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Alzheimer’s disease has an increasing prevalence in the population world-wide,

yet current diagnostic methods based on recommended biomarkers are only

available in specialized clinics. Due to these circumstances, Alzheimer’s disease is

usually diagnosed late, which contrasts with the currently available treatment

options that are only effective for patients at an early stage. Blood-based

biomarkers could fill in the gap of easily accessible and low-cost methods for

early diagnosis of the disease. In particular, immune-based blood-biomarkers

might be a promising option, given the recently discovered cross-talk of immune

cells of the central nervous system with those in the peripheral immune system.

Here, we give a background on recent advances in research on brain-immune

system cross-talk in Alzheimer’s disease and review machine learning

approaches, which can combine multiple biomarkers with further information

(e.g. age, sex, APOE genotype) into predictive models supporting an earlier

diagnosis. In addition, mechanistic modeling approaches, such as agent-based

modeling open the possibility to model and analyze cell dynamics over time. This

review aims to provide an overview of the current state of immune-system

related blood-based biomarkers and their potential for the early diagnosis of

Alzheimer’s disease.
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1 Introduction

Alzheimer’s disease (AD) is prone to have a strongly increasing

prevalence worldwide due to the aging society. The number of

individuals living with AD is estimated to triple from 2019 to 2050,

rising from 57.4 million to 152.8 million (1). Deaths due to AD have

increased in recent years, making AD one of the top leading causes

of death in many countries around the globe (2–4). The onset of the

disease likely starts decades before the first symptoms of cognitive

decline appear, when changes in amyloid-beta (Ab) or tau in the

cerebrospinal fluid (CSF) as well as in positron emission

tomography (PET) measurements become detectable (5).

According to the Amyloid/Tau/Neurodegeneration (ATN)

framework (6), levels of Ab42/Ab40 ratio, phospho-tau (pTau) and

neurofilament light (Nfl) in the CSF determine the diagnosis of AD

biologically. PET neuroimaging and/or CSF-based measurements

are both costly or invasive procedures that are only performed at

specialized centers with long waiting lists. On the other hand,

screening cognitive tests available at primary care are frequently

not sensitive enough to identify the disease in the stage of mild

cognitive impairment (MCI). In conclusion, there are currently

limited resources for an early diagnosis of AD.

This situation contrasts with the requirements of recently

available treatment options, in particular aducanumab and

lecanumab (7, 8), which received regulatory approvals by the US

Food and Drugs Administration (FDA) in 2021 and 2023,

respectively. Their effectiveness has only been demonstrated in

individuals with early AD, diagnosed with mild MCI or mild

dementia due to AD. Given that these treatments are only

beneficial in patients in an early stage of AD, it is unclear how a

larger fraction of patients could benefit from the novel therapeutic

options within the current healthcare setting. It is thus essential to

come up with easy to use and reliable diagnostic procedures that

could help to identify subjects at early clinical stages.

One option in this regard are blood-based surrogates of Ab and

pTau which have been developed in recent years. Plasma levels of

Ab42/Ab40 ratio, P-tpTau181 and neurofilament light in the blood

were found to reliably predict the risk for developing dementia due

to AD in cognitively unimpaired populations, which would be

beneficial for designing cost-effective clinical trials (9). Between

2020 and 2023, several blood tests have b measuring Ab42/40 levels,
pTau 181 and apolipoprotein (APOE) E4 (Elecsys® Amyloid

Plasma Panel by Roche, PrecivityAD® by C2N Diagnostics,

HISCL b-Amyloid 1-42/1-40 Assay Kit by Sysmex Corporation®,

Simoa by Quanterix®). First validation of the usefulness of such

blood tests for patient selection were carried out in prospective

studies (10–14). Efforts have been made to develop an assay to

separate brain-derived tau from total tau, which showed a strong

correlation of brain-derived tau levels in serum with CSF samples

and achieved equivalent diagnostic performance (15). As one of the

most recent developments, a test measuring plasma pTau217

showed superior or equivalent performance to traditional CSF

tests in detecting tau-PET and Ab-PET status, which was

evaluated in a Swedish and a US cohort (16), and similar results

were seen in another study using a commercial pTau217 assay (17).
Frontiers in Immunology 02
In response to recent advancements in plasma biomarkers, the

US Alzheimer’s Association has revised the criteria for diagnosing

and staging Alzheimer’s disease. The updated guidelines include

plasma biomarkers of Ab and pTau as surrogates for CSF/PET

measurements, as outlined in their proposal (18). Additionally, the

proposed framework introduces a new category for biomarkers

associated with inflammatory and immune processes, reflecting the

reactivity of astrocytes and microglia. This adjustment addresses

developments in recent years, highlighting the increasingly

apparent cross-talk between the immune cells of the central

nervous system and those in the periphery (19–24). Moreover,

there has been a notable increase in research findings related to AD

and immune system-related genes over the last decades, with a

significant portion falling into the biomarkers category (see

Supplementary Figure 1). Recognizing emergent plasma

biomarkers as valuable extensions of the pre-existing ATN

framework represents a crucial step towards a more accessible

and earlier diagnosis of AD. This inclusive approach integrates

evolving insights into immune system involvement with the

emerging significance of plasma biomarkers, contributing to a

more comprehensive diagnostic framework.

The purpose of this article is to a) shed light on the recent

findings on the role of the immune system in Alzheimer’s disease,

and b) to point out the connection with computational approaches,

including machine learning and prospectively also mechanistic

modeling, for the successful identification of immune based blood

biomarkers and simulation of cell dynamics.
2 Brain-immune system crosstalk in
Alzheimer’s disease

Recent anatomical and functional discoveries of ways by which

the immune system interacts with the brain have shaped the long-

held dogma of the brain as an immune privileged organ. Instead of

being considered as solely secluded behind the blood-brain-barrier

from having any interaction with the peripheral immune system, it

is becoming increasingly clear that the central nervous system

(CNS) is in constant dialogue with immune cells, and that these

interactions are taking place at unique anatomical barriers, such as

the choroid plexus (22, 25) and the meningeal spaces (26, 27).

This life-long crosstalk shapes brain function in health and

disease and was repeatedly implicated in AD development and

progression (28). For example, various studies in transgenic mouse

models of AD have shown that increasing recruitment of myeloid

cells to the brain is associated with reduced amyloid pathology and

improved cognitive performance (29–34). While the mechanism of

action is not fully understood, it seems that bone-marrow derived

myeloid cells that enter the brain perform distinct roles, compared

to the local microglia, in reducing neuroinflammation and toxic

protein pathology.

