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Macrophage/microglia function as immune defense and homeostatic cells that

originate from bonemarrow progenitor cells. Macrophage/microglia activation is

historically divided into proinflammatory M1 or anti-inflammatory M2 states

based on intracellular dynamics and protein production. The polarization of

macrophages/microglia involves a pivotal impact inmodulating the development

of inflammatory disorders, namely lung and traumatic brain injuries. Recent

evidence indicates shared signaling pathways in lung and traumatic brain

injuries, regulated through non-coding RNAs (ncRNAs) loaded into

extracellular vesicles (EVs). This packaging protects ncRNAs from degradation.

These vesicles are subcellular components released through a paracellular

mechanism, constituting a group of nanoparticles that involve exosomes,

microvesicles, and apoptotic bodies. EVs are characterized by a double-

layered membrane and are abound with proteins, nucleic acids, and other

bioactive compounds. ncRNAs are RNA molecules with functional roles,

despite their absence of coding capacity. They actively participate in the

regulation of mRNA expression and function through various mechanisms.

Recent studies pointed out that selective packaging of ncRNAs into EVs plays a

role in modulating distinct facets of macrophage/microglia polarization, under

conditions of lung and traumatic brain injuries. This study will explore the latest

findings regarding the role of EVs in the progression of lung and traumatic brain

injuries, with a specific focus on the involvement of ncRNAs within these vesicles.

The conclusion of this review will emphasize the clinical opportunities presented

by EV-ncRNAs, underscoring their potential functions as both biomarkers and

targets for therapeutic interventions.
KEYWORDS
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1 Introduction

Both lung injury and traumatic brain injury trigger a systemic

inflammatory response, marked by the release of pro-inflammatory

cytokines, chemokines, and other mediators. This inflammation

exacerbates damage in both organs. Moreover, traumatic brain

injury often requires mechanical ventilation, potentially causing

ventilator-induced lung injury due to the mechanical forces exerted

during ventilation, which can intensify lung inflammation and

damage. Lung injury may lead to the release of inflammatory

mediators and damage-associated molecular patterns into the

bloodstream, disrupting the blood-brain barrier and increasing

the brain’s vulnerability to secondary insults after traumatic brain

injury. Additionally, severe traumatic brain injury is linked to

neurogenic pulmonary edema, a type of non-cardiogenic

pulmonary edema characterized by increased permeability of

pulmonary capillaries, worsening lung function and contributing

to respiratory failure in affected patients.

An integral component of both innate and acquired immunity

is the class of immune cells referred to as macrophages/microglia,

originating from bone marrow progenitor cells (1). Within the

cellular context implicated in injury, macrophages/microglia

display plastic traits, experiencing a process known as

polarization. This encompasses transitions between specific

functional phenotypes (M1/M2) triggered by environmental

impact. The polarization of macrophages/microglia serves various

roles in tissue repair and the maintenance of homeostasis.

Additionally, it has a significant impact on numerous

circumstances like traumatic brain injury and lung injury.

Dysregulation of macrophage/microglia polarization can lead to

chronic inflammation and contribute to pathological conditions (2,

3). The pathophysiological mechanisms underlying macrophage/

microglia activation in brain and lung injuries are very different.

Following traumatic brain injury, damage ensues to the

surrounding tissues and cells. This damage results in the release

of intracellular components and signaling molecules. In response to

this physiological stimulus, microglia become activated, engaging in

the clearance and repair of the affected area (4, 5). Furthermore,

traumatic brain injury initiates an inflammatory response, causing

the release of inflammatory factors and cytokines. These signaling

molecules have the potential to activate microglia (4, 5). During

lung injury, macrophages are activated as they recognize pathogens

or foreign substances, coupled with the release of intracellular

components from damaged lung tissues and cells (6, 7).

Despite clear pathophysiological distinctions, there is a great

deal of similarity between these two disorders’ gene responses to

damage. These commonalities apply to non-coding RNAs

(ncRNAs) as well as RNAs that encode proteins. Emerging data

from recent times suggests that ncRNAs produced from

extracellular vesicles (EVs) play a crucial role as regulators of cell-

to-cell communication in a shared signaling pathway, have

garnered noteworthy attention in regulating the polarization of

macrophages/microglia in these two pathologies (8–10). EVs are

nanosized vesicles enclosed by a double-layered membrane,

released by virtually all cell types (11). These vesicles carry RNA,

DNA, proteins, and lipids, serving as regulators of cell-to-cell
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communication by facilitating the transport of mRNAs and

proteins between cells (12, 13). ncRNAs, a diverse class of RNAs,

encompass various subclasses. The primary classification criterion

for these molecules is their size (14). Notably, as integral

components, ncRNAs are selectively concentrated within EVs

(12), and the transferred ncRNAs in EVs have a vital part in

regulating distinct facets of the initiation and advancement of

brain and lung injuries. Lung and brain injuries represent critical

areas where the role of EVs and ncRNAs has garnered significant

attention in recent research. For instance, EVs and ncRNAs have

been implicated in various pathophysiological processes associated

with lung injury, such as inflammation, fibrosis, and tissue repair.

