests as well as differences in the definition of reversion. Vehik et al

(2) conducted the most comprehensive and rigorous study of

reversion in current literature. Among 596 individuals enrolled in

The Environmental Determinants of Diabetes in the Young

(TEDDY) study who developed one or more persistent

autoantibodies, 21% reverted to an antibody negative state.

Seroreversion was associated with significantly decreased risk of

T1D (hazard ratio: 0.14, 95% CI: 0.04-0.59). Understanding the

unique protective mechanisms occurring prior to or following IA

that lead to IA reversion may have important implications for

development of interventions that delay or prevent progression

to T1D.

Genetic variation is a well-established risk factor for T1D (7).

However, heterogeneity in disease concordance among

monozygotic twins (8) as well as temporal changes in both T1D

incidence (9) and age at T1D onset (10) in population studies have

created a strong interest in the role of the environment in the

etiology of T1D. Epigenetic modifications such as DNA

methylation (DNAm) may represent a mechanistic pathway

between genetic susceptibility, environmental exposures, and

progression or reversion of IA. Epigenetics broadly describes a
02
class of modifiable mechanisms that can regulate gene expression

and are sensitive to external stimuli (11). DNAm is a frequently

studied epigenetic biomarker that is postulated to play a role in

autoimmune diseases as epigenetic mechanisms are important

regulators of immune cell differentiation, plasticity and function

(12, 13). DNAm changes prior to and during the IA phase may

provide key information about underlying epigenetic profiles that

explain progression or reversion from IA.

Previous epigenome wide studies have identified significant

associations between DNAm and T1D (14–17). However,

associations have been inconsistent and many of the studies have

focused on static and/or post-T1D differences in DNAm between

cases and controls (14–16). Although important in understanding

the etiology of T1D, DNAm differences obtained from a single time

point are difficult to interpret as it is not possible to determine when

the changes occurred and moreover, whether they are the cause or

consequence of the disease process. Understanding the timing of the

changes is key to identifying external factors that cause these

changes and therefore, may be amenable to preventative

interventions. The purpose of this study was to test DNAm

obtained before and after IA seroconversion (SV) in the Diabetes

Autoimmunity Study in the Young (DAISY). We aimed to identify

pre vs. post-SV changes in DNAm that differed across three distinct

IA progression phenotypes, those who lose autoantibodies

(reverters), progress to clinical T1D (progressors), or maintain

autoantibody levels (maintainers).
2 Materials and methods

2.1 Study population

We reviewed individuals from the Diabetes Autoimmunity Study

in the Young (DAISY) who developed islet autoimmunity (IA)

between February 1994 and February 2019. DAISY is a

longitudinal birth cohort study that includes n=2544 children at

high risk for T1D. Subjects are recruited from two high risk

populations, those with a first degree relative (FDR) with T1D or
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those with a high-risk genotype, [defined as DRB1*04, DQB1*0302/

DRB1*0301, DQB1*0201 (DR3/4 DQ8)]. Subjects complete study

visits at 9, 15, and 24 months. Following the 24-month visit, study

visits occur annually. As described previously (18), radio-

immunoassays were used to test serum samples for autoantibodies

to insulin (IAA), GAD65 (GAA), and IA-2 (IA-2A). Prior to 2010,

GADA and IA-2A were tested using a combined radioassay (19). The

National Institute of Diabetes and Digestive and Kidney Diseases

harmonized assay was used to test for GADA and IA-2A after 2010

(20). Serum samples from individuals positive for GAD65, IAA, or

IA-2 were tested for ZnT8A following development and

implementation of the ZnT8 assay (21). If autoantibodies are

detected, participants return for study visits every 3-6 months.

Islet autoimmunity (IA) was defined as the presence of one or

more autoantibodies (see above) on at least two consecutive visits 3-

6 months apart. The first visit among these consecutive

autoantibody positive visits designated the start of IA, referred to

as seroconversion (SV) throughout the remainder of the

manuscript. We defined the three autoimmune progression

phenotypes based on the autoantibody testing. The reverter group

was defined as individuals who reverted for all autoantibodies

during two or more consecutive visits, did not develop T1D, and

were autoantibody negative for all autoantibodies at their last

DAISY visit. The maintainer group was defined as individuals

who continued to test positive for islet autoantibodies and did not

develop T1D at the time of their last visit. The progressor group was

defined as individuals who developed clinical T1D.

Among individuals who developed IA during DAISY and

underwent autoantibody testing for a minimum of two or more

study visits (n=213), we excluded individuals for the following:

missing a pre- or post-SV blood sample (n=54), onset of IA unclear

due to gaps (>365 days) in study visits (n=2), missing study visit

prior to initial pre-SV positive visit (n=14). The Colorado Multiple

Institutional Review Board approved all DAISY protocols

(COMIRB 92-080). Informed consent and assent, if appropriate,

was obtained from the parents/legal guardians of all children prior

to participation in any research related activities.
2.2 Methylation measurements

Methylation measurements were obtained from peripheral

whole blood samples collected at multiple time-points in

individuals from DAISY. The Infinium HumanMethylation 450K

Beadchip platform (Illumina, San Diego, CA, USA) was used to

obtain methylation measurements on a subset of samples. The 850K

Infininium MethylationEPIC BeadChip (Illumina, San Diego, CA,

USA) was used to obtain measurements on the remaining samples.

Two platforms were used due to changes in technology during the

course of the study. Samples were randomly assigned to the two

platforms making sure all timepoints from the same individual were

included on the same platform.

DNA was bisulfite converted using the Zymo EZ DNA

Methylation kit (Zymo Research, CA, USA). The bisulfite-

converted DNA was labeled with fluorescent dyes and hybridized

to 450K and 850K DNAm arrays. Samples were arranged on the
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plates in a specific sequence to minimize within and between batch

effects (plate effects are represented by first 11 digits of the array

variable on GEO). The minfi (v1.12.0) package (22) in R (v3.5.2)

was used to perform quality control (QC) checks at the sample level.

The processing pipeline is described in greater detail in

Vanderlinden et al (23).

The DNAm probes were annotated to the genome based on the

hg19 genome build using the Illumina annotation manifest files.

Non-autosomal CpGs or CpGs located within or near (<2 base

pairs) known single nucleotide polymorphisms (SNPs) were

excluded. CpG sites with a beta range <3% on both platforms

were removed from analysis. A total of n=198,008 overlapping

DNAm probes met our filtering criteria and were used in

subsequent analyses. Normalized M-values (SeSAMe (v1.0.0)

pipeline with Noob normalization) were used in all statistical

analyses. We use the term DNAm probe and the probe identifier

when referring to the data in the Methods and Results. However,

each probe is designed to measure DNAm at a single CpG site

which is used as a more general term in the Discussion. See Figure 1

for an overview of the study methods.
2.3 Overlapping gene
expression measurements

Gene expression data were available in a subset of individuals

(n=36) at the post-SV visit. RNA processing and quantification is

described in greater detail in Carry et al (24). In brief, paired end

sequencing was performed using the Illumina NovaSEQ 6000™

system and samples were quantified against the Ensembl reference

transcriptome (hg19, version 87) using the RSEM algorithm (25).

