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Prognostic stratification of sepsis
through DNA damage response
based RiskScore system: insights
from single-cell RNA-sequencing
and transcriptomic profiling
Qingjiang Lin †, Rongyao Zeng †, Jinfeng Yang, Zebo Xu,
Shaoxiong Jin and Guan Wei*

Department of Emergency Surgery, The Second Affiliated Hospital of Fujian Medical University,
Quanzhou, Fujian, China
Background: A novel risk scoring system, predicated on DNA damage response

(DDR), was developed to enhance prognostic predictions and potentially inform

the creation of more effective therapeutic protocols for sepsis.

Methods: To thoroughly delineate the expression profiles of DDR markers within

the context of sepsis, an analytical approach utilizing single-cell RNA-sequencing

(scRNA-seq) was implemented. Our study utilized single-cell analysis techniques

alongside weighted gene co-expression network analysis (WGCNA) to pinpoint

the genes that exhibit the most substantial associations with DNA damage

response (DDR). Through Cox proportional hazards LASSO regression, we

distinguished DDR-associated genes and established a risk model, enabling the

stratification of patients into high- and low-risk groups. Subsequently, we carried

out an analysis to determine our model’s predictive accuracy regarding patient

survival. Moreover, we examined the distinct biological characteristics, various

signal transduction routes, and immune system responses in sepsis patients,

considering different risk categories and outcomes related to survival. Lastly, we

conducted experimental validation of the identified genes through in vivo and in

vitro assays, employing RT-PCR, ELISA, and flow cytometry.

Results: Both single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic

analyses have demonstrated a strong correlation between DNA damage

response (DDR) levels and sepsis prognosis. Specific cell subtypes, including

monocytes, megakaryocytes, CD4+ T cells, and neutrophils, have shown

elevated DDR activity. Cells with increased DDR scores exhibited more robust

and numerous interactions with other cell populations. The weighted gene co-

expression network analysis (WGCNA) and single-cell analyses revealed 71 DDR-

associated genes. We developed a four-gene risk scoring system using ARL4C,

CD247, RPL7, and RPL31, identified through univariate COX, LASSO COX

regression, and log-rank (Mantel-Cox) tests. Nomograms, calibration plots, and

decision curve analyses (DCA) regarding these specific genes have provided

significant clinical benefits for individuals diagnosed with sepsis. The study

suggested that individuals categorized as lower-risk demonstrated enhanced

infiltration of immune cells, upregulated expression of immune regulators, and a

more prolific presence of immune-associated functionalities and pathways. RT-
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qPCR analyses on a sepsis rat model revealed differential gene expression

predominantly in the four targeted genes. Furthermore, ARL4C knockdown in

sepsis model in vivo and vitro caused increased inflammatory response and a

worse prognosis.

Conclusion: The delineated DDR expression landscape offers insights into sepsis

pathogenesis, whilst our riskScore model, based on a robust four-gene signature,

could underpin personalized sepsis treatment strategies.
KEYWORDS

single-cell RNA-sequencing, DNA damage response, sepsis, prognostic model,
immune response
Introduction

Sepsis, identified as a critical condition characterized by the

body’s severe and imbalanced response to infection leading to

widespread organ failure, stands as a principal cause of death and

surging expenses in contemporary intensive care settings (1).

Contemporary academic publications have indicated that the year

2017 witnessed approximately 48.9 million occurrences of sepsis and

roughly 11 million deaths attributable to this condition worldwide.

This represents nearly one-fifth of total global fatalities (2, 3). Over

the past twenty years, strategies including controlling infections,

administering fluid replacement therapy, and delivering support for

multiple failing organs, have collectively contributed to the decline in

death rates due to sepsis (4). Biomarkers have been evaluated for

various functions in sepsis patients, including identifying infections,

predicting prognosis, and informing treatment plans (5).

Notwithstanding the limited exploration of patient variability in

sepsis, definitive evidence showcasing the efficacy of tailored

interventions aimed at distinct elements of the body’s reaction to

sepsis in enhancing patient recovery remains elusive. Thus, to

facilitate personalized treatment strategies for sepsis patients, a

comprehensive understanding of the heterogeneity of sepsis and

precise identification of each patient’s molecular features are essential.

The DNA Damage Response (DDR) functions as an inherent

alarm system, perpetually safeguarding genome integrity and

assuring the accurate transfer of genetic information to

descendant cells. It has been noted from various studies that

numerous pathophysiological conditions distinguished by elevated

oxidative stress also demonstrate an amplified DDR regulation (6–

8). Sepsis serves as a prime example of a condition characterized by

heightened oxidative stress due to its inflammatory nature. Recent

findings suggest that elements involved in DNA damage response

(DDR), like ATM, p53, and p21, may act as catalysts for subsequent
02
epigenetic alterations (9). Compared to healthy individuals, sepsis

patients showed heightened oxidative DNA damage levels. A

malfunctioning DDR could potentially precipitate excessive

apoptosis and necrosis (10). Increased levels of plasma cell-free

DNA (cfDNA) have been documented in several ailments where

cell death and damage to tissue/organs catalyze pathogenesis,

including sepsis (11). Moreover, a DNA damage response

facilitated by TOP2A might contribute to the progression of

ARDS precipitated by sepsis (12). Crucially, the orchestration of

DNA damage response (DDR) may prove to be a compelling

strategic point for intervention in treating sepsis. Hence, it is

critically significant to comprehensively detail the regulatory

elements associated with DDR and to unravel the fundamental

molecular processes implicated in the development of sepsis.

In this study, we performed an in-depth examination of DDR-

associated variant expression profiles in individuals with sepsis by

applying a single-cell methodology. The study focused on the DDR

framework within a range of cellular populations at distinct phases

and prognostic points of sepsis, revealing the cellular interaction

patterns within sepsis specimens exhibiting varying DDR

intensities. Additionally, a Bulk-RNA-Seq-driven WGCNA was

employed to pinpoint gene clusters linked to DDR, and

characteristic DDR genes were pinpointed by overlapping single-

cell with WGCNA data. Following this, we developed a risk

assessment system and a predictive nomogram tailored to

scrutinize biological characteristics, implicated pathways,

prognostic survivals, and immune system signatures among sepsis

sufferers stratified by risk. The expression levels and biological roles

of these signature genes underwent validation through in vivo

studies. Our research emphasizes the critical association between

DDR expression profiles and the complexity of sepsis, offering

distinctive perspectives on personalized prognostic categorization

and therapeutic strategies for sepsis patients.
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Methods

Raw data collection

Single-cell data was acquired from the peripheral blood of two

healthy subjects and five hospitalized patients diagnosed with sepsis

caused by gram-negative bacteria. This information is accessible on

the GEO website under the accession number GSE167363. Bulk sepsis

transcriptome data were also obtained (GSE65682, GSE95233,

GSE63042, GSE95233, GSE106878, E-MTAB-5273, and E-MTAB-

5274) from the GEO and ArrayExpress databases. Raw data

underwent log2-transformation and normalization using the Robust

Multiple Array Average (RMA) function with the “affy” R package.
Single-cell RNA-seq data processing and
cell annotation

The accuracy of the scRNA-seq data was verified using “Seurat” R

tools. To maintain data integrity, we excluded genes that appeared in

less than five individual cells, as well as cells that contained a gene

count ranging from 200 to 3000 and those with mitochondrial gene

content exceeding 15%. Consequently, a subset of 55,268 cells was

identified and chosen for subsequent analytical procedures. After data

normalization and scaling procedures on the remaining cell

population with the “NormalizeData” and “ScaleData” techniques,

we pinpointed the 3,000 genes exhibiting high variability by invoking

the “FindVariableFeatures” function. To mitigate batch effects that

may skew the subsequent analytical interpretations—owing to the

diverse sample origins—the “RunHarmony” function was utilized.