Similarly, in the context of brain injuries, EVs and ncRNAs play

crucial roles in neuroinflammation, neuroprotection, and neural

regeneration. By focusing on these specific organ systems, the

authors aim to provide a comprehensive understanding of the

mechanisms underlying EV and ncRNA involvement in injury

pathogenesis and identify potential therapeutic targets. In light of

the effects of EV-ncRNAs on regulating macrophage/microglia

polarization has been revealed in brain and lung injuries. This

review aims to consolidate recent progress in the exploration of EV-

ncRNAs spanning from traumatic brain injury to lung injury, with a

specific focus on the modulation of macrophage/microglia

polarization. Additionally, we delineate the potential clinical

applications of EV-ncRNAs and their potential functions as both

biomarkers and targets for therapeutic interventions.
2 Macrophage/microglia polarization
in lung and traumatic brain injuries

2.1 Polarization of macrophages in acute
lung damage

Macrophages, a prominent subset of myeloid cells, represent a

significant group of innate immune cells. They exhibit considerable

heterogeneity and phenotypic specialization while playing a critical

role in innate immunity across diverse tissues (15). Originally, there

was a prevalent belief that tissue macrophages originated from

monocytes in circulation (16, 17). However, the revelation of

localized macrophages in tissue in various bodily systems,

stemming throughout the growth phase of the embryo, from the

yolk sac, has fundamentally altered researchers’ perspectives on the

origin of macrophages (18, 19). Macrophages can originate either by

differentiating from monocytes in circulation that come from bone

marrow stem cells or by deriving from primitive macrophages that

originate from the maternal liver and yolk sac of the embryo (20).

Based on their lung location, macrophages can be categorized into two

types: alveolar macrophages, situated on the alveolar interior surface

and directly exposed to the external surroundings, having a vital part

in the initial immune response; and interstitial macrophages,

commonly related to airways, nerves, and vessels (21, 22).

Under the influence of distinct tissue microenvironments,

macrophages undergo polarization, giving rise to M1 and M2

subtypes with distinct functions. The balance between the M1

and M2 phenotypes dictates the outcome of an organ during
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inflammation or injury. M1 macrophages engage in antimicrobial

properties, generate inflammatory-promoting factors, and mediate

organ injury, while M2 macrophages generate factors that reduce

inflammation and facilitate organ recovery (23). M1 macrophages,

frequently described as “classically activated” (proinflammatory)

macrophages,” become activated through stimuli like colony-

stimulating factor for granulocyte-macrophage colonies and TLR

ligands like LPS and Th1-type cytokines (20). M1 macrophages

secrete an abundance of factors that promote inflammation,

including TNF-a, IL-6, IL-1b, IL-12, IL-23, CXCL1-3, CXCL-5,
and CXCL8-10 (24). Additionally, M1 macrophages exhibit high

expression of CD40, CD68, CD80, and CD86 (25). On the other

hand, Th2 cytokines like IL-4 and IL-13, along with anti-

inflammatory cytokines like IL-10 and TGF-b, cause M2

macrophages to develop (26). These macrophages exhibit an anti-

inflammatory character of factors defined by reduced IL-12

production and elevated levels of chemokine CCL18, Arg-1, IL-

10, and TGF-b (27). An increasing amount of data indicates that

discerning the polarized conditions of macrophages and causing the

M1 to M2 transition, could serve as an innovative therapeutic

approach for acute lung injury (8, 27).
2.2 Microglia polarization in traumatic
brain injury

Particularized macrophages found only in the central nervous

system are called microglia (28). Through fate mapping, it was

discovered that microglia trace their origins back to cell progenitor

of myelo-erythroids found in the yolk sac of mammals (29). These

ancestors’ cells undergo migration into the brain during the period

in animals, around embryonic days 9.5 and 14.5 (30, 31). Unlike

macrophages within different tissues, the density of microglia

continues constant throughout the lifespan of both mice and

humans, sustained by the local proliferation of microglial cells

(29). Microglia typically display a highly branched morphology

during their inactive state, featuring numerous short and slender

processes (28). These processes create an extensive contact area,

reaching into the nearby environment, and positioning microglia

strategically to sense and monitor local environmental changes. In

reaction to a cranial trauma, microglia own the capacity to provoke

swift and significant alterations in gene expressions, cell forms, and

functional characteristics. These changes are collectively termed

“activation of microglia” (28, 32). Upon activation, microglia

demonstrate the ability to migrate toward lesions, engulf broken

cells or tissue fragments through phagocytosis, coordinate

inflammation of the nervous system by releasing crucial agents of

inflammation, and secrete various substances, including oxygen

species that are reactive and neurotrophic. These substances can

have both advantageous and adverse consequences on the

encircling the cells (33).

Based on the intracellular dynamics and protein production of

microglia, activation of microglia was previously classified into

classical proinflammatory M1 or alternative anti-inflammatory

M2 states. Switching between M1 and M2 phenotypes holds

practical significance, as fostering the M2 haplotype can aid in
Frontiers in Immunology 03
tissue restoration by reducing variables that cause inflammation.

M1 activation is considered a proinflammatory and neurotoxic

state, triggered by the induction of TLR and IFN-g signaling

pathways. Characteristic markers of the M1 phenotype include

CD16, CD32, CD86, and the inducible forms of iNOS. Microglia

of the M1 phenotype release inflammatory-promoting molecules,

including TNF-a, IL-6, IL-12, IL-1b, and NO, thereby intensifying

inflammation and contributing to tissue damage (34–36). In

contrast, the alternative M2 microglia, identified by the

manifestation of indicators like CD163, TGF-b1, IL-10, CD206,
Arg-1, Ym-1, and FIZZ-1, contribute to the suppression of

inflammation, clearance of debris, and facilitation of tissue

remodeling (37–39). It’s worth mentioning that, according to the

current understanding of M2-polarized microglia within the

brainstem, in accordance with how cells function, the M2 subtype

is additionally divided into M2a, M2b, or M2c subcategories. M2a

microglia exhibit a robust association with IL-13 and IL-4,

showcasing potent anti-inflammatory properties. Additionally,

these cells generate substantial quantities of arginase-1, Ym-1,

CD206, and Fizz1 (40), in contrast to the M2b phenotype, which

lacks the ability to produce the latter (41, 42). The M2c-like subtype,

representing obtained termination, plays a role in immune

regulation, tissue repair, and remodeling (43).
3 The chemical makeup of ncRNAs
and EVs