Data were quantile normalized using DESeq2 (26), re-normalized

using RUV (27), and then transformed using the regularized log

function (26). The transformed data were used in all subsequent

statistical analyses.
2.4 Overlapping
metabolomics measurements

Untargeted metabolomics data were available in a subset

(n=110) of individuals at both the pre-SV and post-SV visits.

Metabolomics processing and quantification is described in

greater detail in Carry et al (28). In brief, non-fasting plasma

samples were used to quantify metabolite levels using three

untargeted panels, HILIC panel: HILIC-QTOF MS/MS (29),

GCTOF panel: GC-TOF-MS (30), and Lipid panel: CSH-QTOF

MS/MS (31). BinBase (32) was used to process and annotate the

GC-TOF-MS data. MS-Dial (33) was used to process and annotate

the liquid chromatography (LC), CSH-QTOF-MS and HILIC-

QTOF-MS, data. LipidBlast (34) and Massbank of North America

were also used to annotate the complex lipids (http://mona.

fiehnlab.ucdavis.edu/). Metabolomic data were normalized using

the systematic error removal using random forest (SERRF)

algorithm (35). All metabolites were Box-Cox transformed prior

to statistical analysis.
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2.5 Genetic ancestry

Ancestry principal components (PC) were estimated for all

study participants from genetic data collected in DAISY. Sample

processing and genotyping were performed at the University of

Virginia School of Medicine Center for Public Health Genomics

based on exome genotyping (Illumina HumanCoreExome-24

BeadChip, N=283) or whole genome sequencing (N=162) from

the larger DAISY population, see Buckner et al (36) for a more

complete description of the genetic processing and calculation of

the genetic ancestry PCs.
2.6 Statistical analyses

The overall methods workflow is summarized in Figure 1. Linear

mixed models were used to test for differences in DNAm between the

pre- and post-SV visit across reverters, maintainers, and progressors

(autoimmune phenotype*visit interaction). Separate linear mixed

models were also used to test for differences in average DNAm

(mean of the DNAm levels at the pre- and post- SV visits) between

the autoimmune phenotypes (group effect). Platform (EPIC vs 450K),

age, sex, and cell proportions (estimated using the minfi (v1.12.0)

package (22) implementation of the Houseman method) were

adjusted for in all models. The group effect models were also

adjusted for population ancestry (see Supplementary Material for

complete description of ancestry data). Ancestry data (1st 2 PCs) were

unavailable for 2 individuals in the group effect model and thus, these

individuals were not included in this analysis. See Appendix 1 (Data

Sheet 1) for the linear mixed model code. We did not adjust for

ancestry in the interaction (autoimmune phenotype*visit) models

because the interaction models test for within individual differences,

and thus are less likely to be impacted by time invariant confounders
Frontiers in Immunology 04
such as population ancestry. The Benjamini Hochberg false discovery

rate (FDR), was used to correct for multiple comparisons (37).

Significance was assessed based on the FDR adjusted p-value <0.10.

Model diagnostics are described in the Supplementary Files (Data

Sheet 2), see Appendix 2, Figures A–C and Table A.

The comb-p python software package (38) was used to identify

differentially methylated regions (DMRs). Within the comb-p

pipeline, we used a seed p-value of 0.1 and then searched for

adjacent probes within a window of 500 bases, using a step size of

50 bases. Comb-p combines probes within this window and then

calculates an overall, spatially corrected p value for the entire region

based on the Stouffer-Liptak method. The Sidak method is used to

adjust the overall regional p values for multiple testing. Regional

analyses were performed based on the individual DNAm probes from

the interaction (post- vs pre-SV changes by autoimmune phenotype),

referred to as differentially changing DMRs (DDMR) throughout the

remainder of the manuscript. Regional analyses were also performed

based on DNAm probes from the main effect model (differences in

average of pre- and post-SV DNAm between groups), referred to as

average DMRs (mDMR) throughout the remainder of the

manuscript. For both regional analyses, we reviewed all regions

with ≥4 DNAm probes that were significant at the combined Sidak

adjusted region p value of 0.10. Because the interaction and group

effect p values are based on a two degree of freedom test (numerator

degrees of freedom for the overall F-test), it is possible for the DMR to

capture a set of DNAm probes with similar p values but substantial

heterogeneity in the directions of effect within the three groups.

Therefore, for the DDMRs, we retained regions with a consistent

direction of effect, defined as a region where the direction of change in

DNAm between the two visits (hyper methylation or hypo

methylation) was consistent across 100% of the DNAm probes

within the region in one or more of the study groups. For the

mDMRs, we retained regions where the direction of effect (hypo or
FIGURE 1

Summary of methods used to identify and prioritize DNAm candidates. Description: We used an epigenome wide association study design to identify
differentially methylated positions (DMP) associated with the three islet autoimmunity progression phenotypes, reverters, maintainer, or progressors.
We used two DMP models (1) an interaction model that tested whether changes in DNA methylation (DNAm) levels at single CpGs pre-IA versus
post-IA differed across groups and (2) a group effect model that tested whether average methylation levels (pre- and post-IA) differed across groups.
We also performed regional analyses (differentially methylated regions or DMRs) based on single CpG sites from the two models to identify regions
with consistent methylation effects. We identified regions where average regional methylation levels differed between groups (mDMRs) as well as
regions where changes in regional methylation levels pre- vs post-IA differed across groups (DDMRs). In order to prioritize regions, we tested
whether the DNAm candidates identified in our analysis were associated with gene expression levels post-SV, an expression quantitative trait
methylation analysis (eQTM). To account for the multiple CpGs within each DMR, we used a principal component analysis to capture common
patterns across all CpGs included in the DMR. We identified cis-eQTMs (midpoint of region +/- 500 KB of the TSS of the gene) by testing the
correlation between gene expression and the 1st principal component. We also tested the correlation between DNAm candidates and metabolite
levels obtained from overlapping samples, a metabolite quantitative trait methylation analysis (metQTM). We used a principal component analysis to
capture common patterns across all CpGs included in the candidate DMRs. We tested the correlation between metabolite levels and the 1st principal
component. CpGs are represented by lollipop plots in the figure.
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hypermethylation) for one or more of the pairwise group

comparisons was consistent across 100% of the DNAm probes

included in the region.
2.7 Expression quantitative trait
methylation analysis: correlation between
gene expression and DNAm candidates

