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Inhibition of interferon gamma
impairs induction of
experimental epidermolysis
bullosa acquisita
Natalie Gross1†, Jana Marketon1†, Sadegh Mousavi1,
Kathrin Kalies2, Ralf J. Ludwig1,3 and Katja Bieber1*

1Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany, 2Institute of
Anatomy, University of Lübeck, Lübeck, Germany, 3Department of Dermatology, University Hospital
Schleswig-Holstein Lübeck, Lübeck, Germany
Epidermolysis bullosa acquisita (EBA) is a muco-cutaneous autoimmune disease

characterized and caused by autoantibodies targeting type VII collagen (COL7). The

treatment of EBA is notoriously difficult, with a median time to remission of 9

months. In preclinical EBA models, we previously discovered that depletion of

regulatory T cells (Treg) enhances autoantibody-induced, neutrophil-mediated

inflammation and blistering. Increased EBA severity in Treg-depleted mice was

accompanied by an increased cutaneous expression of interferon gamma (IFN-g).
The functional relevance of IFN-g in EBA pathogenesis had been unknown. Given

that emapalumab, an anti-IFN-g antibody, is approved for primary hemophagocytic

lymphohistiocytosis patients, we sought to assess the therapeutic potential of IFN-g
inhibition in EBA. Specifically, we evaluated if IFN-g inhibition has modulatory effects

on skin inflammation in a pre-clinical EBA model, based on the transfer of COL7

antibodies into mice. Compared to isotype control antibody, anti-IFN-g treatment

significantly reduced clinical disease manifestation in experimental EBA. Clinical

improvement was associated with a reduced dermal infiltrate, especially Ly6G+

neutrophils. On the molecular level, we noted few changes. Apart from reduced

CXCL1 serum concentrations, which has been demonstrated to promote skin

inflammation in EBA, the expression of cytokines was unaltered in the serum and

skin following IFN-g blockade. This validates IFN-g as a potential therapeutic target in
EBA, and possibly other diseases with a similar pathogenesis, such as bullous

pemphigoid and mucous membrane pemphigoid.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1343299/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1343299/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1343299/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1343299/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1343299&domain=pdf&date_stamp=2024-05-10
mailto:katja.bieber@uksh.de
https://doi.org/10.3389/fimmu.2024.1343299
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1343299
https://www.frontiersin.org/journals/immunology


Gross et al. 10.3389/fimmu.2024.1343299
Introduction

Epidermolysis bullosa acquisita (EBA) is a chronic autoimmune

disease that primarily affects the mucous membranes and/or the

skin. It is distinguished and caused by the presence of

autoantibodies that specifically target type VII collagen (COL7), a

crucial protein responsible for maintaining the structural integrity

of the skin’s basement membrane zone (1, 2). There is a clear and,

so far, unmet medical need in the management of patients with EBA

(3): First, EBA is notoriously difficult to treat. Despite combined

immunosuppressive treatment, it takes on average 9 months to

induce remission (4). Second, EBA patients are at an increased

risk to develop other inflammatory diseases, such as lupus

erythematosus and lichen planus, and metabolic and

cardiovascular disease (5). Third, the overall risk of death in

increased 2.5-fold compared to age- and sex- matched controls (6).

Use of preclinical model systems can be used to identify and

validate new therapeutic targets. Using antibody transfer models of

EBA or bullous pemphigoid (BP), a pemphigoid disease that shares

several pathogenic pathways with EBA (7), we noted that depletion of

regulatory T cells (Treg) led to a significantly aggravated

inflammation and blistering in both model systems. On a

molecular level, Treg depletion was accompanied by an increased

expression of interferon gamma (IFN-g), CXCL-9, IL-4, IL-13, and
IL-10 in the skin of the mice (8). Except for IL-10, the impact of these

afore mentioned cytokines on autoantibody-induced and neutrophil-

mediated skin inflammation and blistering in EBA are unknown.

Regarding IL-10, this cytokine inhibits complement-mediated

neutrophil migration in the context of EBA and infection (9). One

may assume that blockades of IL-4 and IL13 also have

immunosuppressive effects because case reports showed a favorable

response of the IL-4Ra antibody dupilumab in BP patients (10–12).

On the other hand, IL4 may promote M2 macrophage proliferation

(13), which would presumably lead to resolution of EBA or BP. We

here focused on INF-g because both recombinant protein and

blocking antibodies are approved for the use in patients (14, 15).