3.1 EV Segmentation and related features

EVs are membranous structures discharged into the extracellular

environment, originating from either the endosomal system or the

plasma membrane of various cell types (44). Research has found that

such vesicles can be created and distributed by various types of cells

like neurons, glial cells, immune cells, mesenchymal stem cells,

and others, into serum, amniotic fluid, plasma, urine, saliva, and

cerebrospinal fluid (45). Microvesicles, apoptotic bodies, and

exosomes are the three primary forms of EVs based on their size

and biological origin. Exosomes, with a size range of 30-150 nm,

originate as fluid within multivesicular structures as intraluminal

vesicles and are discharged following their union with the plasma

membrane. Microvesicles (50-1000 nm) and apoptotic bodies (100-

5000 nm) are both larger in size. They develop as a result of the

plasma membrane dividing and budding outward, or blebbing after

apoptosis, respectively (46). The main active components responsible

for the biological effects of EVs are composed of proteins, lipids,

miRNA, and other various constituents. After donor cells synthesize

and release EVs, the active components in the EVs are delivered to

the cytoplasm of target cells through indirect binding to signal

receptors or direct merging with the membrane of the cell, thereby

presiding over intercellular communication and exerting biological

effects (47). EVs biogenesis and secretion can occur through either

the Endosomal Sorting Complex Required for Transport (ESCRT)-

dependent pathway (48, 49) or the ceramide-dependent pathway

(50). The ESCRT family encompasses several members, including

ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III, as well as ESCRT-
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associated proteins like Alix (51). The ESCRT-dependent pathway is

initiated upon the presence of ubiquitinylated membrane proteins in

early endosomes. Subsequently, the ESCRT complexes collaborate to

facilitate the sorting of ubiquitinylated proteins into EVs (52).
3.2 Classification and associated properties
of ncRNAs

Human genome sequencing reveals that most of the genome is

DNA that does not code for proteins, with just over 3% of the genes

encoding proteins (53). ncRNA, which cannot produce proteins, is

essential for controlling a number of processes that are both

physiological and pathological (54–56). There are various types of

ncRNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs),

PIWI-interacting RNA (piRNA), small nucleolar RNA (snoRNA),

small interfering RNAs (siRNA), and circular RNAs (circRNAs) (57).

miRNA, which are 19-25 nucleotides in length, belongs to a class of

small ncRNAs (58). The gene for miRNA is generated primary

miRNA transcripts (pri-miRNA) by transcription by RNA

polymerase II. The ribonuclease Drosha then cleaves pri-miRNA

into Pre-miRNA, or roughly 70 nt stem-loop precursor miRNA.

Subsequently, these precursor miRNAs are further processed by the

cytoplasmic ribonuclease Dicer to generate mature miRNA. By

matching complementary bases, miRNA can identify target

mRNAs. They direct the silencing complex to either destroy the

target mRNA or prevent its translation, depending on the degree of

complementarity, thereby regulating mRNA stability and translation

to mediate post-transcriptional gene expression (59). Typically, the 3’

untranslated region (3’UTR) sequence of its target mRNA is where

miRNA attaches itself, leading to deterioration or inhibition of the

translation process (60). However, There have been reports of

connections to other regions, such as the 5’ UTR, coding sequence,

and gene regulators (59).

Transcripts longer than 200 nucleotides are commonly referred

to as long non-coding RNAs (lncRNAs), making up 80%~90% of all

ncRNAs (61). In comparison to miRNA, lncRNA is larger with

complex spatial structures and diverse mechanisms. It interacts

with DNA and mRNA with actions including direct binding to gene

promoters, mediating histone modifications and chromatin

remodeling, regulating mRNA splicing, or forming endogenous

siRNA. Studies have demonstrated that most long RNAs (lncRNAs)

are predominantly localized in the nucleus. However, some lncRNA

also exhibit functional roles in the cytoplasm (62). Additionally,

certain lncRNA have the capability to be transported to neighboring

cells or found in the serum through exosome-mediated transport

(63). The regulatory influence of lncRNA on target gene expression

is primarily achieved through cis-regulation or trans-regulation

mechanisms (64). It has been estimated that there are over 60,000

lncRNA identified in humans, and this number continues to

increase rapidly.

circRNAs are an RNA molecule kind found in a covalently

closed, single-stranded structure that is existing in a wide variety of

organisms, including viruses and mammals (65). The closed-loop

structure of circRNA provides it with resistance against RNA

degradation pathways. Additionally, circRNAs serve as miRNA
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sponges, exerting regulatory control over gene expression (66).

Many circRNAs have been observed within cell nuclei, and the

interactions between circRNA-miRNA-mRNA play crucial roles in

multiple signaling pathways, including those associated with

apoptosis, invasion, vascularization, and metastasis (67).

Numerous investigations have revealed their unique patterns of

expression and pivotal roles in a spectrum of conditions,

encompassing, but not restricted to cancer, cardiovascular disease,

neurological disorders, and autoimmune diseases (68).
3.3 ncRNA loading into EVs and
subsequent release and uptake

The RNA composition of EVs exhibits variability contingent

upon the cell type, the EV subpopulation, and the healthy or sick

state of the original cells, including the stimuli they receive (69). To

be moved via EVs, ncRNAs initially undergo sorting and

encapsulation processes within the EVs (14). Numerous methods

have been suggested for the entry of RNA into EVs, primarily

categorized into two main classes: RNA-binding proteins (RBPs)

and membrane proteins related to EV biogenesis.

RBPs selectively attach to particular RNA molecules to facilitate

their sorting into EVs (70). Santangelo et al. (71) discovered that the

RNA-binding protein Synaptotagmin-binding cytoplasmic RNA-

interacting protein, or SYNCRIP, is an essential part of the sorting

apparatus responsible for exocellular vesicular miRNAs in hepatocytes.