In order to better understand our primary DNAm results, we

tested the correlation between gene expression levels and our

DNAm candidates, one DMP, 11 DDMRs, and 22 mDMRs in a

subset of individuals (n=36, see Appendix 3, Table B) with

methylation data pre- and post-SV as well as gene expression

data post-SV. First, linear mixed models were used to regress out

age, sex, platform, and cell proportions from the DNAm values at

each of the candidate CpG sites. Ancestry PC1 and ancestry PC2

were also regressed out from all CpG sites included in the mDMRs

candidate regions. Next, using the residuals from the linear mixed

models, the within individual differences in DNAm (post-SV minus

pre-SV) were used to represent changes in DNAm between the

study visits for each of the CpG sites included in the DDMRs. The

average residual values from the post-SV and pre-SV study visits

were used to represent average methylation for each of the CpG

sites within the mDMRs. Next, we performed a principal component

analysis of DNAm levels across the region-specific CpG sets.

For each DMR, the first PC was extracted for subsequent testing,

allowing us to consider all CpG sites together rather than testing

many individual sites separately. Linear regression models were

then used to regress out the effects of age and sex from the gene

expression levels. Finally, Spearman correlation coefficients were

used to test the correlation between DNAm and gene expression

residuals. We looked for cis-eQTMs, defined as genes significant at

the FDR adjusted p value of 0.10 where transcription start site

was +/- 500 KB of the midpoint of the DMR. FDR adjustment was

based on the total number of DNAm cis-gene pairs (256 transcript

DNAm pairs for the DDMR candidates and 544 transcript DNAm

pairs for the mDMR candidates).
2.8 Metabolite quantitative trait
methylation analysis: correlation between
metabolite levels and DNAm candidates

We tested the correlation between DNAm and untargeted

metabolite levels in a subset of our study population (n=110, see

Appendix 3, Table B) with DNAm and metabolomics data available

both pre- and post-SV. Only data from overlapping samples was

included in this supplementary analysis. Linear models were used to

regress age and sex from the Box-Cox transformed metabolite levels

at each visit. Consistent with the DNAmmethods, using the residuals

from the linear mixed models, the difference between metabolite

residuals at each visit (post-SV minus pre-SV residuals) was used to

represent change in metabolites and the average residual values

(average of post-SV and pre-SV residuals) were used to represent

average metabolite values. For the DDMR candidates and the single
Frontiers in Immunology 05
DMP candidate, linear regression models were then used to test the

correlation between the change in metabolites versus the DDMR PCs

(described above) as well as the single DMP candidate. For the

mDMR candidates, linear regressionmodels were then used to test the

correlation between average metabolite levels versus the mDMR PCs

(described above). False discovery (FDR) rate adjusted p values were

calculated for all individual metabolite DNAm candidate pairs

according to methods described by Benjamini and Hochberg (37).

FDR adjusted p values were calculated separately for each platform.

Only annotated metabolites from the HILIC (81 metabolites), Lipid

(373 metabolites), and GC-TOF (98 metabolites) panels were

evaluated in subsequent analyses. Metabolites were evaluated at an

FDR adjusted p value of 0.10.
3 Results

3.1 Study population

The final study population included 60 individuals in the

maintainer group, 42 individuals in the progressor group, and 41

individuals in the reverter group. At both the pre-SV and post-SV

visits, age differed by group, and the estimated cell proportions

differed by group at the post-SV visit (Table 1). At the time of data

analysis, duration of follow-up, defined as median time from the

initial visit to the development of T1D or last study visit, was 9.3

years (IQR: 6.1 to 12.3 years) for the progressors, 16.5 years for the

maintainers (IQR: 14.3 to 20.9 years) and 16.6 years for the reverters

(IQR: 15.2 to 20.2 years).

The specific autoantibody subgroups present at the onset of

seroconversion in the three groups are described in greater detail in

Appendix 4 (Data Sheet 4), Table C. As expected, the prevalence of

multiple autoantibodies at serconversion was higher in progressors

(31%) relative to maintainers (18%) and reverters (0%). Across the

entire islet autoimmunity follow-up period, the occurrence of

multiple autoantibodies at one or more study visit(s) following IA

seroconversion was also higher in progressors (86%) compared to

maintainers (58%). Among reverters, 10% developed multiple

autoantibodies at one of more study visit(s) during the time

period between seroconversion (IA onset) and seroreversion.
3.2 Differentially methylated
position analysis

Change in methylation at the DNAm site cg16066195 on chr 7

was significantly (FDR adjusted p value=0.0174) different across

groups. The reverter group was characterized by an increase in

DNAm between pre- and post-SV visits (ie, a positive slope)

whereas the progressor and maintainer groups were characterized

by no change or a decrease in DNAm (Figure 2). This site is an

island CpG site (CpG island chr7:73703458-73704127) that maps to

an area near the CLIP2 gene.

We also tested whether average DNAm (mean of DNAm levels

pre- and post-SV) differed across groups. No DNAm probe was

significant at the FDR adjusted alpha level of 0.10.
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3.3 Differentially methylated region analysis

We also tested for genomic regions (Figure 1). In contrast to

the single CpG site (DMP) analysis, the regional analysis allowed

us to identify multiple CpG sites that demonstrated similar

DNAm changes between the pre- and post-SV visits across the

three study groups (DDMRs). We focused on FDR significant

regions of ≥4 DNAm probes where the direction of the change in

DNAm (between the pre-SV and post-SV visits) was consistent

(100% of probes changed in a similar direction) within one or

more of the groups. We identified 11 candidate DMRs

(Table 2; Figure 3).

We also tested for regions where the average DNAm levels at

the pre- and post-SV visits differed across the groups (mDMRs). We

identified 22 FDR significant mDMRs of ≥4 DNAm probes where

the direction of the pairwise group differences in DNAm was

consistent across all CpG sites included in the region

(Table 3; Figure 4).
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3.4 eQTM candidate prioritization

We tested the correlation between DNAm and cis- gene expression

levels in a subset of overlapping samples. The availability of individual

level DNAm data allowed us to look at the entire DMR together. Based

on the DDMR candidates, we identified two FDR significant cis eQTMs

representing one DMR and two gene transcripts, GNAS and ATP5E

(DDMR1, region on chromosome 20, see Table 4). Within this region,

increased DNAm post- vs pre-SV was positively associated with

expression of GNAS and ATP5E (see Table 4).
3.5 Metabolite quantitative trait
methylation analysis candidate
prioritization in overlapping samples

We tested whether the single DMP candidate, cg16066195, as

well as the candidate DNAm regions identified in our primary
TABLE 1 Demographics and clinical characteristics.