There is no information on IFN-g expression in EBA patients.

In BP patients, decreased (16) or unaltered (17, 18) serum

concentrations of IFN-g have been reported. In the skin of BP

patients, IFN-g levels were identical to those of healthy controls

(19), while in the blister fluid of BP patients, IFN-g concentrations
were higher compared to those in the serum of corresponding BP

patients (18). Mechanistically, IFN-g could impact on BP

pathogenesis by modification of the expression hemidesmosomes

on keratinocytes (20). A small-scale, open study addressed the

impact of recombinant IFN-g treatment in nine BP patients, all of

which showed clinical improvement (14).

Taken together, there are missing or conflicting results

regarding the expression and function of IFN-g in EBA and BP.

Based on our findings of an increased IFN-g expression and a more

severe phenotype following Treg depletion in experimental EBA, we

hypothesized that inhibition of IFN-g may dampen skin

inflammation and blistering in EBA. To challenge this

assumption, we employed the antibody transfer model of EBA.
Frontiers in Immunology 02
Materials and methods

Animal experimentation

C57Bl/6J mice were originally obtained from the Jackson

Laboratories (Bar Harbor, Maine, USA) and bred at the animal

facility of the University of Lübeck, Germany. For the experiments,

sex-matched mice between 8 weeks and 14 weeks of age were used.

The mice were given standardized mouse chow and acidified

drinking water provided ad libitum and maintained on a 12- h

light/dark cycle. All clinical examinations, biopsies, and bleeding

procedures were performed under anesthesia, using intraperitoneal

(i.p.) administration of a ketamine (100 mg/g, Sigma-Aldrich,

Taufkirchen, Germany) and xylazine (15 mg/g, Sigma-Aldrich)

mixture unless otherwise specified. All animal experiments were

conducted as per the European Community rules for animal care

and were approved by the governmental administration [V242–

12193/2020 (51-6/18)], Ministry for Energy, Agriculture, the

Environmental and Rural Areas). Certified personnel performed

the experiments.
Generation of anti-mouse COL7C

Specific rabbit anti-mCOL7C IgG from immune serum was

isolated as previously described (21). In brief, New Zealandic white

rabbits were immunized with 250 µg recombinant proteins of the

non-collagenous (NC)-1 domain of murine COL7C (mCOL7C)

solved in complete Freund adjuvant. Boosters were administered

three times every 14 days (250 µg, dissolved in incomplete Freund

adjuvant). Serum samples were taken from the rabbits at 3-week

intervals. Immunization and bleeding of rabbits were performed by

Eurogentec (Seraing, Belgium). Total IgG from immune sera was

purified by affinity chromatography using protein G. For

isolation of specific rabbit anti-mCOL7C IgG, a second affinity

chromatography using mCOL7C-coupled Affi-Gel 10 (Bio-Rad,

München, Germany) was performed using the manufacturer’s

protocol with minor modifications: 5 mg/ml of mCOL7C in

MOPS buffer (0.1 M MOPS, 80 mM CaCl2, pH 7.5) was

incubated with Affi-Gel 10 in MOPS buffer for 1 h at room

temperature. Following incubation with MOPS buffer/

ethanolamine (1:20) for 1 h, the mCOL7C-coupled gel was

washed with PBS and prepared for use. For the isolation of

mCOL7C-specific IgG, the rabbit anti-murine COL7C IgG

obtained from the first affinity chromatography was incubated

under gentle shaking on the mCOL7C-coupled Affi-Gel 10 for 1 h

at 4°C. The column was washed with PBS and subsequently with a

washing buffer (0.1% Triton-X-100, 850 nM NaCl) until all

nonspecific IgG was removed (OD280 < 0.01). To elute, the

column was flushed with an elution buffer (0.1 M glycine, pH

2.8). The eluate was neutralized by Tris buffering at a pH of 7.2

and concentrated using an Amicon Ultra-15 filter (Millipore,

Darmstadt, Germany). The reactivity of all IgG fractions was

analyzed by immunofluorescence microscopy of murine skin.
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Induction of experimental EBA,
randomization, and treatments

Antibody-induced transfer studies for inducing experimental EBA

were performed following published protocols with minor alterations

(21). The mice were given three i.p. injections of 150 µg of specific

rabbit anti-mCOL7C IgG on days 0, 2, and 4. Blocking murine IFN-g
was achieved by administering rat anti-murine IFN-g (Hölzel