Techniques such as principal component analysis (PCA) and t-

distributed stochastic neighbor embedding (t-SNE) were harnessed

to discern anchor points and to demarcate significant cellular clusters.

By integrating the “FindNeighbors” and “FindClusters” functions at a

resolution setting of 0.5, we delineated a total of 13 discrete cell

clusters, which we then graphically represented on a “t-SNE” plot.

Assignation of these clusters to predominant cell types was carried

out manually in alignment with established marker genes.

Additionally, the “COSG” R package, configured with parameters

of mu equal to 10 and n_genes_user set to 100, facilitated the

identification of distinctive markers for each of the cell groups.
Assessment of different phenotype scores

Signature genes of various phenotypes (cholesterol efflux,

lysosome, endoplasmic reticulum stress, angiogenesis, autophagy,

acute inflammatory response, ferroptosis, and hypoxia) were

collected from the Molecular Signatures Database (MSigDB) (13).

The Single-Sample Gene Set Enrichment Analysis (ssGSEA)

algorithm was then employed using default settings with the

GSVA package to calculate phenotype-related scores for the

chosen cell populations (14).
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DDR score calculation

201 DDR-related genes were extracted based on prior research

(15). To assess each cell or sample’s DNA damage response (DDR)

capacity, a pre-established computational approach was utilized.

This method compensates for fluctuations in signal-to-noise ratios

among different genes and cells by analyzing expression patterns of

genes associated with DDR (16). Single cells had a threshold of 75%

based on quartiles for DDR level, while bulk transcriptome data

used the median value.
Cell communication analysis

CellChat objects were established based on the UMI count

matrix for each group (Normal and AD) using the “CellChat” R

package (https://www.github.com/sqjin/CellChat) (17) and applied

the “CellChatDB.human” ligand-receptor interaction database as

reference data. Inter-cellular interaction studies employed

standardized parameter configurations. Aggregated data from

distinct cohorts were synthesized using the “mergeCellChat”

utility, facilitating inter-group comparison in terms of interaction

quantity and intensity. Visualization of divergences in interaction

metrics among different cellular populations was achieved through

the use of “netVisual_diffInteraction” and “netVisual_heatmap”

tools. The principal communicating cells, both transmitting

(origin) and accepting (target), were depicted by the

“netAnalysis_signalingRole_scatter” feature. Finally, expression

patterns for signaling genes across various categories were

illustrated utilizing the “netVisual_bubble” function.
WGCNA analysis

Utilizing the WGCNA module within R, we constructed a co-

expression network for genes from the GSE65682 dataset,

employing WGCNA as a biological method. The process entailed

the following steps: utilizing the “goodSamplesGenes” function to

filter out genes with missing data, visually selecting the most

suitable soft threshold to calculate adjacency, transforming the

gene expression matrix first into an adjacency matrix and

subsequently into a topological overlap matrix (TOM) to

delineate the genetic interactions within the network. By assessing

differences in the TOM, we performed average linkage hierarchical

clustering, followed by dynamic trimming of the resulting

dendrogram to pinpoint modules of highly correlated genes.

These module eigengenes (MEs) served as a proxy for the entirety

of their respective gene modules. To correlate these MEs with

clinical traits, Pearson correlation analysis was conducted. In the

final stage, genes from modules with the strongest correlations to

the DDR score were singled out for additional scrutiny.
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Development and validation of the risk
scoring model

Univariate analysis was performed on intersecting genes to

identify those with a statistically significant correlation to

patients’ overall survival (OS) (P < 0.05). Subsequently, to refine

the selection of genes and their corresponding risk coefficients

significantly linked to survival outcomes, the LASSO (Least

Absolute Shrinkage and Selection Operator) method was applied

for Cox proportional hazards regression analysis, utilizing the

“glmnet” package in the R statistical programming environment

(18–20). Survival statistics were analyzed via Mantel-Cox tests, with

the gene combination exhibiting the smallest P-value considered the

final characteristic gene. Each patient with sepsis received a risk

score based on coefficients derived from log-rank tests. The formula

was presented as follows:

riskScore =oiCoefficientsi � Expression level of  characteristics genesi

Patients with sepsis were stratified into groups based on their

risk levels, distinguishing between those with higher risk and those

with lower risk, utilizing the median risk score as a discriminating

factor. Survival trends were then plotted using the Kaplan-Meier

method to aid in prognostication. The efficiency of the predictive

model was assessed by examining the receiver operating

characteristic (ROC) curves. To confirm the robustness of the

signature’s prognostic capacity, its predictive performance was

analyzed across four separate datasets by measuring the area

under the curve (AUC).
Evaluation of the prognostic model

We developed a predictive model that combines a risk

assessment score with demographic variables, specifically age, and

sex, to project the likelihood of patient survival over 28 days. We

evaluated the accuracy of this predictive model through the use of

calibration plots. Furthermore, we applied decision curve analysis to

determine the practical advantage of using our model as opposed to

relying solely on clinical features for prognostication.
Enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) Gene

Ontology (GO) enrichment analysis was performed using the

previously described “clusterProfiler” R package (21). Gene

ontology biological functions include biological processes (BP),

molecular functions (MF), and cellular components (CC). P-

values less than 0.05 were considered statistically significant.

Utilizing the Gene Set Variation Analysis (GSVA) approach, we

analyzed the variability of biological process heterogeneity and

pathway function using the “GSVA” software tool in R (14). For

this analysis, we employed the “c5.go.bp.v7.5.1.symbols” Hallmark

gene sets sourced from the MSigDB compendium. These gene sets

were selected as the optimal representatives for GSVA application.
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We identified unique molecular signatures within DDR categories

and quantified the disparities across biological operations and signal

transduction processes with the aid of the “limma” software tool in

R. We considered absolute t-values combined with GSVA scores

exceeding 2 to reflect statistical significance.

In parallel, gene set enrichment analysis (GSEA) was conducted

using the “clusterProfiler” toolkit in R, aiming to discern variations

in pathway activities. The results were prioritized based on

Normalized Enrichment Scores (NES), and we adopted a p-value

threshold of less than 0.05 to ascertain statistical significance.

Furthermore, we appraised the classical disease-relevant signaling

pathway activity differences between our study cohorts utilizing the

progeny R package, with p-values lower than 0.05 denoting

statistical significance.
Sepsis immunity

The ssGSEA algorithms using the GSVA package (14) were

applied to examine immune infiltration levels. Briefly, the

proportions of different immune cells present in each specimen

were evaluated utilizing universal marker genes. These proportions

were then quantified by estimating the fractional presence or the

comparative prevalence of every immune cell type through the

application of the referenced computational approaches. The

Wilcoxon rank-sum method was utilized to ascertain the disparity

in immune cell infiltration amongst distinct cohorts. To depict the

various extents of immune infiltration in Alzheimer’s disease

specimens based on discrete methodologies, a heatmap was

generated. Additionally, the “ESTIMATE” software, accessible in

R, was harnessed to deduce the levels of immune infiltration in

individuals with sepsis. Immune checkpoints, which are pivotal in

curtailing overt immune responses, comprise a range of molecules

—including those involved in antigen display, cellular adhesion, co-

inhibition, and co-stimulation, as well as ligands and receptors—

found on immune cells that modulate the intensity of immune

responses. The gene expression of renowned immune checkpoints

was contrasted between the cohorts in question.
Modeling sepsis and peripheral blood
sample collection in rats

To validate DDR-associated target genes in vivo, a rat model of

sepsis was established. In this research, male Sprague-Dawley rats

that tipped the scales at 250 to 300 grams were used. They were kept

in an environment where both temperature and humidity were

regulated. The facility provided a consistent cycle of 12 hours of

light followed by 12 hours of darkness. Additionally, the rats had

unrestricted access to both food and water. All experimental

protocols were approved by the Fujian Medical University

Institutional Animal Care and Use Committee.