Maintainer n=60 Progressor n=42 Reverter n=41

P ValueMedian
| Freq

IQR | %
Median
| Freq

IQR | %
Median
| Freq

IQR | %

Pre-Islet Autoimmunity Visit

Age at Visit, median (IQR) 5.7 1.4-9.7 2.2 0.8-5.3 6.0 1.3-8.4 0.0079

CD8T, median (IQR) 13.3% 9.4-16.6% 14.6% 11.8-15.9% 12.2% 9.7-16.1% 0.3864

CD4T, median (IQR) 22.0% 15.6-26.1% 23.4% 17.3-31.8% 19.3% 16.1-25.5% 0.1959

NK, median (IQR) 1.4% 0.0-4.7% 0.0% 0.0-1.5% 1.3% 0.0-3.1% 0.0653

Bcell, median (IQR) 15.3% 10.6-18.5% 17.9% 13.4-22.6% 14.9% 10.2-19.7% 0.1599

Mono, median (IQR) 8.3% 6.9-10.3% 7.5% 5.2-9.4% 7.6% 6.2-9.5% 0.3390

Gran, median (IQR) 38.5% 30.6-50.9% 35.5% 24.7-44.6% 42.8% 32.0-52.0% 0.2205

Post-Islet Autoimmunity Visit

Age at Visit, median (IQR) 8.0 5.2-11.3 4.9 2.4-9.4 7.1 3.1-10.0 0.0087

CD8T, median (IQR) 11.8% 9.5-15.6% 14.6% 11.3-16.7% 12.3% 8.9-16.4% 0.1183

CD4T, median (IQR) 17.6% 13.1-22.1% 21.7% 17.3-26.9% 17.6% 13.0-21.7% 0.0061

NK, median (IQR) 2.7% 0.0-6.0% 0.0% 0.0-3.5% 1.3% 0.0-4.1% 0.0018

Bcell, median (IQR) 11.2% 8.6-15.0% 16.5% 12.7-19.7% 13.1% 8.3-16.7% 0.0011

Mono, median (IQR) 9.1% 7.8-10.8% 7.8% 4.8-9.3% 8.5% 7.0-10.1% 0.0293

Gran, median (IQR) 46.0% 39.6-52.7% 37.9% 28.6-44.4% 47.8% 38.4-53.6% 0.0025

Non-Hispanic White Ethnicity,
freq (%)

43 71.7% 38 90.5% 29 70.7% 0.0458

Female Sex, freq (%) 34 56.7% 19 45.2% 21 51.2% 0.5224

HLDR3/4 High Risk Genotype,
freq (%)

16 26.7% 19 45.2% 10 24.4% 0.0711

First Degree Relative with T1D,
freq (%)

38 63.3% 25 59.5% 19 46.3% 0.2242
fr
IQR, interquartile range; CD8T, cytotoxic T cells; CD4T, T helper cells; NK, natural killer T cells; Mono, monocytes; Gran, granulocytes.
ontiersin.org

https://doi.org/10.3389/fimmu.2024.1345494
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Carry et al. 10.3389/fimmu.2024.1345494
analysis were associated with metabolite levels. Consistent with the

eQTM analysis, we regressed out age and sex from annotated

metabolites and then tested the correlation between annotated

metabolites versus DNAm regional PCs. Based on the DDMR

candidates, we identified 26 annotated metabolites from the Lipid

panel that were correlated with 4 DMRs (see Table 5; Figure 5).

DDMR 8 was correlated with multiple lipids, primarily PCs, DDMR

5 was also correlated with multiple lipids, primarily correlated with

TGs (fats). DDMR 9 and DDMR 2 were correlated with a single

lipid, an ether lipid, and a TG, respectively. Metabolite candidates

primarily consisted of odd-chain fatty acid containing lipid species

(OCFA). Furthermore, the majority of the metabolites (29/30) were

positively correlated with increasing DNAm levels. The mDMR

candidate regions as well as the single DMP candidate were not

significantly associated with metabolite levels at our FDR adjusted

cutoff of 0.10.
4 Discussion

Epigenetic biomarkers are appealing in the study of complex

diseases such as T1D based on their heritability, role in gene

expression, and responsiveness to external stimuli. Epigenetic

effects in observational studies are challenging to interpret

because it is often not possible to determine whether DNA

methylation (DNAm) is causative or secondary to the disease

process. A strength of our study is the longitudinal analysis of

DNAm levels both before and after the onset of IA. We identified a

single CpG site as well as genomic regions where changes in DNAm

between the post-SV and pre-SV visits were significantly different

across the IA progression phenotypes. We also identified regions

where average DNAm levels pre- and post-SV differed across the

progression phenotypes. Together, the DNAm regions have

potential biological relevance to T1D etiology based on their

potential role in immune and beta cell function.
Frontiers in Immunology 07
We identified a DNAm site, cg16066195, on chromosome 7

where DNAm levels increased between the pre- and post-SV visits

among individuals who reverted to an IA negative state (reverters)

compared to progressors (who showed no change in DNAm) and

maintainers (who showed decreasing DNAm, Figure 2). This island

CpG is located near the transcription start site for the protein

coding gene CLIP2. In a mouse model of diet induced changes in

beta cell expression, CLIP2 gene expression was significantly

downregulated among mice fed a carbohydrate containing

diabetogenic high-fat diet relative to mice fed a diabetes-

protective carbohydrate free high-fat diet (39). Furthermore,

SNPs within CLIP2 (rs2528994 and rs512023) have demonstrated

modest associations with T2D in both the Diabetes Genetics

Initiative (40) and the Wellcome Trust Case Control

Consortium (41).

Our methylation analysis also identified numerous regions

where average methylation post- and pre-SV differed across the

autoimmune phenotypes in areas of the genome potentially relevant

to T1D etiology. We identified a DMR on chromosome 12, mDMR4,

characterized by hypermethylation in the reverter group relative to

the progressor and maintainer groups (Figure 4). This includes 4

probes that, based on the ENCODE Project Consortium (42), are

located in a known enhancer region. Three of the four probes within

this region are located within the transcription start site for NRIP2,

predicted to act upstream or within the notch signaling pathway

(43). This pathway is relevant to T1D (44) based on its role in

immune cell differentiation and function (45) as well as pancreas

development (46), islet cell function (47), and islet cell survival (48).