The depletion of SYNCRIP was demonstrated to hinder the uptake of

miRNAs into EVs. In a significant investigation, the protein

heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was

identified as a regulator of both miRNAs sorting into EVs and the

processing of miRNA transcripts (72). The Y-Box Binding (YBX)

protein is another well-documented RNA-binding protein that

facilitates the sorting of RNA into EVs. YBX-1 has been

demonstrated to play a role in packaging miR-223 and miR-133. By

employing a YBX-deficient cell line and thermostable group II intron

reverse transcriptase sequencing (TGIRT-seq), Shurtleff et al. (73)

conducted additional research, uncovering an extensive function of

YBX in the categorization of not just miRNAs but also tRNAs.

Regarding membrane proteins, the ESCRT pathway is

renowned for its involvement in sorting proteins into EVs (74,

75). Ago2, frequently engaged in the transport and processing of

miRNAs, forms a complex that facilitates the incorporation of Alix

along with Ago2-associated miRNAs into EVs (76). Wozniak et al.

further validated the link between the ESCRT complex and the

selective loading of RNA (77).

Following the delivery of MVBs to the cell’s plasma membrane,

they adhere to a standard process of vesicular docking and fusion

with the cell membrane (78). Molecular toggles (small GTPase), the

cellular scaffolding (microtubule and microfilament), molecular

transporters (dynein and kinesin), and the membrane fusion

machinery (SNARE complex) are important elements in this

mechanism (79). By overseeing every essential stage in membrane

trafficking, the Rab GTPase with over 70 subtypes positioned on

membrane surfaces, plays a critical role in enabling them to govern

various aspects of vesicle traffic like fusion, motility, and budding
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1343364
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1343364
(80). EVs interact with recipient cells in the extracellular space after

they are released, delivering cargo to produce functional effects.

Simultaneously, recipient cells take up these EVs through various

mechanisms (81). Recent studies increasingly indicate that

endocytosis is the predominant mechanism for the uptake of EVs

(79). Cytochalasin D is a metabolite recognized for its ability to

depolymerize the actin filament network, thereby inhibiting

endocytic pathways (82). Treatment with Cytochalasin D has

been observed on numerous occasions across different cell types,

indicating a substantial reduction in EV uptake in a dose-dependent

manner, although complete prevention is not achieved (83). The

transmembrane ligands located on the surface of EVs also have the

capability to directly attach to recipient surface receptors on cells to

start signaling pathways that are downstream that activate the target

cell (84). Surface molecules on EVs, including tetraspanins,

immunoglobulins, proteoglycans, and lectin receptors, participate

in the binding of EVs to target cells through mechanisms that

remain largely unclear (85).
4 EV-associated ncRNA-based
regulation of microglia polarization in
traumatic brain injury

Traumatic brain injury is a prevalent cause of both mortality and

disability, impacting individuals across all age groups (86, 87).

Approximately 69 million individuals are projected to experience

traumatic brain injury annually worldwide. These cases can be

classified into mild (approximately 80%), moderate (approximately

10%), and severe (approximately 10%) based on clinical factors and

severity (87, 88). Following traumatic brain injury, the constantly

active cells typically initiate a response within minutes directed

toward the damaged sites. They play a crucial role in modulating

neuroinflammatory responses and secondary cascades post-injury.

Activation of microglia is acknowledged as a pivotal cellular mediator

in the pathophysiology of traumatic brain injury (89). Clinical studies

provide evidence that activated microglia are commonly observed in

the brain during the acute (90), sub-acute (91), and even chronic

phases following the initial brain trauma (92). This is particularly

evident after moderate to severe traumatic brain injury (92, 93).

Similarly, preclinical studies have indicated that swift microglial

reactivity is observed within minutes in animal models of both

mild and severe traumatic brain injury (94). This process can

persist for days, weeks, and even months after experimental

traumatic brain injury, varying based on the types of lesions

involved (95). Remarkably, an analysis of the temporal dynamics of

microglia polarization following traumatic brain injury revealed the

activation of both M1-like and M2-like polarized microglia during

the initial stages after the injury (96). However, at one week post-

injury, the M2-like phenotype transitions to the M1-like phenotype,

marked by elevated levels of NOX2 expression (96). Inhibiting NOX2

in microglia, thereby altering the M1-/M2-like balance in favor of the

M2-like phenotype, significantly decreased oxidative damage in the

injured cortex. This demonstrates that repolarizing microglia toward
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an M2-like phenotype led to a reduction in oxidative damage in

neurons (96).

It has been clarified that mounting ncRNAs (such as lncRNA

LINC00707 (97), miR-186-5p (98), lncRNA HOXA11-AS (99),

lncRNA KCNQ1OT1 (100), LncRNA Meg3 (101), lncRNA

HOTAIR (102), miR-let-7c-5p (103)) are involved in modulating

the microglia polarization in traumatic brain injury. The

mechanisms governing microglia polarization after traumatic

brain injury involve a meticulously orchestrated process regulated

by various factors. These factors include but are not limited to,

MYD88, miR-7a-5p, NF-kB, miR-124-3p, MDK, NLRP3, ASC,

caspase-1, and miR-30a-5p. Most lncRNAs have been illustrated

to regulate microglia polarization by modulating microRNA. Hu

et al. (97) demonstrated that the suppression of lncRNA

LINC00707 mitigates brain injury by targeting miR-30a-5p,

thereby regulating microglia inflammation. Meng et al. (101)

uncovered that lncRNA Meg3 intensifies microglial activation and

the inflammatory response triggered by LPS and ATP stimulation.

Elevating miR-7a-5p levels alleviated lncRNA Meg3-induced

microglial activation without impacting lncRNA Meg3 expression.

Bioinformatic analysis and dual-luciferase assays confirmed that

lncRNA Meg3 directly interacts with miR-7a-5p, leading to a

negative regulatory effect on miR-7a-5p expression.