The sepsis model was established through the administration of

cecal ligation and puncture (CLP), in line with methods outlined in

the earlier literature (22–24). Anesthesia was induced in the rats

using sodium pentobarbital, which was delivered via intraperitoneal
frontiersin.org
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injection at a dosage of 50 mg/kg. Under aseptic conditions, a

midline laparotomy was performed to expose the cecum and

surrounding intestines. A 3-0 silk suture was utilized to ligate the

cecum beneath the ileocecal valve while preserving the integrity of

the intestinal tract. An 18-gauge needle was used to puncture the

cecum twice, facilitating the expulsion of a minor quantity of fecal

content. Subsequently, the cecum was repositioned within the

abdominal cavity, and the open wound was closed in a stratified

manner. Sham-operated rats underwent the same surgical

procedure without cecal ligation and puncture. Postoperatively,

animals received subcutaneous injections of pre-warmed (37°C)

sterile 0.9% saline (5ml/100g) for fluid resuscitation.

For peripheral blood sampling, rats were subjected to

intracardiac puncture under deep sedation with pentobarbital

sodium (50mg/kg, i.p.) 24 hours after CLP or sham surgeries.

B l ood s amp l e s we r e d r awn in to tube s con t a in ing

ethylenediaminetetraacetic acid (EDTA) and subsequently, the

plasma was isolated using a centrifugal process at 2,000 times

gravity for a quarter-hour duration, maintained at a temperature

of 4°C. For subsequent examinations, these plasma specimens were

preserved at a temperature of -80°C.
Generation of adenovirus-mediated ARL4C
knockdown rat model via
intravenous injection

To confirm the involvement of ARL4C in sepsis further, a model

with reduced ARL4C expression was developed in an in vivo setting.

In summary, adenoviral vectors containing shRNA sequences

specifically targeting the ARL4C gene in rats (Ad-shARL4C)

alongside a non-targeting control shRNA sequence (Ad-shNC),

both sourced from RiboBio in Guangzhou, China, were utilized.

For each subject in the experimental group, around 30 billion PFU of

Ad-shARL4C in 200 mL saline were administered via tail vein

injection. Contrarily, the control group received a similar dose of

Ad-shNC. Evaluation of the gene silencing efficacy was carried out on

the 14th day post-injection using qRT-PCR. RNA from blood

samples was isolated using Trizol reagent (Invitrogen, USA). These

samples then underwent qRT-PCR with primers specific to rat

ARL4C to measure its expression levels. Additionally, sepsis was

induced in the animal model on the same day, followed by blood

collection for analysis using the previously outlined method.
Validation of ARL4C in vitro

The RAW264.7 cells, a mouse macrophage cell line, were

obtained from Beyotime Biotechnology. They were cultured in a

complete medium consisting of high glucose DMEM (Gibco), 10%

fetal bovine serum (FBS, Gibco), 100 U/mL penicillin, and 100 mg/

mL streptomycin, and maintained at 37°C with 5% CO2.

Subsequently, the RAW264.7 macrophages were exposed to LPS

(1 mg/mL) in DMEM without FBS following preincubation in a

complete growth medium. For knockdown experiments, shRNA

plasmids targeting ARL4C and negative control shRNA were
Frontiers in Immunology 05
procured from RiboBio (Guangzhou, China), and the specified

shRNA lentiviral vectors were generated in 293 T cells. Upon

transfection of RAW264.7 cells with the lentivirus, they were

selected using 2 mg/mL puromycin for 72 h.
Flow cytometry analysis

A total of 1*106 transfected cell cells were prepared in six-well

plates for the flow cytometry assay, following the standard Annexin

V-FITC/PI double staining kit protocol (Invitrogen). Subsequently,

the samples were analyzed using a flow cytometer (BD Biosciences,

Franklin Lakes, NJ, USA) after incubation in the dark for 15

minutes. Additionally, the levels of reactive oxygen species (ROS)

in the cells were measured. The cells were treated with H2DCF-DA

for 1 hour, then harvested with PBS, and the ROS levels were

assessed using flow cytometry (BD Biosciences, Franklin Lakes, NJ,

USA). The experiment involved three biological replicates.
RT-qPCR

Peripheral blood samples were used to extract total RNA

utilizing the Trizol reagent (Life Technologies, USA), which was

subsequently reverse transcribed into complementary DNA with

the RevertAid First Strand cDNA Synthesis Kit, following the

manufacturer’s guidelines. The ABI PRISM 7500 real-time PCR

system (Applied Biosystems, USA) was employed for quantitative

RT-PCR, utilizing the SYBR Premix EX Taq (Takara, Japan). The

primer sets were demonstrated as follows:
CD247

Forward: 5’- GAGTGGTCTGGTGGCTGAAAT -3’

Reverse: 5’- GTTCCAACTGCCACACTTCTGA -3’

RPL7

Forward: 5’- GAGAAGGTGCTGATGACTTGGA -3’

Reverse: 5’- TCTTGGACCTTCTTGGCTTCA -3’

RPL31

Forward: 5’- ATGGCTGAGAAGCGCAACTA -3’

Reverse: 5’- GCAGTAATCCAGCACCAGCA -3’

ARL4C

Forward: 5’-CGGAGTGACATCTGGATATGC-3’

Reverse: 5’-GCCTCAACTTCGTATAGACTT-3’
To assess the relative mRNA expression quantification, the

target gene’s cycle threshold (CT) was compared to the b-actin
CT value, and the data was represented as fold changes through the

2-DD Ct technique.
Enzyme-linked immunosorbent assay

Rat peripheral blood samples were collected and subjected to the

measurement of IL-1b, IL-10, TNF-a, and IL-18 using ELISA kits
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following the manufacturer’s instructions (R&D Systems, USA).

Briefly, blood samples were centrifuged at 2000g for 10 minutes and

the supernatants were harvested for further testing. Reagent diluent was

added to each microplate well, followed by the addition of the sample

or standard. The plates were securely covered and incubated for 2

hours at room temperature. Following incubation, the solution in each

well was aspirated and washed thrice. Subsequent to the initial rinse

cycle, a volume of 100 microliters of the conjugated solution was

carefully introduced into every individual well. These were then

shielded and allowed to stabilize for an additional duration of two

hours at an ambient thermal condition. Upon the conclusion of this

second incubation phase, a repeat of the aspiration and cleansing

process ensued. Following this, wells were each infused with 100

microliters of the specified Substrate Solution, and the entire

assemblage was then left to incubate for 20 minutes. To halt the

enzymatic reaction, a measure of 50 microliters of Stop Solution was

promptly dispensed into each well. Optical density determinations

were subsequently performed with a spectrophotometer calibrated to

450 nanometers. Utilizing established standard calibration curves, the

levels of interleukins IL-1b and IL-10, in conjunction with tumor

necrosis factor-alpha (TNF-a) and IL-18, weremeticulously computed.
Statistical analysis

The R program was employed for the analysis of all collected

data and statistics. We compared the survival probabilities of the

distinct cohorts by applying Kaplan-Meier estimations in

conjunction with log-rank examinations. For the illustration of

survival distributions, we engaged the ggsurvplot package from

within R. Evaluation of prognostic elements was undertaken

through a univariate Cox regression approach, while a Lasso-

based Cox analysis isolated significant influential factors on

patient outcomes. For graphing purposes, the “ggplot2” toolkit in

R was utilized, and survival durations, measured as overall survival

(OS), were computed using the survival package.