Diagnostika Handels GmbH, Köln, Germany) i.p. at 125 µg, 250 µg,

or 500 µg per mouse every other day starting 1 day before the first

rabbit anti-mCOL7C IgG injection and ending on day 13 (×8 total). As

a control, a separate group of mice was injected with rat IgG1 isotype

antibody (Hölzel Diagnostika Handels GmbH) at a dosage of 500 µg

i.p. per mouse following the same injection schedule. Mice were

randomly allocated to the groups in a sex-balanced ratio by an

independent researcher. On days 4, 8, 12, and 15 (the final day), an

investigator, unaware of the applied treatments, scored the affected

areas of EBA by evaluating the presence of crust, erythema, lesions,

and/or alopecia on individual body parts. The overall body score is

calculated through a composite score of 2.5% for each ear, snout, and

oral mucosa, 0.5% for each eye, 9% for the head and neck (excluding

eyes, ears, oral mucosa, and snout), 5% for each front limb, 10% for the

hind limb and tail, and 40% for the remaining trunk (22). The

assessment of each mouse’s total burden included the evaluated EBA

score, weight loss compared to the start of the experiment, changes in

normal behavior, and clinical parameters such as body temperature or

breathing frequency. Scoring was based on the severity of each

parameter, with a score of 0 indicating no burden, 1 indicating a

very slight change, 5 indicating a minor burden, 10 indicating a mild

burden, and 20 indicating a severe burden. This was followed by an

immediate early sacrifice of the individual mouse.
Determination of secondary endpoints

Serum, ear skin, lesional, and non-lesional skin biopsies were

obtained at the final day and were prepared for examination by

histopathology, IF microscopy, ELISA, LegendPlex, and RT-PCR.

For staining, sections from the ears were used, as they best reflect

the individual EBA score of each mouse. For RT-PCR, however,

similarly inflamed skin samples were taken to look for differences in

equally inflamed lesions between the groups.

H&E staining of lesional skin
For histology, skin and ear samples were fixed in 3.7%

paraformaldehyde and embedded in paraffin. Hematoxylin and

eosin (H&E) staining was performed on 4–5- µm- thick sections

following standard protocols. The dermal infiltration score was

assessed by combining the individual epidermal thickness and split

formation and infiltration of immune cells by an investigator

unaware of the applied treatments.

Detection of tissue-bound IgG and C3
To detect tissue- bound rabbit IgG and murine C3, direct

immunofluorescence microscopy was performed as described
Frontiers in Immunology 03
(21). Briefly, frozen sections were prepared from 6- µm- thick

skin and ear sections and incubated with goat anti-rabbit antibodies

reactive with rabbit IgG (Dako Deutschland GmbH, Hamburg,

Germany) and murine C3 (MP Biomedicals LLC, Keyseberg,

France) . Both sect ions were labeled with fluorescein

isothiocyanate (FITC), and the respective fluorescence intensity

was evaluated by a blinded investigator using a semi-quantitative

assessment method.

ELISA for detection of circulating total mouse
and anti-rabbit IgG

Serum levels of circulating total mouse IgG and specific mouse

anti-rabbit IgG were measured by ELISA using mouse IgG

quantification kits (Bethyl, Montgomery, Texas, USA). In detail,

each well was coated either with 100 µg affinity purified goat anti-

mouse IgG-Fc coating antibody or 250 ng normal rabbit IgG

(Bethyl). To reduce nonspecific binding, plates were blocked with

1% BSA in PBS-T at room temperature for 1 h. Sera were added

with a prior dilution of either 1:32,000 for the detection of total IgG

or 1:100 for anti-rabbit IgG. After incubation of 1 h, bound

antibodies were detected by HRP-conjugated goat anti-mouse IgG

(Bethyl) and tetramethylbenzidine (Thermo Fisher Scientific,

Waltham, USA). The enzymatic color reaction was stopped by 2

M sulfuric acid (Carl Roth, Karlsruhe, Germany), and the change in

OD was measured with a plate reader (Promega, Mannheim,

Germany) at 450 nm. Standard reference curves were established

using the provided mouse or rabbit sera.