In the event of CNS injury, the neuroinflammation signal cascade

is triggered, with the aim of protecting neuronal structure, preserving

neuronal function, and repairing damage in affected tissues. The

activation of glial cells marks the starting point for the
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neuroinflammatory process through the release of cytokines and

growth factors. Glial cells are abundant in the brain, and exhibit

diverse characteristics, functions, and phylogenetic origins. Some,

such as astrocytes (of neural origin) and microglia (differentiated

blood monocytes), play prominent roles in maintaining homeostasis

and participating in neuroinflammatory processes (35).

Nevertheless, despite the initial positive effect of neuroinflammation

on the post-injured tissue, this mechanism can eventually become

detrimental to neuronal homeostasis and associated processes (36).

Chronic or imbalanced inflammatory responses, driven by aging, may

contribute to and perpetuate the physiopathology of neurodegenerative

diseases, includingAD.Although the specific immune cross-talk between

microglia, astrocytes, and neurons is still a matter of discussion, many

studies suggested that the neuroprotective mechanisms of glia/astrocytes

turn neurotoxic by interacting with Ab promoting senile plaques and tau

accumulation through a cascade of pro-inflammatory mediators. These

include the release of nitric oxide and cytokines, which eventually

contribute to neuronal death. Due to this cascade of astrocytic and

microglial activation, immune-derived molecules are released, allowing

for their measurement as specific soluble markers for astrocytic and

microglial activity.
2.1 Immune cellular biomarkers

2.1.1 Microglia
Microglia, the resident immune cells of the brain, are derived

from monocyte precursor cells and play a central role in immune

defense and maintenance of brain homeostasis. They are the first

line of defense against invading pathogens and respond to injury or

disease states by becoming activated and performing tasks such as

clearance of cellular debris and dead cells.

Microglia have been shown to play a dual role in AD. In the early

stages, microglia can limit Ab accumulation by phagocytosing these

peptides and promoting their clearance. This neuroprotective role of

microglia is substantiated by numerous studies demonstrating that

stimulation ofmicroglial activity can result in reduced Ab burden and
improved cognitive function (37). However, prolonged activation of

microglia can lead to a chronic inflammatory state, causing

neurotoxicity and contributing to neuronal death (38). Changes in

expression profiles and morphology of microglia have been observed

in presence of Ab aggregates (39–43). Indeed, microglial activation is

a common feature in AD brains, and is often associated with

increased levels of pro-inflammatory cytokines (44). Measuring

microglial activity using soluble markers has gained interest in the

field of AD biomarker identification, where Triggering receptor

expressed on myeloid cells 2 (TREM2) and Galectin-3 (Gal-3) are

the most studied soluble markers.

2.1.1.1 Triggering receptor expressed on myeloid cells
2 (TREM2)

The receptor TREM2 is expressed on the surface of microglia and

mediates interactions with Ab. TREM2 regulates Ab degradation and

clearance by binding to Ab and bringing it to the microglia’s

lysosome (45). A loss of function of TREM2 in microglia leads to a
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decreased microglial clustering and increased Ab seeding, indicating

a major role in development of Ab pathology. The expression of

TREM2 in AD could change the response of microglia to Ab. Recent
evidence in individuals with and without AD pathology showed that

increased levels of CSF TREM2 were associated with the slower

amyloid accumulation, lower levels of tau (measured by PET scans)

and cognitive decline, highlighting the protective functions of

microglial in AD (46, 47). Soluble TREM2 (sTREM2) levels in the

CSF are highly correlated with plasma sTREM2 (48). Peripheral

(plasma) sTREM2 is increasingly altered in progressive stages of AD

(48, 49). Moreover, lower TREM2 levels are associated with changes

in peripheral immune response in AD, including other inflammatory

factors such as fibroblast growth factor-2, GM-CSF, or IL-1b (49).

2.1.1.2 Galectin-3 (Gal-3)

Galectin-3 (Gal-3) is a beta-galactosidase binding protein

involved in microglial activation. In contrast to TREM2, Gal-3

seems to have a deleterious role in AD. It is primarily expressed

around Ab plaques in both human and mouse brains and knocking

out Gal-3 reduces AD pathology in AD-model mice (50). Compared

to controls, CSF Gal-3 levels are elevated in AD patients and correlate

with tau and synaptic markers (GAP-43 and neurogranin) instead of

Ab. In addition, it is associated with other CSF neuroinflammatory

markers, including sTREM-2, GFAP, and YKL-40 (51). Studies

including CSF and serum measurements of Gal-3 in AD or other

neurodegenerative diseases showed similar results (52). Moreover,

Gal-3 levels are progressively increased across the AD stage and are

associated with reduced global cognitive outcomes (MMSE) (53).

Plasma levels of Gal-3 have been reported to be increased in

individuals with AD and might serve as a future plasma biomarker

in the early stages of the disease (54).

2.1.2 Astrocytes
Astrocytes, the most abundant glial cells in the central nervous

system, derive from neural stem cells and play a crucial role in

maintaining homeostasis. They provide metabolites and growth

factors to neurons, are pivotal in synapse formation and plasticity,

and regulate the extracellular balance of ions while removing free

radicals. However, under pathological conditions, astrocytes undergo

morphological and functional changes, leading to cell hypertrophy

(reactive astrocytes) and an increased release of neurotoxic factors.

In AD, reactive astrocytes aggregate in the vicinity of Ab
plaques, as post-mortem and rodent studies showed, indicating a

direct interaction between Ab and astrocytes (55). The activation of

astrocytes also modifies protein expression, including the glial

fibrillary acidic protein (GFAP) and chitinase-3-like protein 1

(YKL-40), both soluble astrocytic markers typically measured in

patients with AD.

2.1.2.1 Glial fibrillary acidic protein (GFAP)

A significant increase in GFAP levels measured by CSF and

plasma has been reported in AD compared to control individuals

even in preclinical stages of the disease (56, 57). Importantly, clinical

studies support that plasma measures of GFAP correlate with its CSF

levels, suggesting that plasma measures are a robust proxy of
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astrocyte reactivity in the brains of living individuals (58). In addition,

it has been shown that GFAP levels in both CSF and plasma correlate

with cognitive and biological measures of AD progression. For

instance, elevated plasma and GFAP levels are associated with

lower cognitive performance and steeper cognitive decline (59, 60).