All four probes within mDMR4 are also located within the 5’UTR

region for ITFG2, a gene expressed in numerous tissues including

immune cells. Mouse and in vitro models have demonstrated that

ITFG2 deficiency alters B cell maturation and migration (49). In a

lupus mouse model, MRL/lpr, autoimmunity development

occurred earlier and was more severe in ITFG2 deficient mice

(49). Together, these findings suggest a potential role for ITFG2
BA

FIGURE 2

Changes in DNAm between the pre- and post-SV visits at cg16066195 across the three IA progression phenotypes. Description: (A) provides the
average methylation M-values and corresponding 95% confidence intervals within the three IA progression phenotypes pre- and post-SV.
(B) describes the individual level changes in methylation m-values (y-axis) between the post-SV visit relative to the pre-SV visit in the three IA
progression phenotypes (x-axis). Positive values represent increasing DNAm whereas negative values represent decreasing methylation between
visits. All DNAm values in (A, B) have been adjusted for age, sex, and cell proportions.
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TABLE 2 Regions where DNAm changes between the post- and pre-SV visits were consistently different across groups (group*visit interaction).

. Leading
CpG Site

Slope
% R*

Slope
% P*

Slope
% M*

Median
Slope R†

Median
Slope P†

Median
Slope M†

cg26496204 69% 100% 100% 0.01 -0.03 -0.05

cg24675557 100% 80% 80% 0.05 -0.02 -0.02

cg00121533 100% 88% 100% 0.06 0.04 -0.08

cg14034270 96% 85% 100% 0.02 -0.02 -0.02

cg11095027 86% 57% 100% 0.03 0.03 -0.07

cg03291024 75% 100% 100% 0.01 0.09 -0.09

cg09075844 100% 100% 100% -0.03 0.03 -0.06

cg05228964 50% 100% 100% <0.01 0.10 -0.04

cg10919664 100% 100% 100% 0.07 0.06 -0.16

cg25106913 75% 75% 100% <0.01 0.06 -0.05

cg14773178 83% 100% 100% 0.04 0.08 -0.08

r more groups.

and/or genes mapped to CpG sites within known regulatory regions, if gene was not annotated within the Illumina manifest file, noted with ‡, gene

sed on genomic coverage in the DMR analysis.
(hypo (–) or hyper (+) methylation) across all the probes included in the DMR.
DNAm (–), indicate decreasing DNAm.
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DMR
ID

Chr. Start Stop Gene
N

CpG
Sites

Sidak Adj
Region P

DDMR 1 chr20 57426538 57427974
GNAS; GNASAS;

GNAS-AS1
29 8.33E-05

DDMR 2 chr20 36148604 36149751 BLCAP; NNAT 30 1.37E-04

DDMR 3 chr1 75198582 75199118
TYW3; CRYZ;
RP11-17E13.3

8 3.40E-03

DDMR 4 chr14 101291068 101293727 MEG3 25 6.74E-03

DDMR 5 chr11 1296469 1297386 TOLLIP 7 1.81E-02

DDMR 6 chr15 91473059 91473570 UNC45A 8 2.00E-02

DDMR 7 chr5 1245669 1246292 SLC6A18 4 3.38E-02

DDMR 8 chr6 170597377 170597899 DLL1 4 3.66E-02

DDMR 9 chr6 28945322 28945493 RN7SL471P‡ 4 6.09E-02

DDMR 10 chr6 27647713 27648355 RP1-15D7.1‡ 4 7.14E-02

DDMR 11 chr5 1867978 1868694 IRX4‡ 6 8.71E-02

DMRs limited to regions with a minimum of 4 probes and 100% of within group slopes in the same direction for one o
Chr., chromosome.
Start/Stop, DMR start and stop position.
Gene, Gene annotation from the Illumina manifest file, based on UCSC reference genes mapped to CpG sites within DMR
name based on closest transcription start site.
Leading CpG site, most significant DMP within the region.
Sidak Adj. Region P, regional p value corrected for multiple testing based on number similarly sized regions possible ba
*R, reverters; P, progressors; M, maintainers, Percent of within group slopes (Pre-SV vs Post-SV) in the same direction
†Median slope (Pre-SV vs Post-SV) across all probes included in the DMR for each group, (+) values indicate increasin
g
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TABLE 3 Regions where average of post- and pre-SV DNAm levels were consistently different across groups (group main effect).

DMR
ID

Chr. Start Stop Gene
N

Probes
Sidak Adj.
Region P

Leading
CpG Site

Median
PvR‡

Median
RvM‡

Median
PvM‡

mDMR 1 chr1 180922636 180923341
RP11-46A10.4;
RP11-46A10.5

4 1.38E-05 cg00579423 0.09 0.37 0.46

mDMR 2 chr10 99338056 99338241 ANKRD2 4 1.75E-04 cg27469738 -0.11 0.26 0.17

mDMR 3 chr10 52008360 52008906 ASAH2 4 6.45E-03 cg24123634 -0.07 -0.02 -0.11

mDMR 4 chr12 2943902 2944481 NRIP2; ITFG2 4 7.06E-03 cg02852959 -0.15 0.19 0.04

mDMR 5 chr12 75784855 75785098 GLIPR1L2; CAPS2 6 7.59E-03 cg12351126 0.10 0.24 0.34

mDMR 6 chr12 51566379 51567113 TFCP2 7 1.24E-02 cg19016289 0.05 0.15 0.2

mDMR 7 chr1 1289835 1290713 MXRA8 6 1.61E-02 cg07284273 -0.16 0.33 0.15

mDMR 8 chr15 72766637 72767333
ARIH1;
RP11-1007O24.3

4 1.93E-02 cg26880891 0.09 0.02 0.14

mDMR 9 chr19 45206843 45207560 CEACAM16 4 2.78E-02 cg24091949 -0.09 -0.04 -0.13

mDMR 10 chr19 2250901 2251068 AMH 4 2.83E-02 cg23218559 -0.18 0.38 0.21

(Continued)
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FIGURE 3

Differentially changing methylation region on chromosome 20 where changes in DNAm (pre- vs post-SV) differed across the three IA progression
phenotypes. Description. Region on chromosome 20 loc 57426538 to 57427974 (DDMR1) where the change in DNA methylation (DNAm) post- vs
pre-SV differed across groups. In the top panel, each dot represents the within group slopes (y-axis) or changes in DNAm m-values between the
post-SV and pre-SV visit at each of the CpG sites included DDMR 1. The x-axis represents the position (mb) of the CpGs within the region. All slope
values were adjusted for age, sex, and cell proportions. Positive values indicate methylation values increased following IA seroconversion whereas
negative values indicate methylation decreased following IA seroconversion. The dashed lines represent the average slope value within each group
across the entire region. The middle panel represents the location of the region (black solid square) relative to the closest genes, GNAS and ATP5E
(red solid boxes). There are multiple known isoforms for GNAS and ATP5E, the bottom panel displays the most biologically relevant or consensus
transcript based on the Ensembl database. The red line on the ideogram, bottom of the figure, represents the location of GNAS and ATP5E on
chromosome 20.
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in B cell differentiation and as a potential regulator of

autoimmunity. Although, average methylation within DMR4 was

not correlated with expression of ITFG2 or NRIP2 in our secondary

eQTM analysis, three probes within mDMR4 (cg05194726;

cg06997549; cg02852959) were correlated with expression of both

ITFG2 and NRIP2 in whole blood based on the BIOS QTL browser

(50), an online resource that provides a searchable database of FDR

significant associations between DNAm and gene expression

(eQTM). Additional work is needed to understand the

connections between methylation within this region on chr 12,

ITFG2 expression, NRIP2 expression, and T1D etiology.