Detection of cutaneous Ki-67, Ly6G, F4/80, CD4,
and CXCL1 expression

In paraffin- embedded sections of lesional ear skin, proliferation,

neutrophils, macrophages, and T helper cells, and CXCL1 were stained

with the mAbs rat anti-mouse Ki-67 (Biolegend, San Diego, CA, USA),

rat anti-mouse Ly6G (Biolegend), rabbit anti-mouse F4/80 (Abcam,

Cambridge, United Kingdom), rabbit anti-mouse CD4 (Abcam), or

rabbit anti-mouse CXCL1 (Invitrogen, Thermo Fisher Scientific,

Waltham, MA, USA). Normal rat IgG (Biolegend) or rabbit IgG

(Abcam) were utilized as isotype antibodies controls. The initial two

stains were based on indirect immunofluorescence (IIF), while the

latter three relied on immunohistochemistry (IHC). De-paraffinization

of sections was done in histol (Carl Roth) and then re-hydrated in a

descending ethanol series. To assess proliferation, macrophages, T

helper cells, and CXCL1, two options were used: heat-induced antigen

retrieval at 310°C under pressure in a 10 mM natrium citrate buffer

(pH 6.0), or Tris-EDTA buffer [pH 9.0, composed of 10 mM Tris-base

(SERVA Electrophoresis, Heidelberg, Germany), 1 mM EDTA v/v

(Carl Roth)]. Antigen retrieval for detecting neutrophils staining was

based on a 10-min-long enzyme digestion step that employed a ready-

to-use pepsin solution (Thermo Fisher Scientific). To reduce

nonspecific binding, blocking was performed with 5% goat normal

serum (Dako, Glostrup, Denmark) or in a 1% BSA solution at room

temperature for 20 –60 min. Primary antibody binding was performed

either overnight at 4°C (neutrophils, macrophages, T-helper cells, and

CXCL1) or for 90 min at room temperature (proliferation). The

secondary antibody goat anti-rat Alexa Fluor 594 (Jackson Immuno
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1343299
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gross et al. 10.3389/fimmu.2024.1343299
Research, Ely, United Kingdom) was used for IIF staining, and the goat

pAb to rabbit IgG (Abcam) was used for CD4 and CXCL1 IHC

staining. After incubation for 1 h at room temperature, IIF stains were

mounted with DAPI (Southern Biotech, Birmingham, Alabama, USA).

CD4 detection was performed using the FastRed substrate kit (Abcam)

or HIGHDEF red IHC chromogen (AP) kit (Enzo Life Science,

Farmingdale, New York, USA) for CXCL1. Macrophage staining was

performed with SignalStain Boost IHC Detection Reagent (HRP,

rabbit) and SignalStain DAB Substrate Kit (both Cell Signaling

Technology, Danvers, MA, USA) immediately after primary

antibody binding according to the manufacturer’s instructions. All

IHC stains were counterstained with Mayer’s hemalaun (Waldeck,

Münster, Germany). Immunofluorescence and immunohistochemical

staining were examined using a Keyence BZ-9000E series microscope

(Osaka, Japan). The analysis immunohistochemical staining was

conducted through light microscopy. The scoring system used for

evaluation was quantitative and blinded, ranging from 0 to 4. A score of

“0” indicated absence of staining in immune cells, while a score of “1”

indicated staining of <10% of Ki-67, Ly6G, F4/80, and CXCL1 or one to

five cells for CD4. A score of “2” denoted staining of between 11% and

30% or 6–10 cells, while “3” indicated staining of 31%–75% or 11–15

cells. Finally, a score of “4” represented staining of more than 75% or

more than 15 positive cells.

Detection of serum cytokine
concentration (Legendplex)

Different cytokine concentrations in the serumwere analyzed using

a custom-made LEGENDplex™ (Biolegend) as described by the

manufacturer’s protocol. To analyze, cytokines comprised IL-1b, IL-
4, IL-1a, IFN-g, TNF-a, CXCL1, IL-10, IL-13, IL-17A, and GM-CSF.

Detection of marker expression in the skin by
RT-PCR

To analyze gene expression in skin sections, 10 cryosections (12

µm) were prepared and used for RNA isolation, reverse transcription,

and real-time RT-PCR as previously described (23). In short, total

RNA was isolated from comparable inflamed lesional skin of both

groups according to the manufacturer’s protocol (innuPrep RNA

Mini Kit, Analytic Jena AG). After reverse transcription, the cDNA

was added to either qPCR Master MixPlus or qPCR Master Mix

SYBR Green Plus (Thermo Fisher Scientific) and amplified using an

SDS ABI7900 system (Applied Biosystems, Darmstadt, Germany).

The number of cDNA copies was normalized using the 2DCT method

with housekeeping gene GAPDH.