Moreover, recent studies have shown that higher GFAP plasma levels

correlate particularly with amyloid burden measured both by CSF

and amyloid-PET quantification in opposition to Tau burden (46, 61,

62). Furthermore, Ab pathology has been associated with increased

plasma pTau levels only in individuals positive for astrocyte reactivity

(i.e., elevated GFAP), suggesting a modulating role of astrocytic

activity between Ab and tau pathology in AD (63).

2.1.2.2 Chitinase-3-like protein 1 (CHI3L1/YKL-40)

YKL-40 is a glycoprotein that is secreted by astrocytes in

neuroinflammatory condition (64). A meta-analysis including 14

cohorts demonstrated a significant increase in YKL-40 CSF levels in

AD compared to cognitively unimpaired controls (65). It has also been

reported to be indicative of individuals with MCI and prodromal AD

(66, 67). A recent study showed that YKL-40 was positively associated

with memory performance and negatively associated with brain Ab
deposition, suggesting a potentially protective effect of glia on incipient

brain Ab accumulation and neuronal homeostasis (68). Plasma levels

of YKL-40 were shown to correlate with CSF levels and were elevated

in AD individuals (69, 70).

2.1.3 Monocytes
The role of infiltrating monocytes, another key component of

the myeloid cell lineage, has also been explored in the context of

AD. Recent evidence suggests that these cells can be recruited to the

brain in response to Ab deposition, where they differentiate into

macrophages and contribute to Ab clearance (71). Interestingly,

monocytes appear to be more efficient at clearing Ab than resident

microglia (72), which may be due to their phagocytic capabilities.

Indeed, cell surface marker analysis of myeloid cells that enter the

brain, in comparison to microglia, show distinct expression of

scavenger receptors, such as MSR1 (73), and ability to

phagocytose Ab plaques (74, 75) or reduce soluble Ab oligomer

pathology (76). Another intriguing aspect of myeloid cell function

in AD is their potential role in tau pathology. Tau is a microtubule-

associated protein that becomes hyperphosphorylated and forms

neurofibrillary tangles in AD. Recent studies in tauopathy mouse

models have shown that recruitment of blood monocytes to the

brain is associated with a reduction in tau pathology (33, 34).

However, the precise mechanism by which these cells influence tau

pathology is still not well understood, and further studies are

needed to elucidate their role. Particularly, it is not clear if the

beneficial effect is directly mediated by the recruited myeloid cells,

or an indirect effect of the reduction in neuroinflammation.

2.1.4 T cells
T cells, a key component of the adaptive immune system,

represent another layer of complexity in the brain-immune

crosstalk in AD. The brain was thought to be devoid of T cells

under non-pathological conditions, but recent studies have

challenged this notion. It has been discovered that T cells are
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present in the meningeal spaces and choroid plexus under normal

conditions and were suggested to play a role in brain function (77–

79). Immunophenotyping analysis of blood samples from AD

patients have shown significant reduction in T cell frequencies

(80), and a recent meta-analysis of 36 studies showed that this

reduction is associated with increased CD4/CD8 T cell ratio in

patients with AD compared to HCs (81). Beyond these general

changes in lymphocytes, consistent findings have shown changes in

numbers and phenotype of various T cell subsets in AD (82).

One intriguing line of research is investigating the role of T

cells in AD pathology. T cell presence was repeatedly

demonstrated in post-mortem human brain tissue of persons

with AD (83, 84), and in the cerebrospinal fluid (85, 86).

Outside the brain, peripheral T cells in the blood show reduced

frequencies in AD patients (81). In mice, brain infiltration of T

cells was studied in the context of their spatial distribution in the

CNS-borders, such as the meninges, and brain parenchyma, and

was shown to correlate with the degree of Tau pathology and to

contribute to neurotoxicity (87). However, the role of T cells in

promoting or suppressing AD pathology is unclear, and most

likely involves different subsets of T cells. Indeed, T cell deficiency

in AD mice was shown to inhibit hippocampal neurogenesis and

restrict hippocampal neuronal regeneration (88).

2.1.5 Immune checkpoint PD-1/PD-L1
Of potential interest is immune checkpoint molecules as cellular

biomarkers in AD. Programmed cell death protein 1 (PD-1) and its

ligand PD-L1 are key immune checkpoint molecules that play a

crucial role in regulating immune responses. They are typically

expressed on the surface of T cells and other immune cells and serve

to dampen immune responses, preventing autoimmunity and

maintaining self-tolerance. Expression of PD-1 on T cells and

PD-L1 on monocytes and macrophages significantly decreases in

AD patients and in patients with MCI compared with age- and sex-

matched healthy controls (89). In a recent study, this change in PD-

1/PD-L1 expression on T cells was correlated with the different

stages of AD (90). PD-1 expression was also found to increase in T

cells in the CSF of AD patients (91). Beyond the potential use of PD-

1/PD-L1 as cellular biomarkers in AD, this immune checkpoint

pathway was also suggested as a target for therapeutic intervention.

In different mouse models of AD, transient blockade of PD-1/PD-

L1 resulted in reduced brain pathology and improved cognitive

performance (33, 92). The mechanism of action was shown to

involve homing of specialized immune cells to the brain (both

myeloid cells and regulatory T cells), where these cells mitigate

different pathomechanisms, ultimately leading to function

improvement (34, 93).
2.2 Current and future potential
biomarkers for MCI and AD

Since the establishment of CSF and imaging biomarkers of

amyloid beta and tau in 2011 by the National Institute on Aging

(NIA) and the Alzheimer’s Association (AA) (94–96), and the

resulting profiling via the A/T/N framework in 2018 (6), no
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major changes in the official clinical criteria for diagnosis and

staging of AD have been made. In 2023, the AA responded to the

recent developments in plasma biomarker research and advocated

the inclusion of plasma biomarkers for the diagnosis and staging of

AD (18). Their current draft focuses on the inclusion of plasma

surrogates for established CSF biomarkers, such as p-tau 217/np-

tau 21, p-tay 205 and Nfl. Plasma p-tau 231, p-tau 181 and Ab42/40
were not included in the current revision since these assays have not

yet proven to be as accurate for diagnosis as approved CSF assays.