Moreover, it has been elucidated that EVs derived from different

stem cells, including human adipose mesenchymal stem cells (104),

human umbilical cord mesenchymal stem cells (105), and stem cells

from human exfoliated deciduous teeth (106), play a role inmodulating

microglia polarization in traumatic brain injury. In discussions about

EV-derived ncRNAs, a growing body of literature has emphasized their

significance in regulating microglia polarization. EVs containing

ncRNAs that either promote or inhibit M2 microglia polarization,

such as circ-Scmh1 (107), lncRNA 4933431K23Rik (108), miR-216a-

5p (109), miR-873a-5p (110), miR-9-5p (111), miR-181b (112), miR-

210 (113), miR−124 (10), and miR-21-5p (114), have been identified

from diverse cell sources including neurons, astrocytes, microglia, and

stem cells differentiated from various tissues like bone marrow and

adipose tissue. Notably, a significant proportion of these EV-ncRNAs

are derived from stem cells. EV-miR-216a-5p (109), miR-181b (112),

miR-210 (113), and miR−124 (10) derived from mesenchymal stem

cells are involved in repairing traumatic injury by inducing microglial

M2 polarization. EVs derived from adipose-derived stem cells have

been shown to improve nerve damage in the hippocampus resulting

from post-traumatic brain injury. This therapeutic effect is attributed to

the delivery of circ-Scmh1, which promotes microglial M2 polarization

(107). Indeed, not all EV-associated ncRNAs necessarily facilitate the

polarization of M2-type microglial cells. Based on research by Yin and

his colleagues (114), microglia phagocytosed neuron-derived EVs

containing miR-21-5p, leading to the induction of microglial

polarization. Simultaneously, the expression of miR-21-5p increased

in M1 microglial cells. The polarization of M1 microglia exacerbated

the release of neuroinflammatory factors, hindered neurite outgrowth,

elevated the accumulation of P-tau, and induced apoptosis in neurons.

In-depth information pertaining to this section can be referenced in

Figure 1 and Table 1.
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FIGURE 1

The underlying action of extracellular vesicle-noncoding RNA on the modulation of macrophage/microglia polarization in traumatic brain injury.
Extracellular vesicles (EVs), encompassing exosomes, microvesicles, and apoptotic bodies, form a diverse category of lipid bilayer-encased structures
released by nearly all cells. They play crucial roles in facilitating intercellular communication. These EVs carry non-coding RNAs (ncRNAs) that can
either promote or inhibit the polarization of M2 microglia. Examples of such ncRNAs include circ-Scmh1, lncRNA 4933431K23Rik, miR-216a-5p,
miR-873a-5p, miR-9-5p, miR-181b, miR-210, miR−124, and miR-21-5p. These ncRNA-containing EVs have been identified across a spectrum of cell
types, including neurons, astrocytes, microglia, and stem cells derived from various tissues such as bone marrow and adipose tissue.
TABLE 1 Preclinical studies assessing the effects of ncRNAs transferred via EVs in models of traumatic brain injury.

Author,
[Ref.]

ncRNA Expression Purification
Donor
cell

Injury model Effect on microglia activation

Chen
et al.,
2023 (107)

circ-Scmh1 Upregulation
Centrifuge
Filter Unit

Adipose-
stem cell

Controlled
cortical impact

Ameliorate nerve damage and promote microglial
M2 polarization

He et al.,
2023 (108)

lncRNA
4933431K23Rik

Upregulation Kit Astrocyte
Controlled

cortical impact
Improve Post-traumatic Recovery and microglial
M2 polarization via SMAD7

Liu et al.,
2020 (109)

miR-216a-5p Upregulation
Centrifuge
Filter Unit

Mesenchymal
stem cells

Controlled
cortical impact

Repair traumatic injury by shifting microglial M1/
M2 polarization

Long et al.,
2020 (110)

miR-873a-5p Upregulation Ultracentrifugation Astrocyte
Controlled

cortical impact
Inhibit neuroinflammation via microglia
phenotype modulation

Wang
et al.,
2023 (111)

miR-9-5p Upregulation Ultracentrifugation Microglia Lipopolysaccharide
Reduce LPS-stimulated inflammation in
microglia cells

Wen et al.,
2022 (112)

miR-181b Upregulation Ultracentrifugation
Mesenchymal
stem cells

Fluid
percussion injury

Reduce apoptosis and inflammation and promote
microglial M2 polarization

Xiong
et al.,
2023 (113)

miR-210 Upregulation Ultracentrifugation
Mesenchymal
stem cells

Lipopolysaccharide
Inhibit neuronal inflammation and contribute to
neurite outgrowth through modulating
microglia polarization

Yang et al.,
2018 (10)

miR−124 Upregulation kit
Mesenchymal
stem cells

Controlled
cortical impact

Promote the M2 Polarization and enhance
hippocampus neurogenesis via TLR4 pathway

Yin et al.,
2020 (114)

miR-21-5p Upregulation Ultracentrifugation Neuron
Controlled

cortical impact
Promote polarization of M1 microglia in culture
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ncRNA, Non-coding RNAs; LncRNA, long non-coding RNAs; TLR4, Toll-like receptors 4.
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5 EV-associated ncRNA-based
regulation on macrophage
polarization in lung injury

Acute lung injury is a clinical syndrome marked by damage to

alveolar epithelial and lung capillary endothelial cells, heightened

alveolar-capillary permeability, and impaired gas exchange (115).