Markers selected for analysis were Il17a (Mm00439618_m1),

Itgam (Mm00434455_m1), Cxcl1 (Mm04207460_m1), Ifngr1

(Mm00599890_m1), Tnf (Mm00443258_m1), Il4ra (Mm0127

5139_m1), Csf2 (Mm00438328_m1), Stat3 (Mm01219775_m1),

Il10 (Mm01288386_m1), Stat6 (Mm01160477_m1), and Gapdh

(Mm99999915_g1) all from Thermo Fisher Scientific.
Statistical analysis

Data were analyzed using GraphPad Prism, version 9

(GraphPad Software Inc., Boston, MA, USA). Applied tests and
Frontiers in Immunology 04
confidence intervals are indicated in the respective text and figure

legend. A p-value < 0.05 was considered statistically significant.

Sample size calculation for animal experiment were performed

with SigmaPlot 12.0 (Systat Software Inc.) considering the

percentage of with EBA affected body area as primary endpoint.

The calculations assumed an expected standard deviation of 25% in

the antibody transfer-induced EBA model, an alpha level of 5%, a

power of 80%, and a minimum detectable difference from the

positive control of 30%.
Results

Blockade of IFN-g hinders induction of skin
inflammation and blistering in antibody
transfer-induced EBA

To assess the functional impact of IFN-g inhibition in

experimental EBA, we induced disease by transfer of COL7C

antibodies into C57Bl6/J mice that were treated with different

doses of a function-blocking IFN-g antibody or appropriate

isotype control antibody (Figure 1A). In isotype antibody-treated

mice, peak disease severity was reached on day 12 of the experiment

with 8.5% of the body surface area affected by EBA skin lesion.

Blockade of IFN-g led to a significant lower EBA affected body area

in in all three treated groups on day 12 with 4.3% (125 µg anti-IFN-

g), 6.3% (250 µg anti- IFN-g), and 7.4% (500 µg anti-IFN-g),
respectively, whereas only the highest dose had already a

significant effect on the disease score on day 8 of the experiment

with 2.0% in the treated group and 3.2% in the control group. This

effect persisted until day 15 with 4.7% of the affected body area in

comparison to the control group with 6.5% (Figures 1B, C).

During the whole experiment, the total burden including the

burden resulting from the affected body surface area by EBA skin

lesions, weight loss, change in behavior, and general condition was

assessed for each mouse. Mice treated with the highest treatment

dose exhibited a significantly less total burden compared to the

isotype antibody-treated control group on days 12 and 15, reflecting

also the positive effect on the clinical disease score and the good

tolerance of the treatment (Table 1).

The reduced clinical disease in mice treated with the highest

dose of the IFN-g antibody was accompanied with a reduced dermal

leukocyte infiltration (Figure 1D). Further distinction of the dermal

infiltrate showed that this was almost exclusively due to reduced

numbers of Ly6G+ neutrophils, whereas the amount of F4/80+

macrophages and CD4+ T cells was identical between mice treated

with isotype or anti-IFN-g antibody (Figures 2A–D). Changes in the

clinical phenotype were independent of keratinocyte proliferation

(Figure 2), but a significant lower expression of CXCL1 in the

epidermis in the treated group compared to the positive control

group could be observed (Figure 2E). In contrast, there was no

difference in CXCL1 levels in the dermis (data not shown).

Tissue- bound IgG in the skin and circulating total mouse IgG

were also identical among the groups. However, C3 deposits along

the dermal epidermal junction were significantly increased in the

two highest treated groups compared to that in isotype antibody-
frontiersin.org
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treated mice. Additionally in the highest treated group, significantly

less of the injected COL7 antibodies could be found in the serum

(Figure 3) with a possible dose dependency with increasing anti-

IFN-g antibody treatment (Supplementary Figure S1).
IFN-g inhibition has only marginal effects
on systemic and local cytokine expression

To unravel the potential mode of action of the observed clinical

effects of IFN-g inhibition in experimental EBA, we assessed the

systemic (serum) and local (skin) cytokine expression. Of note, of

the 10 selected cytokines, only two showed significant differences

when comparing isotype versus high-dose IFN-g antibody- treated
mice: Serum concentrations of IFN-g increased, which is most likely
Frontiers in Immunology 05
due to increasing its’ half-life by the presence of the IFN-g antibody.
Serum concentrations of CXCL1 were significantly reduced in mice

treated with IFN-g antibody (Table 2).