Importantly, the AA has suggested adding a new biomarker

category incorporating inflammatory and immune mechanisms

(I) to the A/T/N framework. Interestingly, the original 2018

framework called for integrating biomarkers beyond the

established biomarkers as a novel X category in an ATX(N)

framework. They propose to include GFAP as a marker for

astrocyte inflammation, measured in either CSF or plasma. This

means that for the first time in clinical diagnosis, an inflammatory

plasma marker could be used for staging and prognosis of AD.

Yet not only GFAP, as an inflammatory marker of astrocytes,

but also other biomarkers of immune cells of the brain (microglia

and astrocytes) and blood (T cells and monocytes) show changes in

AD individuals and likely play a major role in AD physiopathology

and could serve as potential future biomarkers (see Figure 1), as

discussed in the sections above.

The accurate identification of an individual with MCI is

essential for the early diagnosis of AD. In the following, we
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outline and discuss the relevance and potential of the immune-

related plasma biomarkers mentioned in the previous section.

Plasma levels of sTREM2 were not found to be significantly

changed in MCI compared to controls, and significantly decreased

in AD compared to MCI (49, 97). While this does not allow for a

diagnosis at an MCI stage, the study by Weber et al. found that the

relationship of sTREM2-related inflammatory markers is already

drastically changed at early AD stages, both in groups defined by

clinical symptoms (MCI) and CSF biomarker categories (A+T−N−

or A+T+N−). This suggests that dysfunctional peripheral TREM2-

related inflammatory activity, in particular fibroblast growth factor-

2, GM-CSF, and IL-1b alterations, plays a major role in early

disease progression.

While CSF levels of Gal-3 have been seen to be elevated in AD

individuals (52, 53, 98), plasma levels were not significantly

increased in individuals with MCI (53), apart from reports in a

preliminary study, where Gal-3 serum levels were found to correlate

with clinical dementia rating (CDR) stages (54). Yet, since most

studies indicate non-significant changes in Gal-3 levels at an MCI

stage, it remains to be investigated whether peripheral Gal-3 levels

rather reflect systemic inflammation than serving as a surrogate for

expression in the brain and CSF.

GFAP levels have recently been reported to be predictive of

conversion of MCI to AD-dementia in several studies with steeper

trends of conversion for cognitively abnormal groups (99, 100) and

were able to discriminate between MCI individuals who progressed
FIGURE 1

Potential future biomarkers for the early diagnosis of Alzheimer’s disease. Biomarkers of microglia and astrocytes originating in the brain (top), which
correlate with surrogates in the blood, and markers of T cells and monocytes originating in the blood (bottom), which can be measured by blood
tests. Designs from Freepik were used for this image (www.freepik.com).
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to dementia and non-progressors (101). GFAP serum levels were

also found to detect AD pathology in patients with MCI (99).

Plasma YKL-40 levels have not yet been shown to discriminate

MCI from CN. However, elevated levels of YKL-40 in CSF were

observed in individuals with MCI, prodromal and preclinical AD in

multiple studies (66, 67, 69, 102, 103), and plasma and CSF levels

were found to be correlated (69). Therefore, YKL-40 has potential to

be used as a plasma biomarker for detecting early stages of AD but

remains to be tested.

The population of PD-1 negative T regulatory cells has

previously been reported to be significantly augmented in MCI

individuals (104). Recently, the first report of changes in PD-1/PD-

L1 expression in earlier stages of AD was published, where PD-L1

expression was upregulated in certain subsets of T cells in

individuals with mild AD (CDR stage 1; CD3+CD56+ T cells and

CD4+CD25+ T cells) and moderate AD (CDR stage 2; CD4+ and

CD8+ T cells) (90). Further investigation and validation of these

findings is needed, but the future use of the PD-1/PD-L1 checkpoint

for biomarker development is not unlikely.

The immune markers we discussed here have varying potential

as biomarkers for detection of early stages of AD, and further

investigation is obligatory to ascertain their correlation with

established CSF biomarkers in AD. More evidence is needed to

gain a consensus on a combination of plasma biomarkers that yields

the most accurate diagnosis at the earliest stage, especially for an

inclusion in the AD clinical research framework. A non-exhaustive

overview of established and potential future biomarkers together

with their potential for diagnosis and staging is given in

Supplementary Table 1. It is noteworthy that the prediction

performance of each biomarker relies heavily on the dataset used

in the respective study, and that reported performance metrics

differed. Therefore, the prediction performance of aforementioned

biomarkers is not directly comparable, and further comprehensive

validation studies are needed. Nonetheless, plasma biomarkers have

the huge advantage of being easily accessible through blood testing

and could have a high potential to make far-reaching changes in

clinical diagnosis and improve patient care.
3 Omics-based biomarker signature
discovery and machine learning

Omics-based approaches should allow for an unbiased, data-

driven discovery of novel immune-based blood-biomarker

candidates in Alzheimer’s Disease. However, classical bulk RNA

sequencing is limited since mixtures of various cell types are

measured. Going one step further, recent single cell sequencing

techniques now allow the measurement of the expression of all

genes in individual cells - including immune cells in the blood. This

provides a more detailed picture of a patient’s disease state at a given

point in time and may help to obtain a better understanding of

disease mechanisms as well as associated biomarkers in the future.

For example, Xu and Jia analyzed single cell gene expression data of

3 AD and 3 controls, and their findings suggest that the peripheral

adaptive immune response, mediated by T cells, is a factor in the

pathogenesis of AD (105). In a study by Xiong et al. on single-cell
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RNA (scRNA) sequencing of AD patients, they identified B cells as a

determinant of the severity of the disease. A lower number of B cells

was found in the blood of AD vs healthy controls, and in a follow-

up experiment in mice they found a correlation between depletion

of B cells in early-stage ADmodels and accelerated cognitive decline

as well as increased Ab burden (106). Similar results were gathered

in a study by Song et al., where additionally an increase in

proportion of neutrophils as well as gene expression levels of AD-

associated pathways in neutrophils were detected via a cellular

deconvolution method on RNA bulk blood sequencing data (107).

The richness in information of scRNA sequencing data does not

come without challenges. High dimensionality, technical noise and

batch effects impose difficulties for data processing and require the

use of specific computational tools for further analysis, which have

been extensively developed in recent years (108–110).