The association between two metric variables was investigated

via Spearman’s rank correlation. When examining differences in

metric variables between cohorts, we utilized either the Wilcoxon

rank-sum assessment or the two-sided t-test, depending on the data

distribution. To assess disparities in categorical data across the

groups, the chi-squared method was applied. All statistical

procedures were executed within the confines of R. A P-value

threshold of less than 0.05 was predetermined to denote

statistical significance.
Result

Single-cell analysis of the DDR in sepsis
has revealed varying levels of DDR activity
that correlate with different prognoses in
sepsis patients

The study’s flowchart is displayed in Figure 1. To explore the

variation in DDR activity among infiltrated immune cells during
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sepsis, we conducted a comprehensive analysis of publicly available

single-cell sequencing data associated with sepsis. After conducting

a quality check, a total of 55268 high-quality cells (39859 in sepsis

samples and 15409 in healthy control samples) were identified as

suitable for further study. To analyze the cellular characteristics of

sepsis with varying degrees of severity, we categorized the cells in

the sepsis group according to patient prognosis into several groups:

Control (15409 cells), survival (S, 24464 cells), non-survival early

stage (NS_ES, 9480 cells), and non-survival late stage (NS_LS, 5915

cells), and T0 or T6 represents the time of blood collection after the

diagnosis of the disease. Supplementary Figure S1A exhibited the

nFeature_RNA and nCount_RNA expressed per cell in all samples,

indicating cell samples used in the study were of high quality. The

distribution of each group of cells is presented in Supplementary

Figures S1B, C. The cells were grouped into 14 clusters and immune

cell subtypes were identified (Figures S1C, D). These include B cells

(n=12323) expressing CD79A, CD4+ T cells (n=3092) marked by

CD4, CD8+ T cells (n=14217) expressing CD3D, Monocytes

(n=8473) marked by CD14, DCs (n=556) identified by FECR1A,

Mast cells (n=907) positive for RAB27B, Megakaryocytes (n=4940)

defined by their classical marker PPBP, Neutrophils (n=2216)

marked by FCGR3B, and NK cells (n=2216) marked by PRF1

(Figures 2A, B). In addition, for each cellular cluster, the ten most

characteristic genes were displayed using a heatmap (as seen in

Figure 2C). The proportion of different cell types present in each

sample and collective grouping can be observed in Figure 2D. In

brief, megakaryocytes, dendritic cells (DC), and mast cells were

predominantly enriching in the NS_LS group, high percentages of

CD8+ T cell, B cell, and neutrophils were found in the NS_ES

group, and high levels of monocyte, B cell, NK cell, and CD8+ T cell

were observed in the S group. Moreover, a reduction in the

proportion of CD4+ T cells, CD8+ T cells, and neutrophils was

observed in the NS_LS group. Interestingly, we observed that as the

prognosis of sepsis deteriorated, the proportion of megakaryocytes

among immune cells exhibited a progressive increase, suggesting

their potential pivotal role in the exacerbation of sepsis. Additional

research is warranted to investigate how these cells might contribute

to the pathogenesis of DNA damage associated with sepsis.

Additionally, we evaluated the DDR score in each group and

found a higher level of DDR in sepsis samples, particularly in

survival groups (Supplementary Figure S2A). A 201-DDR-related

gene-based score for each cell subtype was calculated using the

‘UCell’ algorithm to clarify the DDR degree in immune cells in

GSE167363, without distinguishing between groups. Monocytes,

megakaryocytes, CD4+ T cells, and neutrophils have a

comparatively higher DDR score than other cells, as illustrated in

Figures 3A, B. In addition, sepsis samples had lower scores than the

control samples, and both the NS_LS and NS_ES groups had lower

DDR scores than the S group, while the NS_ES group had the lowest

DDR score (Figure 3C), revealing that low DDR score was

intensively associated with the poor prognosis of sepsis.

Subsequently, cells in sepsis samples were divided into low- and

high-DDR groups based on the 75% quantile of DDR score

(Figure 3D), and the classic phenotypic (Cholesterol_efflux,

angiogenesis, ferroptosis, phagocytosis, autophagy, lysosome,

hypoxia, acute inflammatory response, and endoplasmic
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reticulum stress) scores in each group were further computed and

compared (Figure 3E). The low-DDR group exhibited elevated

scores across all phenotypic categories (as illustrated in

Figure 3E). Interestingly, an analysis of the cellular composition

for each cohort showed a reduction in the proportion of every cell

type (CD8+ T cell, B cell, NK cell, monocyte, megakaryocyte, CD4+

t cell, neutrophil, mast cell, and DC) in high DDR group (refer to

Supplementary Figure S2B). Among these cells, the most notable

decreases in proportion within the high DDR group were observed

in mast cells and dendritic cells.

In this section, we found higher DDR levels in sepsis than in

controls, with CD4+ T cells, monocytes, megakaryocytes, and

neutrophils showing the highest DDR, and observed an

association between lower DDR scores and poorer sepsis prognosis.
Frontiers in Immunology 07
A strong correlation was found between
increased levels of DDR and heightened
intercellular communication in sepsis

To investigate DDR-related intercellular communication

during sepsis, we analyzed Cell-Chat Ligand-Receptor (LR)

interactions. Our findings revealed that as DDR levels increased,

both the number and strength of interactions also increased. In the

high-DDR group, CD4+ T cells and CD8+ T cells showed stronger

interactions with most cell types compared to the low-DDR group.

Additionally, monocytes had extensive intercellular communication

with CD4+ T cells, CD8+ T cells, and neutrophils in the high-DDR

group, whereas in the low DDR group, DCs communicated with B

cells and NK cells frequently (Figures 4A–C). The strength of
frontiersin.or
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The flowchart of this study. **p < 0.01, ****p < 0.0001.
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FIGURE 3

Features of DDR at the single-cell level. (A) An UMAP plot presented the difference of DDR density in GSE167363 (The relative density plots,
constructed based on the magnitude of the DDR scores, demonstrate that a higher density of DDR scores is indicative of a high DDR score within
that cellular category.) of cell subtypes based on the UCell algorithm. (B) Violin diagram exhibited the differences in GM score among each cell
types. (C) Relative score of DDR in each group. (D) UMAP plot demonstrated the difference in the distribution of high and low DDR group at the
single-cell level in sepsis samples, bounded by the 75% quantile of the DDR score. (E) Classic phenotype-related scores (The classical biofunctional
phenotypic score was calculated using ssGSEA, and the score level represented the degree of functional enrichment) in each group.
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FIGURE 2