The expression of the corresponding cytokines (or their

receptors) meanwhile showed no differences among mice treated

with either isotype of function-blocking IFN-g antibody in the

skin (Table 3).
Discussion

Depletion of Tregs in preclinical pemphigoid models that are

based on antibody transfer into mice leads to aggravated clinical

disease severity. This increase in clinical disease severity is

accompanied by an increased expression of IFN-g (8). We here
TABLE 1 Total burden of mice of anti-IFN-g- treated groups or control group in experimental epidermolysis bullosa acquisita over time.

Group Number (f/m)
Mean total burden ± SEM

d0 d4 d8 d12 d15

500 µg rat IgG1 15 (8/7) 0.00 ± 0.00 3.40 ± 0.58 5.20 ± 0.88 8.73 ± 1.08 7.93 ± 0.60

125 µg rat anti-INF-y 5 (2/3) 0.00 ± 0.00 3.40 ± 1.08 5.40 ± 1.66 7.80 ± 2.20 9.40 ± 0.87

250 µg rat anti-INF-y 5 (2/3) 0.00 ± 0.00 2.80 ± 0.80 5.80 ± 1.43 10.20 ± 1.43 9.40 ± 0.87

500 µg rat anti-IFN-g 16 (8/8) 0.00 ± 0.00 3.00 ± 0.53 2.63 ± 0.53 4.63 ± 0.75 (*) 4.75 ± 1.00 (*)
C57BL/6 mice were injected with 3× 150 µg rabbit anti-mCOL7C IgG at days 0, 2, and 4. Murine IFN-g was blocked by i.p. injection of a monoclonal rat anti- IFN-g of either 125 µg, 250 µg, or 500
µg every other day starting 1 day prior to induction of epidermolysis bullosa acquisita (EBA). A control group was treated with a rat IgG1 isotype control following the same scheme. Total burden
was assessed at days 0, 4, 8, 12, and 16 and comprises weight loss, change in normal behavior and clinical parameters, and disease score of EBA. Two-way ANOVA with Dunnett’s multiple
comparison test, mean (± SED), n = 5–16. Significant differences in total burden compared to control group are indicated in gray.
A B

C

D

FIGURE 1

Blockade of IFN-g dampens disease progression in experimental epidermolysis bullosa acquisita (EBA). (A) EBA was induced by repetitive intra-
peritoneal (i.p.) injections of 3× 150 µg of specific rabbit anti-mCOL7C IgG in C57BL/6 mice, and disease score was assessed on days 4, 8, 12, and 15.
Murine IFN-g was blocked by i.p. injection of a monoclonal rat anti- IFN-g of either 125 µg, 250 µg, or 500 µg every other day starting 1 day prior to
EBA induction. A control group was treated with a rat IgG1 isotype control following the same scheme. (B, C) Blockade of IFN-g led to a significant
lower skin inflammation in in all three treated groups on day 12. This effect persisted until day 15 for the highest used antibody concentration. Panel
(B) displays the development of the with EBA- affected body surface area over the 15-day observation period. Statistical analysis: two-way ANOVA
with Dunnett’s multiple comparison test (*p < 0.05, **p < 0.01, and ****p < 0.0001) with mean ± SEM and n = 5-15 per group. Panel (C) shows
representative clinical pictures obtained on day 15 of the experiment. (D) Ears of mice after 15 days of experimental EBA were analyzed by
hematoxylin and eosin staining (H&E) for dermal leukocyte infiltration. Mice treated with the highest anti- IFN-g concentration showed a significantly
lower dermal infiltration than the control group. Black arrows highlight some infiltrating cells, and the black line marks the dermal epidermal junction
(DEJ). Statistical analysis: Kruskal–Wallis test with Dunn’s multiple comparison test (****p < 0.0001): data are presented as medians (black line), 25th/
75th percentiles (boxes), and max/min values (error bars). Scale bar: 100 µm. p.i., post-EBA induction.
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A

B

C

FIGURE 3

Blockade of IFN-g increases C3 deposition in skin and decreases serum concentrations of COL7c antibodies. Ears of mice of experimental EBA were
analyzed for IgG and C3 deposition at the dermal epidermal junction (DEJ) at the end of experiment (green arrows). (A) No difference could be observed
between the different groups regarding the IgG deposition. (B) Significant higher C3 levels were assessed in the two groups treated with 250 µg or 500 µg
rat anti-IFN-g compared to the control group. Statistical analysis: Kruskal–Wallis test with Dunn’s multiple comparison test with n = 5–10. (C, D) Total mouse
and rabbit IgG in serum from mice of the control group and with 500 µg rat anti-IFN-g- treated group were measured at the end of experimental EBA using
ELISAs. There was no difference in levels of total mouse IgG, but significant lower levels of rabbit IgG in the treated group. Statistical analysis: Mann–Whitney
U-test (*p < 0.05, **p < 0.01) with n = 15: data are presented as medians (black line), 25th/75th percentiles (boxes), and max/min values (error bars). Scale
bar: 100 µm.
A B C D E