We also identified several regions of differentially changing

DNAm that are potentially relevant to T1D etiology based on

known associations between DNAm in these regions and relevant

environmental risk factors. We identified a region on chr 20 near

the GNAS/GNASAS loci, DDMR 1, that was characterized by

decreasing DNAm pre- vs post-SV in maintainers and

progressors relative to reverters (Table 2; Figure 3). Based on the

ENCODE Project Consortium (42), 25 of the 29 probes in DDMR 1

are located within a DNAase hypersensitivity region and 4 probes

are known to interact with transcription factor binding. DNAm in

this region is responsive to environmental stressors. Umbilical cord

blood DNAm near GNAS was altered among infants born to a

mother affected by gestational diabetes (GDM), a disorder

characterized by glucose intolerance during pregnancy (51). Based

on the Dutch Hunger Winter Families Study (52), siblings exposed

to the war-time Dutch Hunger Winter famine were associated with

persistent changes in DNAm in a region near the GNASAS locus

relative to their unexposed siblings (53). The direction and
Frontiers in Immunology 10
magnitude of effect depended on timing of exposure and sex of

the exposed individual (53). DNAm among exposed siblings was

also altered near another gene implicated in metabolic disease

MEG3 (53), a gene that mapped to DDMR4 which was also

characterized by decreasing methylation among progressors and

maintainers relative to reverters (Table 2). Interestingly, both the

GNAS (54) and MEG3 (55) genes are maternally imprinted. Loss of

maternal imprinting should be investigated as a potential

mechanism in the etiology of T1D using whole-genome bisulfite

sequencing in order to provide a higher density representation of

DNAm changes within imprinted areas of the genome.

The secondary eQTM analysis in a subset of overlapping

samples confirmed that changes in methylation within DDMR1

were associated with expression of GNAS. Increased methylation

post- versus pre-SV was associated with higher levels of GNAS

expression at the post-SV visit in a subset of overlapping samples.

GNAS is an important regulator of insulin secretion in beta cells

(56). GNAS silencing results in decreased insulin secretion and

insulin content (56). GNAS encodes the G protein subunit alpha

which also plays a role in the interaction between antigen presenting

cells and T helper cell differentiation (57). Mice with dendritic cells

deficient for GNAS result in a phenotype characterized by

preferential Th2 differentiation, Th2 type inflammation, and

subsequent development of allergic asthma (57). Overlap between

autoimmunity and atopic conditions have long been hypothesized

based on disruptions in similar immune pathways (58). Positive

associations between childhood asthma and subsequent T1D

development have been observed in several countries (59–61).

Overall, our results suggest that maintenance of DNAm levels
TABLE 3 Continued

DMR
ID

Chr. Start Stop Gene
N

Probes
Sidak Adj.
Region P

Leading
CpG Site

Median
PvR‡

Median
RvM‡

Median
PvM‡

mDMR 11 chr18 7567426 7568266 PTPRM 5 3.44E-02 cg05870479 0.09 0.04 0.11

mDMR 12 chr15 85524778 85525674 PDE8A 4 4.02E-02 cg02839273 0.05 0.05 0.13

mDMR 13 chr2 85765644 85766105 MAT2A 4 4.39E-02 cg06978067 0.08 0.05 0.13

mDMR 14 chr19 48048129 48049234 ZNF541 4 4.90E-02 cg22341310 -0.12 0.17 0.06

mDMR 15 chr4 4861683 4862241 MSX1 4 5.94E-02 cg11930592 0.12 -0.04 0.08

mDMR 16 chr11 598325 599091 PHRF1 5 7.14E-02 cg12921473 -0.06 -0.05 -0.10

mDMR 17 chr5 101119084 101119767 OR7H2P* 4 7.67E-02 cg12197752 0.09 0.18 0.29

mDMR 18 chr13 42031761 42032737 C13orf15; RGCC 4 8.16E-02 cg18495682 0.06 0.02 0.09

mDMR 19 chr3 38206610 38207525 OXSR1 4 8.20E-02 cg19728055 0.07 0.05 0.11

mDMR 20 chr10 14372431 14372914 FRMD4A 5 8.45E-02 cg05755354 -0.16 -0.02 -0.18

mDMR 21 chr8 145550361 145551157 DGAT1 5 8.72E-02 cg11127482 0.06 0.04 0.11

mDMR 22 chr11 128693473 128694916 FLI1*; KCNJ1* 9 9.44E-02 cg15509024 -0.12 -0.09 -0.18
fr
DMRs limited to regions with a minimum of 4 probes and direction of pairwise comparison was consistent across all probes in the region.
Chr., chromosome.
Start/Stop, DMR start and stop position.
Sidak Adj. Region P, regional p value corrected for multiple testing based on number similarly sized regions possible based on genomic coverage in the DMR analysis
Leading CpG site = most significant DMP within the region
Gene, Gene annotation from the Illumina manifest file, based on UCSC reference genes mapped to CpG sites within DMR and/or genes mapped to CpG sites within known regulatory regions, if
gene was not annotated within the Illumina manifest file, noted with *gene name based on closest transcription start site.
‡R, reverters; P, progressors; M, maintainers, Median effect size across the region representing difference in methylation M values between groups.
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near GNAS during IA may represent a unique protective

mechanism in reverters.

In order to further characterize the DNAm regions identified in

the primary analysis, we tested the correlation between changes in

DNAm and changes in annotated metabolites (metQTM). Four

differentially changing DMRs were correlated with changes in 26

unique lipid metabolites (Table 5). DDMR 8, characterized by
Frontiers in Immunology 11
increasing methylation in progressors (Figure 5), was correlated

with 18 of the 26 lipid metabolites. This region of differentially

changing methylation is notable based on its location in an open

chromatin region within the body of the DLL1 gene on chr. 6. As a

notch signaling ligand, DLL1 controls the differentiation of pancreatic

progenitor cells into exocrine versus endocrine cells (46). The loss of

DLL1 results in early progenitor cell differentiation and an
TABLE 4 Summary of FDR significant cis-eQTMs representing correlation between differentially changing methylation regions and gene expression
post- SV.