Annotation of single-cell data. (A) The UMAP projection of single cells from GSE167363, showing the distribution of 9 cell subtypes in each group.
(B) Distinctive marker genes for each cell subtype. (C) A heatmap displayed the distribution of the top 10 differentially expressed genes specific to
different cell subtypes. (D) Cell type fractions of each sample and group.
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incoming or outgoing interactions can be described as the

probability of signaling to or from a population of cells during

communicative events. Furthermore, the strengths of outgoing and

incoming interactions of cells in two groups were examined. In

brief, monocytes, CD4+ T cells, and DC displayed strong outgoing

and incoming interaction capabilities in both low- and high-DDR

groups, while B cells showed intensive incoming interaction

strength in these two groups (Figure 4D). Among them, DC

exhibited strong outgoing and incoming interaction capabilities,

especially in the low-DDR group. Those findings suggested that

immune cells especially monocytes and CD4+ T cells may play a

crucial role in the progression of sepsis, particularly in cases with

high levels of DDR. DC may serve as a crucial element for patients

exhibiting minimal DDR levels. To discern the distinct biochemical

communication routes among the cohorts, the intensities of their
Frontiers in Immunology 09
interactions were analyzed. The high-DDR group exhibited higher

activity in signaling pathways such as GALECTIN, BAFF,

ANNEXIN, GRN, CSF, and IL-1 compared to the other group.

Notably, only the high-DDR group exhibited activity in CSF and IL-

1 (Figure 4E). We next further explored the significant ligand-

receptor pairs between monocytes and other cell types. In the high-

DDR group, monocytes up-regulated LGALS9-CD44/CD45 and

RETN-CAP1 to interact with the majority of cells, whereas in the

low-DDR group, MIF-(CD74+CXCR4)/(CD74+CD44) was up-

regulated for the same purpose (Figures 4F, G).

In this section, we found that strong correlation between

increased levels of DDR and heightened intercellular

communication, implicating enhanced interactions, particularly

among monocytes, CD4+ T cells, and DCs, as potential

contributors to the severity of sepsis. With high DDR, there is an
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FIGURE 4

Intercellular communication analysis. (A, B) Charts with bars and circles depicting the variations between low-DDR and high-DDR groups in the
quantity of interactions (A) or strength of interactions (B) in the network of cell-cell communication. Stronger interactions are represented by thicker
lines, and increased or decreased signaling in the high-DDR group when compared to the low-DDR group was represented by red or blue colors,
respectively. (C)Heat-maps exhibiting the differential number or strength of interaction. (D) The incoming and outgoing interaction strength of each
cell type in the low- and high-DDR groups. The strength of incoming or outgoing interactions can be described as the probability of signaling to or
from a population of cells during communicative events. (E)The variations in intercellular signaling networks between the high- and low-DDR
groups. (F, G) Dot plot depicting the difference in signaling molecules from monocyte cells to other immune cells between low- and high-
DDR groups.
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upregulation in signaling pathways and ligand-receptor pairs that

intensify communication, suggesting these cells play a critical role

in the DDR-related progression of sepsis.
Investigation of DDR-related hallmark
genes in sepsis

To explore the association between DDR and sepsis, we applied

the single sample Gene Set Enrichment Analysis (ssGSEA)

algorithm to compute DDR scores across diverse patient cohorts

using the bulk sepsis transcriptome dataset GSE65682, which

comprises 42 healthy and 760 sepsis samples (479 survival, 281

no survival). The analysis demonstrated that the control cohort

exhibited elevated DDR scores relative to the sepsis cohort, and the

non-survival (sepsis_NS) cohort presented the lowest DDR scores,

corroborating the observations from single-cell analyses

(Figure 5A). Subsequently, WGCNA was employed to elucidate

the regulatory patterns associated with DDR and to validate DDR-

related genes through their expression profiles in the dataset

GSE65682. Employing an optimal soft-thresholding power (b=6),
we conducted a hierarchical clustering analysis of the sample data,

discerning 12 gene co-expression modules, designated by unique

colors in the dendrogram (Figures 5B–D). Of these clusters, the

black (R=0.51), salmon (R=0.73), and green-yellow (R=0.6)
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modules showed robust associations with DDR, leading to the

selection of 1,110 genes for further scrutiny. In the ensuing step,

we refined our focus to 71 genes by intersecting the 450 genes most

indicative of DDR dynamics from the single-cell study (merging

differentially expressed genes from high and low DDR groups with

the top 100 DDR-correlated genes in single cells) with the three

modules displaying the strongest DDR associations from WGCNA

(Supplementary Figure 5E).

Moreover, our functional enrichment analysis ascertained the

significant representation of DDR-characteristic genes within

intracellular protein transportation, modification, and anchoring

pathways (Supplementary Figure S3A). Furthermore, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

implicated these genes across various biological pathways, including

those related to coronavirus disease (COVID-19), ribosomal

function, T-helper cell differentiation (Th1 and Th2), primary

immunodeficiency disorders, and the hypoxia-inducible factor-1

(HIF-1) signaling pathway (Figure S3B).

In this section, we analyzed the relationship between DDR and

sepsis using bulk sepsis transcriptome data. The ssGSEA algorithm

revealed that healthy subjects had higher DDR scores than sepsis

patients, with the lowest scores found in non-surviving sepsis

patients. Through WGCNA, we identified 71 genes significantly

associated with DDR. Based on these genes, we will construct a

DDR-related risk score model in the subsequent section.
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FIGURE 5

Identification of DDR-associated genes. (A) DDR score established via the ssGSEA algorithm to compare differences in DDR levels between the
control, sepsis-survival and sepsis-non-survival group in the GSE65682 dataset. (B) The selection of soft threshold power of WGCNA.
(C) Dendrogram of co-expression module clustering. (D) The WGCNA analysis investigated the modules that were most closely related to the DDR
score. Scatter plots represented the module membership (Greenyellow, salmon or black) and gene significance of GM. (E) Interaction of DDR-
associated genes screened from WGCNA and single cell technology. **p < 0.01, ****p < 0.0001.
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Construction of a DDR-based
riskScore system

Utilizing preceding analyses, including single-cell, intercellular

communication, enrichment, and characteristic gene selection, this

study has elucidated DDR’s crucial role in the pathogenesis and

advancement of sepsis, pinpointing pertinent immune cells, signaling

pathways, and molecular targets. The subsequent phase of our

research will involve the systematic construction of a risk

prediction model related to DDR in sepsis. This model aims to

integrate risk assessment with tailored therapeutic approaches. Based

on the 71 DNA damage response (DDR)-related genes, univariate

Cox proportional hazards analysis was conducted, yielding 19 genes

that exhibited a statistically significant correlation with patients’ in

the bulk sepsis transcriptome data GSE65682 overall survival

(Displayed as a univariate analysis hazard ratio [HR]) (Figure 6A).

Subsequently, least absolute shrinkage and selection operator

(LASSO) Cox regression analysis and log-rank (Mantel-Cox) tests

were utilized to refine the identification of genes associated with

survival outcomes (Figures 6B–E). Finally, we acquired 4 feature

genes (ARL4C, CD247, RPL7, and RPL31), and the DDR-related

riskScore model consisting of 4 genes was constructed. The formula
Frontiers in Immunology 11
was presented as follows: riskScore = (-0.116217907 × ARL4C) +

(-0.012432987 × CD247) + (0.065124879 × RPL7) + (0.102865839 ×

RPL31). Based on the median riskScore, patients from bulk sepsis

transcriptome data were divided into high- and low-risk categories.
The evaluation of the DDR-based
RiskScore system demonstrated its efficacy
in prognosticating sepsis outcomes

Survival analysis was applied to assess the effectiveness and

consistency of the riskScore-based prognostic prediction model.