FIGURE 2

Dermal infiltration of Ly6G+ neutrophils and CXCL1 expression in the epidermis is decreased after blockage of IFN-g in experimental epidermolysis
bullosa acquisita (EBA). Lesional skin sections of day 15 of experimental EBA were stained for (A) proliferation (Ki-67), (B) neutrophils (Ly6G), (C)
macrophages (F4/80), (D) T- helper cells (CD4), and (E) CXCL1 by (A, B) indirect immunofluorescence or (C–E) immunohistochemistry with n = 12–
15 per group. Differences in proliferation, CXCL1, and the three immune cell populations were assessed between the control group (500 µg rat IgG1)
and treated group with highest injected concentration of blocking IFN-g antibody (500 µg rat anti- IFN-g). The number of neutrophils in lesional skin
and CXCL1 expression in the epidermis were significantly decreased in the treated group. (A) Proliferating cells (Ki-67+) and (B) neutrophils (Ly6G+)
were detected by binding of a secondary antibody goat anti-rat Alexa Fluor 594 and are depicted in red. (C) Macrophages (F4/80+) were visualized
by using DAB (brown cells), (D) T-helper cells (CD4+) and CXCL1 by using FastRed or HIGHDEF red chromogen (pink cells). Control staining with a
(A, B) rat IgG or (C–E) rabbit IgG isotype antibody is depicted in small in the lower left corner of the control group of each staining. While no
differences were noted for Ki-67, F4/80, and CD4, a significant decrease was documented for Ly6G+ cells and CXCL1 [Mann–Whitney U-test (*p <
0.05, **p < 0.01)]. Data are presented as medians (black line), 25th/75th percentiles (boxes), and max/min values (error bars). Scale bar: 100 µm.
Frontiers in Immunology frontiersin.org06

https://doi.org/10.3389/fimmu.2024.1343299
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gross et al. 10.3389/fimmu.2024.1343299
aimed to elute if IFN-g is of functional relevance in mediating

autoantibody-induced tissue damage in experimental pemphigoid

disease. Our results document that IFN-g functions as a disease-

promoting cytokine in antibody transfer-induced EBA.

This adds to our understanding of the contribution of cytokines

to skin inflammation in this experimental pemphigoid disease,

which has been continuously addressed since the determination

of differential serum cytokine concentrations in the model (24).

Most of the differentially expressed cytokines, like IFN-g, have pro-
Frontiers in Immunology 07
inflammatory activities. More specifically, IL1b, IL17A, TNFa, GM-

CSF, or CXCL1 promote autoantibody induced inflammation and

blistering in antibody transfer models of EBA or BP (25–29). By

contrast, CCL3/MIP1a had no impact on clinical EBA

manifestation, despite elevated serum concentrations that highly

correlated with disease severity (30). Of note, IL6, IL1ra and IL10

alleviated clinical disease manifestation in experimental models of

EBA. In more detail, blockade of IL6 led to an aggravated disease in

mice with experimental EBA, while treatment with recombinant IL6

led to a marked impairment of clinical EBA manifestation.

Furthermore, blockade of IL6 led to reduced IL1ra serum

concentrations, while recombinant IL6 increases IL1ra expression.

Thus, IL6, by induction of IL1ra, counteracts the pro-inflammatory

actions of IL1b (24). Blockade of IL10 was also associated with an

aggravated disease manifestation in mice with immunization-

induced EBA. Surprisingly, this effect was mediated through

inhibition of neutrophil functions (9). With the results presented

herein, we add to the understanding of the contribution of cytokines

to EBA pathogenesis. More specifically, we identify IFN-g as a

cytokine that promotes cutaneous inflammation and blistering.