Methylation DMR Information Cis-Gene Expression Information

DMR
ID

Chr.
DMR
Start

DMR
Stop

N
Probes

Gene
Symbol

Ensembl ID Strand
Gene
Start

Gene
End

Corr* FDR

DDMR 1 20 57426538 57427974 29 GNAS ENSG00000087460 1 57414773 57486247 0.559 0.0667

DDMR 1 20 57426538 57427974 29 ATP5E ENSG00000124172 -1 57600522 57607437 0.557 0.0667
frontie
DNAm levels for all probes identified in the DMR analysis (Tables 1, 2) were included in a PCA.We then tested the association between the 1st PC and RNA seq data from overlapping visit at the
post-SV visit. Only significant cis (TSS +/- 500KB of midpoint of DMR) expression quantitative trait methylation (cis-eQTM) associations are presented.
*Spearman correlation coefficient.
Chr., chromosome.
DMR Start/End, DMR start and end position.
Gene Start/End, Gene start and end positions (based on annotation file for GEO, GSE50244).
Beta, beta coefficient from linear regression model (adjusted for age and sex) representing association between 1st PC from DNAm probes in each DMR and islet cell pancreas expression.
FDR, Benjamini-Hochberg FDR adjusted p value.
FIGURE 4

Differentially methylated region on chromosome 12 where average (pre- and post-SV) methylation levels differed across the three IA progression
phenotypes. Description. Region on chromosome 12 loc 2943902 to 2944481 (mDMR4) where average DNA methylation (DNAm) levels, post- and
pre-SV, differed across groups. In the top panel, each dot represents the average DNAm value (y-axis) at each of the CpG sites included mDMR4. The
x-axis represents the position (mb) of the CpGs within the region. All DNAm values were adjusted for age, sex, cell proportions, and genetic
ancestry. The dashed lines represent the average methylation value within each group across the entire region. The middle panel represents the
location of the region (black solid square) relative to the closest genes, ITFG2 and NRIP2 (red solid squares). There are multiple known isoforms for
ITFG2 and NRIP2, the figure displays the most biologically relevant or consensus transcript based on the Ensembl database. The red line on the
ideogram, bottom of the figure, represents the location of ITFG2 and NRIP2 on chromosome 12.
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TABLE 5 Secondary metQTM analysis of the association between pre- versus post-SV change in methylation across the DMRs and pre- versus post-
SV change in metabolite levels.

DMR ID Chr.
DMR
Start

DMR
Stop

Metabolite Name†
Standardized

Beta
FDR Adj.
P Value

DDMR 2 chr20 36148604 36149751 TG (49:2) 0.320 0.0992

DDMR 5 chr11 1296469 1297386

TG (53:2) 0.411 0.0121

Phosphatidylcholine (33:1) 0.361 0.0469

TG (53:3) 0.353 0.0627

PE (38:4) 0.339 0.0826

TG (49:2) 0.330 0.0948

TG (47:0) 0.329 0.0952

TG (51:3) 0.327 0.0954

PC (33:1) 0.327 0.0954

Phosphatidylcholines (35:1) 0.325 0.0954

TG (53:1) 0.320 0.0992

DDMR 8 chr6 170597377 170597899

Phosphatidylcholine (35:4) 0.438 0.0078

Phosphatidylcholines (33:1) 0.404 0.0121

Phosphatidylcholines (33:0) 0.403 0.0121

Phosphatidylcholines (33:1) 0.402 0.0121

Phosphatidylcholines (35:3) 0.396 0.0138

LPC (15:0) 0.393 0.0139

Phosphatidylcholines (38:5) 0.375 0.0527

Phosphatidylcholines (33:2) 0.366 0.0445

Phosphatidylcholines (35:4) 0.365 0.0445

Phosphatidylcholines (31:0) 0.350 0.0647

Phosphatidylcholines (35:1) 0.347 0.0647

Phosphatidylcholines (36:3) 0.347 0.0647

Phosphatidylcholines (p-34:0) or
Phosphatidylcholines (o-34:1)

-0.334 0.0940

TG (49:3) 0.332 0.0940

Phosphatidylcholines (33:2) 0.332 0.0940

Phosphatidylcholines (36:3) B 0.325 0.0954

Phosphatidylcholines (37:6) 0.324 0.0954

Phosphatidylcholines (35:1) 0.323 0.0975

DDMR 9 chr6 28945322 28945493
Phosphatidylcholine (p-38:2) or
Phosphatidylcholine(o-38:3)

0.345 0.0662
F
rontiers in Immunology
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2
DNAm levels for all probes identified in the DMR analysis (Tables 1, 2) were included in a PCA. We then tested the association between the 1st PC changes in metabolites between the pre- and
post-SV visits.
Chr., chromosome.
DMR Start/End, DMR start and end position.
Gene Start/End, Gene start and end positions (based on annotation file for GEO, GSE50244).
Standardized Beta, beta coefficient from linear regression model testing the association between change in DNAm and change in metabolites pre-SV vs post-SV. The slopes have been
standardized to represent a 1 stdev change in metabolite per 1 standard deviation change in DNAm regional PC levels.
FDR Adj. P value, Benjamini-Hochberg FDR adjusted p value.
†See Appendix 5 (Data Sheet 5) (Tables D, E) for complete annotation for all metabolites included in Table 5.
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overabundance of endocrine cells (46). A recent mouse model

confirmed DLL1 is also relevant to islet cell function in the mature

pancreas based on its high level of expression in beta cells and

corresponding role in insulin secretion (47). Furthermore, DLL1

plays an important role in differentiation of B cells and the

development of antigen secreting cells; the presence of DLL1

influences AB titer levels and isotype switching (45). Additional

work is needed to understand the connection between a

concordant increase in lipid levels and DNAm within the DLL1

gene following seroconversion.

Our secondary metQTM was unique in that DNAm and

metabolite levels were available pre- and post-SV in a subset of

overlapping samples. This analysis revealed a consistent positive

association between increasing lipid metabolite levels, post- vs pre-

SV, and increasing DNAm levels across several regions (25 of the 26

unique lipid metabolites were positively correlated with DNAm

changes, see Table 5). Numerous studies (62–68) have reported

associations between dysregulation in lipid levels and T1D. Although

lipid levels have been shown to be influenced by age at sample

collection/timing of sample collection relative to onset of IA and type

of first appearing autoantibody, prior research suggests lower lipid
Frontiers in Immunology 13
levels, including sphingomyelins and phosphatidylcholines, are

generally associated with increased risk of T1D and/or IA (62–68).