The AUC values for 7, 14, 21, and 28-day mortality in GSE65682

were all greater than 0.7 (Figure 7A). Furthermore, the riskScore-

based AUC values for 28-day mortality in five datasets (GSE65682,

GSE63042, GSE95233, E-MTAB-5273, and E-MTAB-5274) were all

greater than 0.6, indicating the high prediction accuracy of the

riskScore (Figures 7B–F). Subsequently, sepsis samples were

classified into high- and low-risk categories. Patients in the high-

risk category tended to experience reduced mean survival periods,

frequently succumbing during the illness’s initial phase. Individuals

within the low-risk bracket exhibited increased expression of
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FIGURE 6

Construction of DDR-based riskScore system. (A) Univariate cox analysis on the intersection genes. (B) Tuning feature selection in the LASSO model. (C)
LASSO coefficient profiles of the DDR-related characteristic genes. (D) The specific coefficient value of the 4 Genes associated with GM identified by the
optimal lambda value. (E) Kaplan-Meier analysis of 2^8-1 = 255 gene combinations, the top 20 signatures were ranked and the signature comprising
four genes was selected due to its relatively large negative logarithm (-log10) of the p-value combined with a minimal gene count.
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ARL4C and CD247. On the other hand, those at higher risk were

characterized by elevated levels of RPL31 and RPL7, as depicted in

Figure 7G. Furthermore, survival analysis indicated that low-risk

patients, who presented with widespread expression of ARL4C and

CD247, maintained enhanced survival probabilities compared to

their high-risk counterparts, as illustrated in Figure 7H.

We developed a prognostic nomogram for sepsis that

incorporates demographic factors such as patient age and sex along

with a risk score. Each predictor within the nomogramwas assigned a

specific number of points, and the sum of these points across all

predictors provided a cumulative score indicative of the probability of

an adverse outcome in sepsis. This cumulative score is visually

represented in Figure 8A. The predictive accuracy of our

nomogram was confirmed through a calibration plot, depicted in

Figure 8B. Decision curve analysis (DCA) further demonstrated the

clinical utility of our nomogram, which is grounded on the computed

risk score (Figure 8C). Additionally, we provided a schematic

representation of the demographic distribution by age sex, and

survival statuses, stratified according to two risk categories. This

analysis did not reveal a significant difference in the age distribution

across cohorts, but it did show a higher incidence of males in the low-

risk category compared to the high risk, suggesting that sex may play

a significant role in the prognosis of sepsis (Figure 8D).

In this section, we assessed a riskScore-based model’s

effectiveness in predicting sepsis mortality. Survival analysis

categorised sepsis patients into high or low risk, with gene
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expression differences observed in each group. A prognostic

nomogram, considering age, sex, and risk score, showed good

predictive accuracy and clinical utility for sepsis outcomes.
Enrichment analysis of DDR-based
riskScore system in sepsis

To further elucidate the DDR-related mechanisms in sepsis,

feature genes of the high- and low-risk group in GSE65682 were

explored. 237 genes were down-regulated while 417 genes were up-

regulate, and finally we obtained the top 5 up-regulate genes (ENY2,

EAF2, LSM3, C14orf2, and COX7B) and top 5 down-regulate gens

(CCL5, CD2, TBX21, TRD, and CD3E) (Supplementary Figures S4A,

B). Based on these feature genes, we annotated the enriched functional

characteristics using Gene Set Variation Analysis (GSVA) and Gene

Set Enrichment Analysis (GSEA). The two groups had distinct

pathway enrichment patterns. In the low-risk group, immune

response-related biological functions were markedly enriched. These

functions encompassed natural killer cell chemotaxis, response to

interleukin-2, production of interleukin-17, dendritic cell chemotaxis,

induction of T cell tolerance, T cell and lymphocyte migration, T

helper 17 cell differentiation, monocyte chemotaxis, B cell receptor

signaling pathway, among others. In the high-risk group, the GSVA

has identified a predominant involvement of several biological

functions that play critical roles in cellular and molecular processes.
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FIGURE 7

Risk model evaluation. The ROC curve was used to evaluate the performance of the model in the GSE65682 (A, B), GSE63602(C), GSE95233 (D), E-
MTAB-5273 (E), and E-MTAB-5274. (F) datasets. (G) The distribution of the riskscore, patients’ survival status as well as gene expression signature in
the combination dateset. (H) Overall survival situation between the low- and high-risk group.
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These functions include protein stabilization, histone

deubiquitination, canonical Wnt signaling pathway, Reed-Sternberg

cell pathway (implied by the context to mean “Reed pathway”),

electron transport chain, ATP metabolic process, oxidative

phosphorylation, cell cycle, lipid oxidation, and fatty acid b-
oxidation (Figure 9A). Next, the top 5 up-regulated pathways

(Oxidative Phosphorylation, O Glycan Biosynthesis, Sphingolipid

Metabolism, Regulation of Autophagy, and P53 Signaling Pathway)

and top 5 down-regulated pathways (Antigen Processing And

Presentation, Cell Adhesion Molecules Cams, T Cell Receptor

Signaling Pathway, Notch Signaling Pathway, and Cytokine

Cytokine Receptor Interaction) of the high-risk were obtained via

GSEA (Figures 9B, C). Additionally, Pathogenic pathways vary

significantly among patients with different risks for sepsis. High-risk

patients display marked activity in pathways such as P53, androgen,

MAPK, PI3K, and Estrogen. Conversely, low-risk patients exhibit

excessive activation of WNT, Trail, JAK-STAT, EGFR, and VEGF

compared to high-risk patients with sepsis (Figure 9D).

Gene analysis revealed distinct up-regulated and down-

regulated genes and pathways between high- and low-risk groups,

suggesting varied mechanisms driving sepsis in each group.
Immune characteristics analysis of DDR-
based riskScore system in sepsis

To elucidate immune cell infiltration patterns in high- and low-

risk groups, we compared 28 immune cell subtypes using single-
Frontiers in Immunology 13
sample gene set enrichment analysis (ssGSEA) to calculate their

respective scores (Figure 10A). The low-risk group demonstrated

enhanced levels of various immune cells, including activated B cells,

CD4+ and CD8+ T cells, CD56^bright natural killer (NK) cells,

central memory T cells, gd T cells, immature B cells, monocytes,

neutrophils, follicular helper T cells (Tfh), and Th17 cells. Conversely,

the high-risk category only exceeded the low-risk group in effector

memory CD4+ T cell scores (Figure 10B). Further investigation of

immune modulators in both groups revealed distinct immunological

profiles in individuals with sepsis (Figure 10C). Genes involved in

antigen processing (HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-

DQB1, MICA, MICB), cell adhesion (ICAM1, ITGB2), inhibitory

(BTN3A1, BTN3A2, SLAMF7), and stimulatory (CD28, ICOSLG)

signals, as well as ligands and receptors (CCL5, CD40LG, CD70,

CX3CL1, IL12A, IL1B, TGFB1, VEGFB, CD27, CTLA4, ICOS,

IL2RA, LAG3, PDCD1, TIGIT, TNFRSF14), were mostly

upregulated in low-risk individuals. In contrast, high-risk

individuals predominantly showed upregulation of the VEGFA

ligand and the TLR4 receptor (Supplementary Figures S5A–F).