Classically, omics data are analyzed using statistical analysis

methods, which helps to provide insights into disease mechanisms

and candidate biomarkers. However, statistical methods only help to

understand differences between patient groups that exist on average

and do not allow us to make statements about a single patient. But to

support medical decisions, including early diagnosis, we need to

consider and combine features of an individual patient into a

diagnostic score. Since it is unlikely that a single biomarker would

allow for a highly accurate identification of patients in a preclinical or

prodromal stage, for this purpose machine learning (ML) plays a

crucial role (111). The application of ML bears strong potential for

biomarker discovery since it enables to find patterns in high

dimensional data that are otherwise hard to detect. ML might help

to understand the heterogeneity of the disease and aid in identifying

subtype-specific biomarker signatures. In particular, precision

medicine takes individual patient characteristics on a molecular

level into account and can help to identify biomarker panels that

allow for a precise diagnosis. In the following we review existing

works focusing on the discovery of immune-based blood biomarkers

signatures using machine learning. For an overview of the studies, we

refer to Supplementary Table 2, listing approaches based on their

primary data source type with information on the data set and the

machine learningmethod. It is important to understand that bringing

anML algorithm trained on omics data intomedical practice is highly

complex and requires a stepwise development, validation and

authorization process [(112), Figure 2]:
1. In addition to the original discovery dataset, external

validation data should be used to better understand the

generalization ability of the ML model and to detect

potential biases.

2. Due to cost and efficiency reasons a customized and

approved assay (e.g. by the Federal Drug and Food

Administration - FDA - in the USA) for measuring

biomarker candidates should be developed.

3. Further validation in a prospective clinical trial is required

to demonstrate actual clinical benefit, e.g. by showing a

good discrimination of MCI vs. HC and AD patients.

4. Regulatory approval as a diagnostic device and/or medical

device is needed before the assay and the algorithm can be

employed in medical routine.
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In the following we discuss individual studies using blood-based

proteomics and transcriptomics data as well as auto-antibodies in

more detail.
3.1 Blood-based proteomics and
transcriptomics approaches

In an extensive multi-center study, Morgan et al. investigated

plasma biomarker candidates for the diagnosis and stratification of

AD patients (113). More than 50 inflammatory proteins were

measured in immunoassays, including complement components,

activation products and regulators, cytokines and chemokines. A

logistic regression model was trained to differentiate between the

diagnosis groups enabled to identify inflammatory biomarkers that

distinguished not only HC from AD, but also MCI from AD, with an

AUC of 0.79 and 0.74, respectively. Plasma analytes in AD patients

compared to HC were increased for C4 and eotaxin-1, and decreased

for CR1, C5 and CRP. InMCI patients, increased levels of FH, C3 and

MCP-1, and decreased levels of C5 and MIP-1-Beta compared to HC

were found. When comparing AD to MCI, increased eotaxin-1 and

MIP-1-Beta, and decreased FI, C3, CRP and MCP-1 emerged as

distinguishing plasma biomarker candidates.

Prabhakar and Bhargavi investigated in a machine learning

approach to identify which blood plasma proteins could be useful in
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the early detection of AD (114). The blood plasma protein samples

were analyzed for a total of 146 protein features. The best candidate

biomarker panel was identified by feature selection and subsequent

combination testing with Support Vector Machines. The panel

consists of the following immune-related proteins: A2M, MDC,

IL-18 and CD5L. This set of candidate biomarkers achieved an

accuracy ranging from 0.55 to 0.8, depending on the kernel used, for

the classification of AD and HC. When applied to MCI individuals,

this protein panel did not yield high accuracy results.

Karaglani et al. developed diagnostic biosignatures based on

transcriptomics and proteomics from 7 public datasets for the

diagnosis of AD (115). With proteomic data consisting of nearly

1000 features, they identified 7 protein candidate biomarkers using

logistic regression with an AUC of 0.921, including several

immune-system related proteins, such as CAMLG, IL-4, TPM1

and IL-20.

Jammeh et al. investigated the best combination of blood-based

candidate biomarkers for a routine diagnosis of AD-related

dementia from blood samples from the ADNI proteomic database

(116). They identified a panel of candidate biomarkers, including

immune-related proteins A1M, A2M, eotaxin-3, PYY, PPY and

EGF via a Naïve Bayes classifier, which was able to identify AD

patients with a sensitivity of 0.85 and a specificity of 0.78.

In a further study, Eke et al. tried to define an optimum panel of

blood-based candidate biomarkers that can fulfill a diagnostic
FIGURE 2

Biomarker signature identification workflows. Blood samples are taken from patients that are further analyzed to gain proteomics, transcriptomics or
auto-antibody measurements. Various machine learning approaches were applied to the resulting data to derive a biomarker signature for
Alzheimer’s disease. Many of the identified biomarkers which achieve good predictive performance include immune-system-related biomarkers. For
an application of identified biomarkers in the clinical routine, further steps are necessary. The machine learning algorithm and the respective assays
need to be validated in a prospective clinical study, and regulatory approval by national or international institutions. Designs from Freepik were used
for this image (www.freepik.com).
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performance of 80% sensitivity and specificity (117). They used

proteomic data from the ADNI phase 1 study. With Support Vector

Machines, they could identify 5 candidate biomarkers associated

with the immune response, comprising A1M, A2M, C3, and TNC,

that could sufficiently distinguish AD from HC in the ADNI cohort.

Choi et al. investigated the association of protein levels of CypA,

HO-1 and IRE1 in the blood with changes in gray matter volume

(118). They found that in both MCI and AD individuals, blood

levels of all three proteins investigated were correlated with AD

signature regions of the brain. Higher CypA levels were associated

with increased gray matter volume of the occipital gyrus and

posterior cingulate. Gray matter volume changes at the

hippocampus, uncus, lateral globus pallidus and putamen were

positively associated with changes in HO-1 levels and negatively

with IRE1 levels (118).

In a study by Liu et al., several subsets of immune cells were

quantified in AD individuals (119). They found a significant

increase in immune infiltrates in AD individuals compared to

HC, such as monocytes, M0 macrophages, and dendritic cells,

and a decrease in other immune cell types, such as NK cell

resting, T-cell CD4 naive, T-cell CD4 memory activation, and

eosinophils. They identified hub genes, which include ABCA2,

CREBFR, CD72, CETN2, KCNG1 and NDUFA2 by applying

LASSO regression and SVMs to bulk RNA gene expression

profiles. A further analysis of the identified hub genes and their

relation to immune factors through the TISIDB database confirmed

that these genes were strongly correlated to the level of immune cell

infiltration and regulators of the immune microenvironment (120).