In our study, increasing lipid levels, in particular phosphocholines,

following the onset of IA were strongly correlated with increasing

methylation within DDMR8. This region was characterized by

increasing methylation within the progressor group. However, as

demonstrated in Figure 5, the lipid metabolite most strongly

correlated with DNAm changes in this region, Phosphatidylcholine

(35:4), was lower in the progressor group prior to SV and then

subsequently increased following the onset of IA, suggesting higher

levels of lipids within the progressor group may be unique to changes

that occur following seroconversion.

There was a high prevalence of odd-chain fatty acid (OCFA)

containing lipid species among the metabolites correlated with DNAm

changes. Recently, there has been increased recognition of OCFA in

plasma and their potential biological relevance (69). OCFA levels have

been associated with glucose homeostasis, insulin resistance, T2D, and

BMI (69, 70). Pfleuger et al (71) observed higher levels of odd-chain

triglycerides among autoantibody positive versus negative children in

BABYDIAB. This parallels the concordant post-seroconversion

increase in OCFA levels and DNAm near the DLL1 gene (DDMR 8)
B

C D

A

FIGURE 5

Differentially changing region on chromosome 6 (post- vs pre-SV) that was positively correlated with changes in lipid metabolites (post- vs pre-SV).
Description: Region on chromosome 6 loc 170597377 to 170597899 (DDMR8) where the change in DNA methylation (DNAm) post- vs pre-SV
differed across groups. In the top left (A), each dot represents the within group slopes (y-axis) or changes in methylation m-values between the
post-SV and pre-SV visit at each of the CpG sites included DDMR 8. The x-axis represents the position (mb) of the CpGs within the region. Positive
values indicate DNAm values increased following IA seroconversion whereas negative values indicate DNAm decreased following IA seroconversion.
The dashed lines represent the average slope value within each group across the entire region. The top right (B) represents the association between
DMR wide DNAm captured by the 1st PC (x-axis) and changes in metabolite values (y-axis) between the post- and pre-SV visits. DNAm and
metabolite expression values have been standardized to facilitate the interpretation of the slope as a 1 standard deviation increase in the change in
metabolite levels between the post- and pre-SV visits per 1 standard deviation increase in the change in methylation between post- and pre-SV
visits. The bottom panels (C, D) represent the average metabolite levels and corresponding 95% confidence intervals within the three groups pre-
and post-SV. All DNAm and metabolite values were adjusted for age, sex, and cell proportions.
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among progressors (Figure 5) in the current study. OCFA have been

proposed a marker of dairy intake which has been positively correlated

with progression to T1D in prior work in DAISY (72). However, dairy

intake contributes modestly to OCFA levels. These lipids primarily

originate endogenously from adipocytes as well as from dietary intake

of numerous foods including dairy, poultry, and fiber (70, 73, 74).

Additional work is needed to understand connections between

increasing methylation and increasing OCFA as well as the source of

these lipid species.

A major strength of our study was the inclusion of DNAm

measurements prior to T1D as well as the multi-omics work used to

identify correlations between DNAm and gene expression as well

metabolite levels. We measured DNAm before and after SV (ie, the

appearance of IA) which builds on prior studies that have included

DNAm measures after T1D and/or after IA onset only (14–16). A

novel feature of our longitudinal methodology was our group*visit

interaction modelling strategy that allowed us to identify changes in

DNAm before and after the onset of IA, a critical window in T1D

pathogenesis. These within individual effects are essential to

understanding the etiology of T1D as they are robust to individual

level confounders such as sex, genetic predisposition, and/or family

history. Johnson et al (17) also used a longitudinal case-control

analysis of T1D cases vs. unaffected controls in DAISY. In contrast,

the current study design focused on individuals who developed IA

and furthermore, tested for differences in DNAm post- vs pre-SV

(group*visit interaction) rather than testing for differences in

methylation by age (group*age interaction). Comparing the DMRs

identified by this study versus Johnson et al (17), only two regions

were located within 1 MB of each other–one on chr 6 DDMR 9

(28945322–28945493) in the current study vs chr 6 28973328-

28973521 in Johnson et al (17), and one on chr 20 DDMR 2

(36148604–36149751) in the current study vs chr 20 36148954-

36149232 in Johnson et al (17). Consistent with prior work, DDMR

9 and DDMR 2 were both associated with differential changes in

DNAm in progressors relative to maintainers and/or reverters.
4.1 Limitations

We obtained DNAm from whole blood, which means we were

unable to identify cell subtype specific effects. Similarly, our study

focused on blood tissue only. DNAm changes within the blood may

not reflect DNAm changes within other tissues that contribute to T1D,

such as the pancreas. Due to advancements in technology during the

study, DNAm was measured on two platforms. Individuals were

randomly assigned to the platforms to minimize bias. We looked for

cis-eQTMs. Given that it is possible that regions act over larger areas of

the genome, we may have missed larger effects that occurred outside of

our 500 KB window. Due to the small sample size, the eQTM was

underpowered to identify FDR significant DMR vs gene transcript

pairs. This limitation may explain lack of concordance between eQTM

results and BIOS QTL results (mDMR4). Furthermore, among the two

gene transcripts that were correlated with changes in methylation

within DDMR1, gene expression data were only available at the post-

SV visit. Therefore, it was not possible to determine whether gene

expression also changed pre- versus post-SV. Finally, metabolite levels
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are influenced by age and dietary patterns. Although we adjusted for

age, the large differences in age between the progressor group and the

reverter and maintainer groups creates challenges in interpreting the

metabolite vs methylation correlations. Additional work is need to

replicate the metabolite vs DNAm regional effects.
5 Conclusion

T1D is an autoimmune disease characterized by immunemediated

destruction of beta cells. Beta cell stress has been proposed as a

mechanism connecting environmental perturbations such as

infection, inflammation, diet, and increased insulin secretion to

disease progression (75). Our EWAS identified DNAm candidates

known to be modified by diabetes relevant environmental factors

including diet and glucose levels (CLIP2, GNAS/GNAS-AS, MEG3).

Our results also implicated genes (DLL1 and GNAS) with functional

roles in both beta and immune cells. Our results build upon prior work

by identifying specific areas of the genome where DNAm changes pre-

and post-SV visits differentiated between reversion versus progression

of IA. The correlation between changes in DNAm and changes in lipid

levels reveal common connections between DMRs in different areas of

the genome that may be related to disruptions in lipid metabolic

pathways. Additional work is needed to replicate these findings, test for

cell-specific changes in DNAm pre- vs post-seroconversion, and to

identify modifiable factors that lead to these DNAm changes; ideally,

the first step in the development of preventative strategies that delay or

prevent progression of IA.
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