Despite considerable scientific and technological progress, lung

injury continues to present a significant threat to human life and

health. Its rapid clinical development, high pathogenic rate, limited

effective treatment options, poor prognosis, and elevated mortality

rate highlight the urgent need for research dedicated to identifying

potential clinical solutions aimed at improving and potentially

eradicating lung injury (115). Recently, a growing body of

evidence suggests that macrophages play a pivotal role in the

pathogenesis of lung injury. Macrophages can be categorized into

two types: M1, associated with classical activation, and M2,

associated with alternative activation (115). It has been elucidated

that various ncRNAs (such as miR-223, miR-142, miR-146a, miR-

155) participate in modulating macrophage polarization in the

context of lung injury. The down-regulation of miR-223/142 has

been observed, and its overexpression has been shown to inhibit

macrophage activation, lung inflammation, and apoptosis (116,

117). miRNA-146a plays a regulatory role in the M2-type

polarization of macrophages and immune response control by

targeting Notch1, IRAK1, and IRF5, thereby enhancing the anti-

inflammatory effect (118–120). miRNA-155 is upregulated in the

LPS-induced acute lung injury model, and inhibiting its expression

has been shown to have anti-inflammatory effects by suppressing

the release of pro-inflammatory factors (121). Additionally, it has

been observed that miR-155 promotes M1 macrophage activation,

thereby exacerbating lung inflammation and tissue damage in

macrophages through the down-regulation of C/EBPb (115, 122).

In discussions about EV-derived ncRNAs, a growing body of

literature has emphasized their significance in regulating microglia

polarization. EVs containing ncRNAs that either promote or inhibit

M2 microglia polarization, such as lncRNA Lncenc1 (123), miR-

223-3p (116), miR-155 (122), miR-30d-5p (124), miR-221 (125),

miR-320a (125), miR-210-3p (126), miR-384-5p (127), miR−92a-

3p (128), miR-451 (9), miR-181a-5p (129), miR-21a-5p (130), miR‐

223 (8), and LncRNA HCG18 (131), have been identified from

diverse cell sources including macrophage, bronchoalveolar lavage

fluid, mouse blood, epithelial cells, human plasma, epithelial,

polymorphonuclear neutrophil, and stem cells differentiated from

various tissues like bone marrow and adipose tissue. The regulation

of macrophage polarization following lung injury is a precisely

coordinated process influenced by a range of factors. These factors

encompass, among others, Notch2/SOCS1, PTEN, pSTAT5, MIF,

PI3K, AKT, and ATG7. Significantly, a substantial portion of these

EV-derived ncRNAs originates from mesenchymal stromal cells.

miR-384-5p (127), miR-451 (9), miR-181a-5p (129), and miR-223

(8), carried by mesenchymal stromal cells, participate in the repair

of traumatic injuries by promoting microglial M2 polarization. Of

note, miR-221 (125), miR-320a (85), and miR−92a-3p (128)
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transported by EVs originating from epithelial cells stimulate

alveolar macrophage activation. Concurrently, miR-21a-5p (130),

transported by EVs derived from epithelial cells, promotes M2

macrophage polarization through the Notch2/SOCS1 pathway. In

addition, EV-associated lncRNA Lncenc1from macrophage, EV-

associated miR-223-3p from bronchoalveolar lavage fluid (116),

EV-associated miR-155 from mouse blood (122), EV-associated

LncRNA HCG18 and miR-30d-5p from polymorphonuclear

neutrophils (124, 131), and EV-associated miR-210-3p (126) from

human plasma aggravate acute lung injury by promoting M1

macrophage polarization. Comprehensive details regarding this

section can be consulted in Figure 2 and Table 2.
6 EV-associated ncRNAs involved in
both conditions demonstrate
significant overlaps in their modes
of action

Despite the diverse pathophysiological processes occurring in

different tissues and organs associated with these two disorders, a

common feature is the role of EVs as carriers for regulating

macrophage/microglia polarization via ncRNA mechanisms.

Interestingly, certain EV-associated ncRNAs seem to participate

in both conditions by modulating respective signaling pathways.

These overlapping ncRNAs demonstrate different protective effects

on disease outcomes. Giving significant attention to uncovering

potential shared ncRNAs may offer new insights into tissue

remodeling processes and help identify therapeutic targets for

lung injury and traumatic brain injury. Based on the

aforementioned intervention studies involving EV-associated

ncRNAs, a total of 2 ncRNAs (miR-210 and miR-21) have also

been identified, with strong evidence suggesting their involvement

in both pathophysiological conditions. miR-210 is considered the

primary hypoxia-inducible microRNA, as it has been consistently

observed to exhibit significant upregulation in response to hypoxic

conditions across various cell types (132). In addition to its role in

the intricate regulation of various biological processes, miR-210

loaded into EVs has also been implicated in the treatment of several

human diseases, including acute lung injury and traumatic brain

injury. Based on the study conducted by Xiong et al. (113), in the

condition of traumatic brain injury, EVs originating from

mesenchymal stem cells, which are engineered to overexpress

miR-210, exhibit the ability to suppress neuronal inflammation

and promote neurite outgrowth by modulating microglia

polarization. On the contrary, EVs derived from plasma deliver

miR-210-3p, targeting ATG7, to promote sepsis-induced acute lung

injury by regulating autophagy and activating inflammation (126).

With regard to the miR-21, one of the most extensively studied in

humans, it plays crucial roles in various physiological and

pathological processes, including cell proliferation, apoptosis, cell

migration and invasion, and gene expression modulation. miR-21 is

often found to be highly expressed in many cell types and is

considered a potential driver of injury development and
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FIGURE 2

The underlying action of extracellular vesicle-noncoding RNA on the modulation of macrophage/microglia polarization in lung injury. Extracellular
vesicles (EVs) harboring non-coding RNAs (ncRNAs) capable of either promoting or inhibiting M2 microglia polarization have been recognized.
Examples of these ncRNAs include lncRNA Lncenc1, miR-223-3p, miR-155, miR-30d-5p, miR-221, miR-320a, miR-210-3p, miR-384-5p, miR−92a-
3p, miR-451, miR-181a-5p, miR-21a 5p, miR‐223, and LncRNA HCG18. These EVs have been isolated from diverse cellular origins, including
macrophages, bronchoalveolar lavage fluid, mouse blood, epithelial cells, human plasma, polymorphonuclear neutrophils, and stem cells derived
from tissues such as bone marrow and adipose tissue. Among these non-coding RNAs, those released by stem cells can promote the differentiation
of M2 macrophages, thereby improving the prognosis of lung injury.
TABLE 2 Preclinical studies assessing the effects of ncRNAs transferred via EVs in models of lung injury.