Walker et al. developed a protein signature for dementia risk

based on the dysregulation of immune and autophagy pathways in

middle-aged adults (121). They analyzed 4877 plasma proteins of

10.901 individuals from the ARIC cohort in terms of their

association with dementia risk up to 25 years later. They found

32 dementia-associated proteins, of which 12 were related to CSF

biomarkers of AD, neurodegeneration or -inflammation. They

grouped the identified plasma proteins into modules based on

protein co-expression patterns and found associations of several

modules with near-term or long-term dementia risk. Modules

associated with long-term dementia risk were enriched for

proteins involved in JAK-STAT signaling, T helper 1 and 2 cell

differentiation, leukocyte activation and immune/mitogen-activated

protein kinase signaling.

A study by Abdullah et al. aimed to find the transcriptomics

candidate biomarkers that could most accurately classify AD patients

inMalaysia (122). They used Boruta’s feature selection algorithm on a

transcriptomics dataset from the TUA study, comprising 22.254

transcript genes of 92 AD patients and 92 HC. They evaluated the

classification performance on several statistical and machine learning

classifiers. With an elastic net logistic regression model, they achieved

an accuracy of 0.82. Among the 16 potential biomarkers that they

identified were ANKRD28, CCDC92, DEFA3, FBXO32, GRIA4,

HDAC7, IFITM3, LY6G6D, MC1R, RPL18, SPOCD1, ST14,

TOR1AIP2, TRIM16L, UBXN7, and VEGFB.

Kim and Lee proposed a pathway information-based neural

network for the prediction of AD, which uses blood and brain

transcriptomic signatures (123). They used pathway information
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input for their deep neural network. With the help of a

backpropagation-based model interpretation method, they were

able to identify essential pathways and genes in the prediction of

AD. This analysis indicated an enrichment of genes involved in

PI3K-Akt and MAPK signaling, two pathways which are involved

in the immune response (124, 125), in association with AD.

The link between neuroinflammation and AD has gained more

attention in recent years. Biological findings attribute both a

detrimental as well as protective role to neuroinflammation (126).

Gironi et al. proposed to use an approach that can reconstruct non-

linear relationships to model the complex system of

neuroinflammation. They analyzed the immunological and

oxidative stress parameters in peripheral blood mononuclear of

AD and MCI patients (127). They constructed a machine learning

algorithm to distinguish healthy controls from AD and MCI

patients and selected the most important immunological and

oxidative stress parameters for the prediction. Their conclusion

emphasized that the initial activation of microglia is beneficial for

Ab clearance, but the mechanism can become chronically

destructive without timely control.
3.2 Blood-based autoantibodies

The role of autoimmunity in neurodegenerative diseases,

including AD, has seen more attention recently, and offers new

perspectives in terms of diagnostics and therapeutics (128–131).

Autoantibodies are antibodies that react to self-antigens and are all-

present in the human body. Natural autoantibodies are responsible

for clearance of debris during inflammation, yet they might

also amplify inflammation in systemic auto-immune and

neurodegenerative diseases (132–134). Therefore, several

approaches have taken up this idea and investigated blood-based

autoantibodies as biomarker candidates for the diagnosis of AD.

DeMarshall et al. tried to identify biomarker candidates for

patients diagnosed with MCI due to an early-stage AD pathology

using autoantibodies (135). They selected 50 MCI patients and their

HC from the ADNI2 study and performed protein microarrays on

the serum samples to identify autoantibodies. They used a Random

Forest model to identify a panel of 50 AD-associated MCI-specific

biomarker candidates. They reported that their model could

differentiate MCI patients from age- and gender-matched controls

with a sensitivity, specificity and accuracy of 100%, and

furthermore, with > 90% from mild-moderate AD. In a further

study, DeMarshall et al. used this panel of autoantibody biomarker

candidates on elderly hip fracture repair patients (136). With their

autoantibody panel, they were able to identify the patients that were

positive for CSF AD biomarkers. Recently, DeMarshall et al.

proposed a multi-disease diagnostic platform based on

autoantibodies to detect the presence of AD-related pathology,

focusing on early stages, including the pre-symptomatic,

prodromal and mild-moderate stages (137). They conclude that

blood-based autoantibodies present an accurate, non-invasive, low-

cost solution, especially for early diagnosis of AD in pre-

symptomatic and prodromal AD stages.
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4 Mechanistic modeling of the
immune system

The immune system is dynamic and characterized by complex

cell-cell interactions, which eventually manifest in the increase or

decrease of certain markers over time. Therefore, purely data

driven statistical and machine learning approaches, which

typically rely on cross-sectional snapshot data, often lack

robustness and reproducibility across studies (138). A principal

alternative is thus to first come up with a detailed, quantitative

understanding of fundamental disease mechanisms, from which

biomarker candidates may then be derived and tested in a second

step (139–141). Here, mechanistic modeling techniques could fill

in a gap by simulating longitudinal data on cell-cell interactions

based on parameter estimates from quantitative data. Mechanistic

modeling approaches, and specifically agent-based modeling

(ABM) techniques, have been developed in the past to provide a

realistic simulation of mixtures of various cellular species,

accurately describing cytokine concentrations, activations of

cells and interactions between cellular players of the immune

system over time. In the following we provide an overview about

existing works focusing on the modeling of immune related

mechanisms in the AD field.
4.1 Ordinary differential equations

Ordinary differential equations (ODEs) are widely used to

mathematically describe time-dependent molecular processes in

systems biology (142–150). Often experimental data obtained

from cultured cells is used to define the initial conditions of such

models and to infer free parameters. The ready fitted model can

then be used for extrapolation of time series or for simulating

counterfactual scenarios, for example the intervention by a certain

drug. Learning the structure of such a mechanistic model can give

biological insights and may also point towards candidate

biomarkers. Recently, several mathematical models on AD

progression have been published that take the role of the immune

system into account, which we will elucidate in the following.

A kinetic model was used to explore the effect of microglia and

astroglia on the pathogenesis of AD (151, 152). The model suggests

that these immune cells promote the progression of AD via

neuronal cell death. They argue that the increase in population of

microglia and astroglia in AD means an increase of inflammatory

cells producing toxins that eventually cause neuronal cell death.