Additionally, the comparative analysis of immune scores revealed

superior immune profiles in the low-risk group than in their high-risk

counterparts (Figure 10D), with a negative correlation between risk

score and immune cell types across the board, denoting stronger

immune infiltration (Figure 10E).

In this section, we have illustrated the patterns of immune cell

infiltration in high- and low-risk groups and identified potential

targets for immunotherapy in sepsis patients stratified by the

riskScore system.
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FIGURE 8

Construction and validation of a prognostic prediction model based on the riskScore. (A) Construction of a nomogram based on riskScore and
clinical characteristics in the combination dateset. (B) Correction of the characteristic curve based on riskscore and pathological characteristic.
(C) DCA indicating the clinical benefit of the nomogram. (D) The distribution of clinical features and survival status in the low- and high-risk groups.
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Validation of characteristic genes in vivo
and in vitro

To further corroborate the role of the characteristic genes in the

construction of the riskScore model during sepsis, we designed

validation experiments at both in vivo and in vitro levels. First, we

established a sepsis model in rats and analyzed gene expression in

their peripheral blood using RT-qPCR. A significant subset of

genes, specifically ARL4C, CD247, RPL7, and RPL31, showed

differential expression patterns consistent with the results

obtained from our dataset (Figure 11A). We selected ARL4C for

further analysis based on its possession of the largest absolute

coefficient value. To assess the effectiveness of gene silencing in

this model, RT-qPCR was employed again. Notably, in the Ad-

shARL4C group, ARL4C expression decreased to approximately

one-third of that observed in the sepsis+Ad-shNC group, validating

the efficiency of gene silencing in our model (Figure 11B). In

parallel, pro-inflammatory markers such as IL-1b, IL-18, and
TNF-a were found to be upregulated in the Ad-shARL4C group,

while the anti-inflammatory cytokine IL-10 was diminished

(Figure 11C). These results point to ARL4C as a potential critical

regulator in the immune and inflammatory responses during sepsis.

Moreover, survival analysis indicated that rats with reduced ARL4C
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expression had lower survival rates in comparison to those in both

the sham and sepsis+Ad-shNC groups (Figure 11D).

To evaluate the impact of ARL4C inhibition on sepsis in vitro,

lentivirus-shARL4C was introduced into RAW264.7 cells, and flow

cytometry was employed to assess apoptotic levels and ROS

production among the various groups. The ARL4C knockdown

group showed increased LPS-induced apoptosis and ROS

production rates (Figures 12A, B), suggesting that ARL4C

blocking may make macrophages more susceptible to apoptosis

and enhance the excessive inflammatory response during sepsis.

In this section, we further substantiate the role of characteristic

genes, particularly ARL4C, in sepsis and demonstrate its protective

function by attenuating excessive inflammation.
Discussion

Sepsis characterized as a life-threatening organ dysfunction

caused by a dysregulated host response to infection, constitutes a

major global public health challenge. Despite recent advancements

in treatment modalities, sepsis persists in carrying high rates of

morbidity and mortality. The limitations in both research and

practice hinder the potential for personalized treatments for
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FIGURE 9

Molecular characteristic and functional annotation of the DDR-riskScore model in sepsis. (A) The GSVA identified significant differences in biological
functions between the high- and low-risk groups. Positive values indicate that the biological function is enriched in the high-risk group, while
negative values indicate that the biological function is enriched in the low-risk group. (B) Top five up-regulated pathways in the high-risk group.
(C) Top five pathways down-regulated in the high-risk group. (D) Heatmap displaying the difference of pathogenic pathways in sepsis patients at low
and high risk. Age, gender, and survival status are displayed as patient annotations. *p < 0.05, **p < 0.01, ****p < 0.0001.
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sepsis patients. Therefore, a comprehensive understanding of the

heterogeneity among sepsis patients and the disease’s diverse stages

is pivotal in selecting suitable treatments and predicting accurate

prognosis. Contemporary research suggests that a suitable DNA

damage response (DDR) could effectively ameliorate sepsis by

decreasing the pathogen burden, curbing excessive inflammatory

reactions, and adeptly controlling immune responses (25–27).

Despite the promising potential of DDR as a therapeutic target

and prognostic predictor in sepsis, further exploration into the

explicit molecular mechanisms and the associated genes implicated

in these physiological and pathological processes is necessary.

In this study, we first employed scRNA-seq and Bulk RNA-seq

analysis to systematically delve into the landscape of DDR in sepsis.

By capitalizing on the synergistic advantages of both Bulk RNA-seq

and scRNA-seq, we aim to devise an enhanced DDR-based risk

score system for sepsis that promises improved diagnostic and

therapeutic strategies for this critical condition. Intriguingly, we

observed the enrichment of diverse forms of immune cells in

patients at different disease stages and prognostic outcomes,

suggesting that the recruitment and activation of various immune

cell types can greatly influence the progression and prognosis of
Frontiers in Immunology 15
sepsis. Recent research further affirms the potential of peripheral

blood immune cells as a distinctive marker of bacterial sepsis (28).

Monocytes, megakaryocytes, CD4+ T cells, and neutrophils,

compared to other immune cell types, exhibited higher DDR

scores, thus underscoring their elemental role in DDR

progression, aligning with findings from a 31 CRISPR-Cas9

screen-based genetic map of the human cell (29). Consistently,

our transcriptomic and single-cell analyses demonstrated a reduced

DNA damage response (DDR) score in sepsis patients when

compared to control subjects. Furthermore, we observed a

correlation between diminishing DDR scores and a decreased

number of active immune cells concomitant with poorer disease

prognosis, substantiating the protective role of DDR. In a novel

finding, we identified a positive correlation between the decline in

DDR scores and the recruitment and activation of various immune

cell types, such as mast cells, natural killer (NK) cells, CD8+ T cells,

B cells, and dendritic cells (DCs). Additionally, our analysis of

intercellular communication revealed that monocytes and CD4+ T

cells were crucial in the development of sepsis, notably in cases with

elevated DDR levels. We also discerned an upregulation of the

LGALS9-CD44/CD45 and RETN-CAP1 interactions in monocytes
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FIGURE 10

Immunological features of sepsis patients at low and high risk. (A) The heatmap showing the degree of infiltration of 28 immune cell subtypes in
high- and low-risk groups. (B) Differences in immune cell scores between high- and low-risk groups. (C) Heatmap depicting the differences in
immune-modulators and patients’ survival status between high- and low-risk groups. (D) A comparison of the immuneScore between high- and
low-risk groups. (E) The interaction between riskScore and 28 immune cell subtypes. *p < 0.05, ****p < 0.0001. NS, no significant difference.
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among the majority of samples with high DDR scores, whereas in

samples with low DDR scores, an increased prevalence of MIF-

CD74+CXCR4 and MIF-CD74+CD44 interactions was noted.

Additionally, signaling pathways such as GALECTIN, BAFF,

ANNEXIN, GRN, CSF, and IL-1 exhibited heightened activity in

the high-DDR group. In conclusion, our study profoundly

elucidates the complex interconnections within immune cells as

a pivotal factor in the progression of DDR in sepsis, with

monocytes posited to play an integral role in this progression.
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This groundbreaking discovery requires further in-depth

mechanistic research.

Moreover, we identified 71 DDR-related genes by intersecting

the feature genes derived from single-cell analysis and WGCNA.