Author,
[Ref.]

ncRNA Expression Purification Donor cell Injury model Effect on macrophage activation

Han et al.,
2023 (123)

lncRNA
Lncenc1

Upregulation Ultracentrifugation Macrophage
LPS-induced
lung injury

Promote inflammasome activation
in macrophage

He et al.,
2022 (116)

miR-
223-3p

Upregulation Ultracentrifugation
Bronchoalveolar
lavage fluid

LPS-induced
lung injury

Promote autophagy by inhibiting the
expression of STK39

Jiang et al.,
2019 (122)

miR-155 Upregulation Ultracentrifugation Mouse blood Sepsis-related ALI
Promote proliferation and inflammation by
targeting SHIP1 and SOCS1

Jiao et al.,
2021 (124)

miR-
30d-5p

Upregulation Kit
Polymorphonuclear

neutrophils
Sepsis-related ALI

Promote M1 macrophage activation and
macrophage pyroptosis via NF-kB

Lee et al.,
2016 (125)

miR-221
miR-320a

Upregulation Ultracentrifugation Epithelial cells
Hyperoxia-induced
oxidative stress

Promote macrophage-regulated lung
inflammatory responses

Li et al.,
2021 (126)

miR-
210-3p

Upregulation Ultracentrifugation Human plasma Sepsis-related ALI
Enhance macrophage inflammation and
apoptosis via ATG7

Liu et al.,
2021 (127)

miR-
384-5p

Upregulation Ultracentrifugation
Mesenchymal
stromal cells

LPS-induced
lung injury

Relieve LPS-induced alveolar macrophage
viability loss and apoptosis

Liu et al.,
2021 (128)

miR
−92a-3p

Upregulation Ultracentrifugation Epithelial cells Sepsis-related ALI
Promote alveolar macrophage activation via
NF-kB signaling by targeting PTEN

Liu et al.,
2022 (9)

miR-451 Upregulation Kit
Mesenchymal
stromal cells

Severe burn
rat model

Modulate macrophage M2 polarization via
MIF- PI3K-AKT signaling pathway

Su et al.,
2022 (129)

miR-
181a-5p

Downregulation Ultracentrifugation
Mesenchymal
stromal cells

Lipopolysaccharide
Reprogram macrophages via the PTEN-
pSTAT5-SOCS1 axis

Wang et al.,
2022 (130)

miR-
21a-5p

Upregulation Ultracentrifugation Epithelial cells
Mechanical
ventilation

Promote M2 macrophage polarization via
Notch2/SOCS1

(Continued)
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progression. EVs derived from neurons, featuring elevated levels of

miR-21-5p, facilitated the polarization of M1 microglia in cultured

conditions (114). On the contrary, EVs originating from epithelial

cells, featuring elevated levels of miR-21-5p, foster M2 macrophage

polarization through the Notch2/SOCS1 pathway during

mechanical ventilation (130). This suggests that the therapeutic

effects of a particular ncRNAmay differ depending on the cells from

which it is secreted or the type of disease it is involved in.
7 EV-associated ncRNAs represent
promising novel candidates for both
therapeutic objectives and diagnostics
While there have been notable strides in comprehending the

sequence of events that dictate the pathophysiology of lung and

traumatic brain injuries, the fundamental mechanisms still await

complete clarification. Currently, there are no biological tools

available for the detection of lung and traumatic brain injuries or for

monitoring tissue recovery. The urgent requirement for innovative

diagnostics in identifying lung and traumatic brain injuries and

predicting deterioration risk in such injury patients has led to the

exploration of endogenous markers. Numerous EV-ncRNAs exhibit

abnormal expression following injury, suggesting their potential as

biomarkers. Elevated or diminished levels of EV-ncRNA detected in

lung and traumatic brain injuries play a role in the diagnostic process.

In the context of traumatic brain injury, as indicated by Harrison et al.

(133), there is an upregulation of EV-associated miR-21, miR-146,

miR-7a, and miR-7b, derived from traumatic brain injury mice, while

miR-212 experiences a downregulation (133). Furthermore, some

researchers illustrated that EVs originating from the brain and

containing ncRNA could be employed to characterize distinct states

of traumatic brain injury and discern potential signaling pathways in

the human brain following damage (134). Crucially, they proposed the

potential utilization of a biomarker panel to delineate the characteristics

of a particular lesion, instead of relying on just one marker. This

approach acknowledges that a solitary marker might lack the ability to

differentiate the intricate stages of a lesion and sufficient particularity

for healing (134). EV-ncRNA derived from plasma not only serves as a

diagnostic indicator for traumatic brain injury but also mirrors the

underlying pathophysiological processes following traumatic brain

injury. The pattern of miRNA activity in EVs derived from

peripheral blood plasma was investigated in an inducement of

traumatic brain damage in rats using high-throughput whole
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transcriptome sequencing, followed by subsequent bioinformatics

analysis. Consequently, Wang et al. (135) detected 50 miRNAs with

significant differential expression, comprisingmiRNAs with 31

increased level and 19 decreased level. Similarly, the researchers

showcased that certain EV-associated ncRNAs originating from

bodily fluids can serve as early diagnostic indicators for acute lung

injury to a certain extent. Parzibut et al. (136) conducted a study in

which they examined the plasma EV-miRNA expression in eight

patients with acute respiratory distress syndrome and ten healthy

subjects. Significantly, among these miRNAs, 12 were identified as

having differential expression, and seven (miR-221-3p, miR-24-3p,

miR-130a-3p, Let-7d-3p, miR-1273a, miR-98-3p, and miR-193a-5p)

were proven to effectively distinguish between acute respiratory distress

syndrome and hemorrhagic shock. Furthermore, within the cohort of

patients with acute type A aortic dissection, plasm EVs from

individuals with acute lung injury showed upregulation of miR-485

and downregulation of miR-206 compared to those without acute lung

injury. This observation suggests the potential of miR-485 andmiR-206

to serve as amarker for acute lung damage in individuals suffering from

acute An aortic dissection (137).