Along these lines, the aggregation of microglia in AD was proposed

to be explained via a chemotaxis model (153). They modeled the

interaction of several attractive and repulsive cytokines produced by

microglia in order to explain under which conditions the

aggregation of microglia is possible, as seen in the pathology of

Alzheimer’s patients. With their model, they were able to explain

the aggregation of microglia given a certain combination of

chemotactic responses of microglia to IL-1beta and TNF-alpha.

Several convergent mechanisms exist in Alzheimer’s and

Parkinson’s disease, including the p38 pathway activation that
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IL-1beta and TNF-alpha (154). Sasidharakurup et al. used a systems

biology tool to create process diagrams of common mechanisms

and converted each reaction into a mathematical equation

dependent on an initial literature-derived condition. They

conclude that the activation of microglia is responsible for

increased levels of TNF-alpha, as observed in Alzheimer’s and

Parkinson’s disease, which lead to excessive oxidative stress and

result in necrosis and apoptosis (155).

Kyrtsos and Baras developed a graphical systems biology model

to investigate the interaction of neuroinflammation, mitochondrial

function, the ApoE genotype and A-b generation on cellular and

molecular level (156). They simulated chronic low-level

inflammation by increasing the level of TNF-alpha and simulated

the effects on the levels of various neuroinflammatory cytokines.

Interestingly, together with a triggered collapse of mitochondrial

function, chronic neuroinflammation led to neuronal cell death.

Their model results agree with biological findings which have

shown a decreased capability of the brain to protect itself in case

of chronic inflammation (157).

During the progression of AD, a strong accumulation of CD4+

T cells is seen in many patients (158). CD4+ T cells can regulate

immune responses via secretion of signaling molecules, yet the set

of cytokines produced by each CD4+ T cell can vary depending on

the cytokines in the extracellular environment. The duration of T

cell receptor engagement and co-stimulation also contributes to the

differentiation of CD4+ T cells. Miskov-Zivanov et al. simulated the

changes in cell fate and plasticity of CD4+ T cells with a logical

circuit model (159). In their review on heterogeneity and function

of CD4+ T cells, Carbo et al. gather computational approaches to

model immune responses of CD4+ T cells and we refer to them for

further reading (160). The relationship between antigenic

stimulations of CD4+ T cells and regulatory CD4+ T cells was

recently described in an ODE model (161), using their

concentration and the extent of the antigenic stimulation. ODE

models typically neglect spatial aspects of biophysical mechanisms.

Sego et al. therefore combined non-spatial ODE modeling with

spatial, cell-based modeling via a cellularization approach to create

a spatiotemporal model of the immune response upon viral

infection (162, 163).

Notably, most ODE approaches use initialization parameters

and relative rates from the literature, hence they do not reflect

individual system-level differences. These approaches can rather be

seen as a generalization of immunological processes but are not

suitable for patient-specific inductive reasoning.
4.2 Agent-based modeling and cell-cell
interaction models

Cell-cell interactions are influential on organismal development

and single-cell function (164). The understanding of cell-cell

interactions can give insight into biological mechanisms in the

development of disease. Agent-based modeling (ABM) is a powerful

technique to simulate and explore phenomena that include many of

active components, represented by agents. In the ABM framework
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the agents are operating in the system, simultaneously influencing

the simulated environment and being influenced by the simulated

environment. The agents can also perform actions autonomously,

based on rules or state machines, with regards to their interaction

with other agents and with the environment (165). These actions

represent the behaviors in the real system (166–169). Modeling of a

multi-scale spatiotemporal system is a complex computational

challenge due to the high number of sub-processes involved, each

with its own features. As the complexity of the simulated system

increases in size and in the agents’ capabilities, the outcome of the

simulation may reveal unpredicted emergent results that were

otherwise very hard to obtain, e.g. by pure mathematical

modeling (170, 171). These emergent results can be later

interpreted as specific signaling pathways at the intra-cellular

level thus inferring on biomarkers discovery (172). ABM requires

mainly local knowledge regarding the mechanisms (rules) that

govern the behavior of each type of agent and the environment,

whereas global behavior emerges from the agent-agent interactions

as well as the interactions with the environment.

Lately, there have been extensive research efforts to develop

agent-based simulation systems. General purpose approaches

include EPISIM (173, 174), SimuLife (175), CellSys (176), and

several approaches have been developed to specifically model the

immune system, such as the Multiscale Systems Immunology

project (177), LINDSAY Composer (178), FLAME (179),

Simmune (180), C-ImmSim (181) and Cell Studio (182, 183).

Agent-based models tailored towards specific immune system

processes also exist, such as a recently published model of

adaptive immunity that describes the T cell response to various

factors, including antigen-presenting dendritic cells, changes in T

cell recruitment and swelling conditions of the lymph node (184).

Cell Studio (182, 183) is a unique platform for modeling

complex biological systems. It provides an advanced environment

specifically designed for non-coding researchers, including a visual

interface, modeling of biological, biophysical, bioinformatics and

chemical data, as well as parallel computing. In particular, the

platform is specialized in modeling immunological response at

the cellular level. Cell Studio’s main feature is to realistically

model the immunological response as a multi-scale, hierarchical

phenomenon that operates at molecular, cellular, tissue levels and

eventually the organ level. The platform, adopting the ABM

paradigm, proposes the cell as a native agent whose interactions

with proteins, molecules, medium and other cells, define the main

features of the immunological scenario. The choice of which

interactions are necessary to describe a particular process is given

to the user which can set up a unique experiment with predefined

rules. To facilitate the definition process, a state-machine

description of the cell is used, to control the dynamic behavior as

an approximation for the intracellular processes, in line with

the growing number of publicly available pathways and

network databases.

Next to agent-based modeling techniques, several cell-cell

communication and interaction inference approaches exist.

These rely heavily on prior knowledge from pathway databases

and use various methods to estimate cell-cell interactions which

can be categorized into statistics-based, network-based and spatial
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transcriptomics-based approaches (185). Obviously, cell-cell

interaction models and ABM are not necessarily separated.