Subsequently, through LASSO Cox regression, we pinpointed four

DDR-associated characteristic genes (ARL4C, CD247, RPL7, and

RPL31). Notably, ARL4C, a member of the ADP-ribosylation factor

family of GTP-binding proteins, plays a critical role in the

infiltration of immune cells into the tumor microenvironment, as
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FIGURE 11

Validation of characteristic genes in vivo (A) Relative expression levels of DDR-related genes in control and sepsis groups (n=4 in each group).
(B) Relative expression levels of ARL4C in control, sepsis, sepsis+Ad-shNC, and sepsis+Ad-shARL4C group (n=8 in each group). (C)Expression levels of
inflammatory factors (IL-1b, TNF-a, IL-10, and IL-18) in the peripheral blood of rat with sepsis+Ad-shNC and sepsis+Ad-shARL4C (n=8 in each group).
(D) Survival status of rats in each group (n=10 in each group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. NS, no significant difference.
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well as in various aspects of cancer invasion and proliferation (30–

32). CD247 is a key gene impacting the prognosis of mouse sepsis

(33) and has also been identified as a critical gene for septic shock

(34). The ribosomal protein L7 (RPL7), recognized as a

housekeeping gene, augments the nucleic acid chaperoning

function of the HIV-1 Gag polyprotein. This enhancement

effectively surmounts significant impediments inherent to the

assembly of the virus (35). RPL31 is implicated in modulating the

tumor immune microenvironment and has been recognized as a

protective factor in breast cancer pathology (36). In our research, we

innovatively designated these eight genes as characteristic genes of

DDR in sepsis and constructed a DDR-riskScore system for the

prognostic assessment of sepsis. We established ROC curves,

survival curves, nomograms, calibration curves, and DCAs based

on this scoring system, demonstrating it to be a reliable prognostic

tool for sepsis.

Therefore, patients with sepsis were stratified into low- and

high-risk categories according to the formulated riskScore system.

Following the analysis of enriched biological functions and
Frontiers in Immunology 17
pathways in the two clusters, we characterized the low-risk

group as bearing an “immune phenotype” due to relatively high

DDR scores. In low-risk patients, the immune system is robust

enough to protect against pathogens and prevent the worsening

of infections. Conversely, high-risk individuals or those with a

poor prognosis often experience immunosuppression at the onset

of sepsis. Although the exact mechanisms underlying this

immunosuppression are not fully understood, it is acknowledged

as a significant factor in sepsis-related deaths due to the disruption

of immune homeostasis. Sepsis-induced immunosuppression

affects various cell types and functions, resulting in increased

apoptosis in immune cells, T cell depletion, cellular changes

through epigenetic remodeling, and reduced expression of surface

molecules vital for activation (28, 37). These immune suppressive

alterations have been implicated in a heightened susceptibility

to secondary infections from opportunistic pathogens and

viral reactivations, leading to detriments in prognosis and

potentially death (38). A hallmark of immune suppression is the

reprogramming of monocytes and macrophages, characterized by a
B

A

FIGURE 12

Validation of ARL4C in vitro. (A) Flow cytometry detected the apoptosis rate in the Control, Sepsis, Sepsis+Lv-shNC, and Sepsis+Lv-shARL4C groups.
(n=4 in each group) (B) Flow cytometry detected the ROS production in the Control, Sepsis, Sepsis+Lv-shNC, and Sepsis+Lv-shARL4C groups. (n=4
in each group), ***p < 0.001, ****p < 0.001. NS, no significant difference.
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diminished capacity to produce proinflammatory cytokines upon ex

vivo stimulation with bacterial agonists, a phenomenon referred to

as “LPS tolerance.” (39). Recent research has drawn attention to the

close interaction between DDR and the immune system (40, 41).

Our single-cell level analysis of sepsis samples found monocytes

having high DDR scores and heightened intercommunication

activities with immune cells, unsurprisingly noting that a high

DDR score in immune cells is more prevalent in patients with

favorable prognoses. Our immune infiltration analysis further

demonstrated significantly higher immunological scores, immune

cell infiltration, and immune modulators in the low-risk group.

Thus, the low-risk group was identified as having an immune

phenotype, while the high-risk group displayed an immune

suppression phenotype.

In addition, we fashioned in vivo and in vitro sepsis models to

validate the DDR-associated characteristic genes. We discovered that

both CD247 and ARL4C exhibited high levels of expression in the

bloodstream of the sepsis-afflicted rat, potentially serving as beneficial

immune-inflammatory regulators. To corroborate this notion, we

created a knock-down model and discerned that an enhanced

immune-inflammatory response corresponded with a decrease in

the expression levels of ARL4C in sepsis. Sepsis rats with ARL4C

knock-down also exhibited a higher mortality rate. Various studies

suggest that ARL4C plays a crucial role in intensifying tumor

proliferation, invasion, and drug resistance via immune-related

pathways, which include Wnt/b-catenin, AKT/mTOR, and MEK/

ERK (42–44). Furthermore, recent studies have demonstrated the

significant role of ARL4C in mediating immune-inflammatory

responses within the tumor microenvironment. Elevated expression

of ARL4C in immune cells, which is correlated with the activation of

the cancer immune response, has been associated with unfavorable

prognoses in several cancers, including bladder urothelial carcinoma,

colon adenocarcinoma, kidney renal papillary cell carcinoma, lower-

grade glioma, and uterine corpus endometrial carcinoma (45). The

expression of ARL4C in cancer-associated stromal cells was notably

higher, indicating that ARL4C may exert multiple effects on the

tumor microenvironment (46). Moreover, increased expression of

Arl4c has been associated with the activation of pancreatic stellate

cells (PSCs) and increased drug resistance in pancreatic cancer. The

induction of autophagy, mediated by the Yap-CTGF signaling

pathway, is essential for Arl4c-related PSC activation (47).

Currently, the majority of research on ARL4C is centered on the

tumor immune microenvironment. However, the investigation of

ARL4C’s role in sepsis remains notably scarce. In this study, we

discovered that the knockdown of ARL4C in an in vitro sepsis model

potentially renders macrophages more vulnerable to apoptosis and

exacerbates the inflammatory response during sepsis. Overall, our

study is the first to identify ARL4C’s involvement in the sepsis

inflammatory response by affecting DDR, suggesting its significance

in maintaining an appropriate inflammatory response.

This study has certain limitations, primarily attributable to its

retrospective design and the relatively small sample size obtained

from public databases, which necessitates additional validation of

the results through multicentric prospective studies. Also, the

stability of the results might be compromised as the

transcriptomic data utilized were sourced from microarray
Frontiers in Immunology 18
datasets, potentially rendering them less consistent compared to

those from in vivo or in vitro experiments. Moreover, to enhance

the accuracy in determining the clinical utility for sepsis patients

with diverse molecular subtypes and risk scores, it is advisable to

utilize larger sample sizes. This approach would facilitate a more

nuanced analysis of prognostic and therapeutic information.
Conclusion

In our research, we executed an exhaustive evaluation of DDR

expression patterns in sepsis, employing both single-cell and bulk

transcriptomic analyses. Our findings indicate a potent connection

between DDR activity levels and sepsis prognosis. Namely, patients

exhibiting high DDR levels, enriched immune cells, and active

immune responses displayed higher survival rates, in contrast to

patients with lower DDR levels and immune suppression, who

experienced higher mortality rates. Furthermore, we discerned four

characteristic genes related to DDR and formulated a diagnostic

and risk prediction model pertinent to sepsis. Such findings shed

light on the DDR-related heterogeneity in sepsis, holding significant

implications for the advent of personalized treatments and

prognostic prediction in patients afflicted with this condition.
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