EV-associated ncRNAs serve not only as biomarkers for

diagnosing lung and traumatic brain injuries but also hold

promise as potential therapeutic targets. The employment of

carrier systems to deliver therapeutic payloads to specific cells or

tissues has garnered significant interest. Due to their capability to

transport cargo, EVs have emerged as prominent entities in the field

of nanotherapeutics. Modifying ncRNAs with expression from EVs

and delivering them to recipient cells and tissues could offer

insightful information about the emergence of lung and traumatic

brain injuries, rendering them appealing targets for therapeutic

intervention. As indicated by Long et al. (110), EVs derived from

brain extracts-stimulated astrocytes were found to promote the

transformation of microglial M2 phenotype early on in the course

of traumatic brain injury. Within these astrocyte-derived EVs, more

than 100 miRNAs were identified. Notably, miR-873a-5p emerged

as a significant component, exhibiting high expression levels in

human traumatic brain tissue. Additionally, some studies have

suggested that ncRNA in EVs can promote the microglial cells’

transition to the M2 subtype, thereby facilitating the neuronal

function returning following a catastrophic brain injury. miR-124

stands out as a miRNA unique to the brain with high expression in

microglia (138). In a state of normal physiological function, miR-

124 governs the functionality of microglia and holds a pivotal role

in maintaining their quiescent state (139). Under pathological

conditions, the decrease in miR-124 expression amplifies
TABLE 2 Continued

Author,
[Ref.]

ncRNA Expression Purification Donor cell Injury model Effect on macrophage activation

Xu et al.,
2023 (8)

miR‐223 Upregulation Ultracentrifugation
Mesenchymal
stem cells

Lipopolysaccharide
Ameliorate acute lung injury by regulating
macrophage M2 polarization

Zhu et al.,
2023 (131)

LncRNA
HCG18

Upregulation Ultracentrifugation
Polymorphonuclear

neutrophil
Sepsis acute
lung injury

Aggravate sepsis acute lung injury by
regulating macrophage polarization
ncRNA, Non-coding RNAs; LncRNA, long non-coding RNAs; ALI, acute lung injury.
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inflammation of the brain caused by inducing microglial

polarization toward the M1 phenotype. Conversely, the elevation

of miR-124 expression diminishes neuroinflammation by

encouraging polarization of microglia into the M2 subtype (140,

141). In line with prior investigations into the role of EV- miR-124

in brain recovery following traumatic brain injury, recent research

by Yang et al. (10) has shown that EVs can act as an efficient

delivery tool for miR-124 to the brain. This delivery contributes to

the stimulation of microglial M2 polarization, leading to enhanced,

following brain damage, enhanced functional recovery and

hippocampus neurogenesis. This is attributed to their nano-size

advantages, capability to transport microRNA, and ability to

traverse the blood-brain barrier. For lung injury, stem cells

carrying ncRNA hold tremendous therapeutic potential. For

example, Liu et al. (9) indicated that EV-miR-451 derived from

human umbilical cord mesenchymal stem cells mitigated acute lung

injury by influencing macrophage M2 polarization through the

regulation of the MIF-PI3K-AKT signaling pathway. Xu et al. (8)

shown that EVs generated from bone marrow mesenchymal stem

cells reduce acute lung damage caused by LPS by modulating the

M2 polarization of alveolar macrophages. The validation using

miR-223 mimics and inhibitors confirms the crucial role of miR-

223 in the polarization of M2 macrophages mediated by EVs

derived from bone marrow mesenchymal stem cells (142).
8 Conclusion and perspectives of the
significance of EV-associated ncRNAs

EVs play a pivotal role in the progression of lung and traumatic

brain injuries, largely influenced by their cargo contents. The

inherent advantages of EVs have positioned them as crucial

entities for utilizing EV-derived ncRNAs as diagnostic,

prognostic, and therapeutic tools. Abundance in various body

fluids (such as blood, urine, saliva) renders EVs easily extractable

and analyzable, offering noninvasive advantages. EVs, serving as

natural carriers for ncRNAs, shield these cargos from degradation

by endogenous RNases. Specific biophysical characteristics,

including ease of retrieval and preservation, make EVs suitable

for in vitro studies and engineering purposes. In this context,

ncRNAs encapsulated within EVs have been shown to exert

biological functions by modulating specific aspects, particularly

macrophage/microglia polarization. Mesenchymal stem cells

represent a group of pluripotent cells with the ability for

multifaceted development and self-renewal. EVs derived from

Mesenchymal stem cells of various sources demonstrate

promotive effects on M2 macrophage/microglia polarization

through ncRNAs in both injury conditions, indicating their

potential application in clinical cell-free therapy. Furthermore,

EV-ncRNAs hold significant promise as medicinal or diagnostic

tools, representing an exciting advancement in the management of

lung and traumatic brain injuries. However, considerable challenges
Frontiers in Immunology 10
must be addressed before EV-ncRNAs can be implemented as

clinical assays in such disorders. The mechanism of action of EV-

ncRNAs is primarily grounded in animal and cellular models,

necessitating further validation in medical specimens. Prospective

studies based on medical samples often rely on small cohorts and

lack validation in larger cohort studies. Further exploration is

necessary to develop a technique capable of generating pure and

homogeneous EVs. It is crucial to acknowledge that different

isolation protocols may result in the extraction of subpopulations

of EVs with varying ncRNAs (143–145). In summary, while EV-

ncRNAs show promise as valuable biomarkers and therapeutic

agents for lung and traumatic brain injuries, continued research

efforts and clinical validation are essential to fully harness their

potential in clinical practice.
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