However, grossly speaking, cell-cell interaction models relate to

networks of interactions and attempt to be very comprehensive in

integrating omics data to include a multitude of possible

interactions. Most ABM approaches have a similar aim, but they

include additional dimensions of the interactions as not covered

by most cell-cell interaction models such as space (including

cellular motion, diffusion and mechanical characteristics of the

medium), temporal kinetics of secretion, specific effects of

different concentrations and finally the ability to include

variance within same species of cells. Inclusion of this physical

data comes with the price of a need to simplify the modeled

interactions due to the complexity of parameterization and, later

on, of computation.

Dimitrov et al. compared current cell-cell communication

prediction approaches (186). Their analysis showed that immune

system pathways are not equally represented in the resources used

for the approaches under investigation. They found that both the

interaction information resource as well as the method can

considerably impact the cell-cell communication inference

prediction and conclude that integration of information from

additional modalities could help to refine the predictions.

Several cell-cell communication approaches have been

specifically designed to integrate single-cell RNA sequencing data

(164, 187), which open a new way to generate patient-specific

models for cell-cell communication prediction. Since there is no

ground truth for the cell-cell interaction prediction, Liu et al.

suggest using spatial transcriptomics data for the evaluation of

cell-cell interaction models with single-cell RNA sequencing data

and provide a comparison of approaches (185).

One of the first to integrate patient-level data of Alzheimer

patients into cell-cell interaction simulations was Zhao et al., using

the first published single-cell RNA sequencing dataset of peripheral

blood on Alzheimer’s with 3 affected individuals (105). They

analyzed cell-to-cell communication networks using CellChat

(188) to gain insight on signaling pathways and interactions

between different cell subpopulations in Alzheimer patients as

well as ovarian cancer patients (189). They found that

interactions between monocytes, natural killer cells and T cells

are increased in AD individuals compared to healthy controls, and

that monocytes were highly influenced by HLA-related signals.

They followingly designed a monocyte-based prognostic signature

which was used to determine the risk of a patient and validated their

risk model on ovarian cancer datasets. They successfully predicted

low- and high-risk group progression and survival via Cox analysis

with the risk score. Similar experiments now need to be performed

on AD datasets to validate the suitability of such a monocyte-related

risk model for the prediction of progression and survival of

individuals affected by AD. This is one prestigious example of

how cell-cell interaction models can be useful in the development

of a prognostic biomarker signature based on immune signaling

and cell-cell interactions.

Along these lines, simulating the cross-talk between the

peripheral immune system and the brain for the condition of

Alzheimer’s disease via agent-based models might open new ways
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to find immune-specific biomarkers that are indicative of early

changes in the immune system during the onset of the disease.

Monitoring changes in biomarker concentrations and expression

levels during the ABM simulations might give insights into which

biomarkers might be suitable to identify a patient at an early stage.

Going one step further, the integration of patient-specific

information as part of the initialization of the ABMs could help

to shed light on the differences in biomarker levels on an individual

level and thereby enable personalized predictions on the intensity

and velocity of changes in biomarkers. This information could be

helpful in the identification of disease mechanisms specific to the

phenotype of the patient and aid in better design of patient-

specific treatments.
5 Conclusion

Identifying patients in a preclinical or prodromal disease stage

of AD is crucial for the success of currently available therapeutic

options. Hence, there is an urgent need for alternative and easily

accessible biomarkers which allow for an early diagnosis. Current

knowledge suggests that the ATN framework for diagnosis of AD

should be complemented with markers of inflammation.

Considering the recently discovered cross-talk of immune cells

of the central nervous system with those in the peripheral

immune system, immune-based blood-biomarkers emerge as a

promising option.

Data-driven biomarker discovery approaches often lack

statistical robustness and reproducibility due to limited sample

size and high dimensional feature space in omics data.

Mechanistic modeling approaches, such as ODEs and ABMs,

provide complementary methods with high statistical robustness.

However, these knowledge-derived models may not fully capture

the unknown aspects of the disease. Most mechanistic models have

been calibrated and tested against experimental data in model

systems (e.g. cell lines), but not real patient data. Recent ABMs

like Cell-Studio, initialized with patient-level data such as FACS

measures of cell surface markers, offer the potential for predictive

results by reflecting the mixture of cell types in individual patients.

In the future ABMs could incorporate single-cell RNA sequencing

data to simulate gene expression dynamics. Implementing ABM

platforms requires significant resources for physical and chemical

parametrization, but automated literature processing using natural

language processing and generative transformers may facilitate the

next generation of ABM parametrization. Analyzing AB<

simulations with modern data mining and machine learning

techniques might uncover new perspectives for biomarker

signature discovery. In particular, the consideration of a time

dimension may open the possibility to identify biomarker

signatures in a far more robust and statistically stable manner

than currently (112).

At the same time, we would like to re-emphasize that it is

unlikely that a single biomarker alone would allow for an early

diagnosis with sufficiently high accuracy. Instead, the focus should

be on the discovery of biomarker signatures using modern omics

technology, which enables sequencing immune cells in the blood.
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Machine learning algorithms can then integrate signals from

various genes into a single, patient-specific diagnostic score,

enabling the identifying of patients at an early disease stage.

In addition to the current limitations in the capacity of the

current healthcare system to thoroughly assess early stages of AD in

all potential candidates within specialized memory clinics, the

established diagnosis methods rely on invasive procedures for

patients, such as lumbar punctures to extract CSF, or involve costly

imaging procedures. These factors contribute to the challenges in

providing timely and accurate diagnoses for AD patients.

Blood-based biomarker testing offers several advantages over

traditional CSF-based testing. Firstly, blood tests have the potential

to be more cost-effective, making them more accessible to a larger

population. Additionally, they are less invasive, which reduces the

discomfort and potential risks associated with invasive procedures.

Moreover, blood-based biomarker testing can be performed by general

practitioners, who are often the first point of contact for patients before

referral to a neurologist, allowing for earlier detection and intervention.

The current diagnostic approaches for AD are predominantly

confined to specialized clinics, which limits their routine use in

general practice. By introducing new diagnostic procedures and

providing specialized training for general practitioners and medical

assistants, the use of blood-based biomarkers can be integrated into

routine diagnostics. Importantly, the cost of training and adopting

these new procedures is expected to be significantly lower compared

to traditional diagnostic tests.

With this vision for the future, blood-based biomarkers could

pave the way for a more accessible diagnostic method for AD. This,

in turn, may lead to decreased healthcare costs in the long-term,

more streamlined and cost-effective clinical trials, and the delivery

of earlier and improved treatment options to the patients.
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