Likewise, IFN-g has also been shown to promote inflammation

in mouse models of and/or patients with psoriasis (31), alopecia

areata (32), and hyperinflammatory diseases, such as primary

hemophagocytic lymphohistiocytosis, and several forms of

secondary hemophagocytic lymphohistiocytosis, such as

macrophage activation syndrome (33). Overall, this led to the

approval of the IFN-g antibody emapalumab for primary

hemophagocytic lymphohistiocytosis (15). By contrast, in BP

patients’ administration of recombinant IFN-g led to a marked

improvement of clinical disease severity in a small, open, single-

center trial. Of note, clinical improvement was associated with a

decrease in circulating antibody levels (14). Hence, IFN-g could

possibly modulate autoantibody production by shifting the

presumed Th2-immune response in pemphigoid diseases more

toward a Th1-immune response (34, 35). But with regard EBA, it

could be shown that a Th1-like cytokine profile is needed to develop

skin blisters, whereas the expression of Th2 cytokines protects from

clinical manifestations (23), suggesting that blocking of IFN-g in

experimental EBA weakened the Th1-immune response and

affected the observed lower affected body area. This, in turn,

could have led to the observed reduced expression of CXCL1 in

the epidermis, since keratinocytes produce higher levels during

inflammation but decrease CXCL1 expression during wound

healing (36–38). In addition, Hirose et al. (2013) have already

shown that in experimental EBA, CXCL1 levels in lesional skin were

significantly increased compared to control skin (25). As CXCL1 is

one of the chemokines responsible for the chemoattraction of

neutrophils (39), the migration of neutrophils was also reduced in

the treated group. The discrepancy between the lack of effect on

mRNA levels and the significant effect on protein levels for CXCL1

may be due to an initial upregulation of mRNA followed by a later

increase in protein expression. However, we were unable to confirm

this hypothesis as we did not collect sequential serum and skin

biopsies. Additionally, it is important to keep in mind that samples

for different experiments were taken from different sites, which

could result in varying levels of expression regulation.
TABLE 3 Analysis of mRNA in skin biopsies of anti-IFN-g- treated mice
or control mice after experimental epidermolysis bullosa acquisita.

mRNA
500 µg
rat IgG1

500 µg rat
anti-IFNy

p-
value

IL-17A
0.0001031
± 0.0001340

0.00002909 ± 0.00003915 0.2704

ITGAM 0.5591 ± 0.5042 0.5949 ± 0.5219 0.7551

Cxcl1 0.09801 ± 0.1315 0.07746 ± 0.07282 0.9809

IFNgR 0.1120 ± 0.06405 0.1290 ± 0.07980 0.9809

TNF 0.5706 ± 0.7203 0.4785 ± 0.4238 > 0.9999

IL4RA 0.5537 ± 0.4584 0.9871 ± 1.252 0.6833

Csf2 0.009463 ± 0.007423 0.01555 ± 0.03054 0.548

Stat3 2.671 ± 1.880 3.018 ± 3.138 0.5164

IL-10
0.0008778
± 0.0008235

0.001031 ± 0.001057 0.8088

Stat6 1.025 ± 0.5321 1.154 ± 1.071 0.7919
Control mice (500 µg rat IgG1) or treated mice (500 µg rat anti-IFN-g) were injected with
rabbit anti-mCOL7C IgG, and lesional skin (of comparable disease level) was taken for mRNA
extraction. Analysis of mRNA by qRT-PCR for the indicated markers was done relative to the
housekeeping gene GAPDH using the 2DCT method. Mann–Whitney U-test, mean (± SED),
n = 12–15.
TABLE 2 Analysis of inflammatory cytokines in the serum of anti-IFN-g-
treated mice or control mice after experimental epidermolysis
bullosa acquisita.

Cytokine
500 µg

isotype control
500 µg anti-

IFN-y
p-

value

IL-1b 8.02 ± 7.62 5.06 ± 5.53 0.3474

IL-4 2.06 ± 0.67 2.13 ± 0.84 0.9759

IL-1a 2.56 ± 1.73 2.66 ± 2.43 0.5765

IFN-y 0.60 ± 0.74 4.68 ± 4.93 0.0073

TNF-a 6.58 ± 3.86 7.68 ± 4.06 0.3705

CXCL1 154.65 ± 69.83 64.20 ± 47.57 0.0018

IL-10 9.47 ± 5.09 9.75 ± 4.56 0.7399

IL-13 2.90 ± 1.38 3.33 ± 2.45 0.9774

IL-17A 0.13 ± 0.25 0.94 ± 2.62 0.6513

GM-CSF 1.05 ± 0.83 1.31 ± 0.98 0.5555
Control mice (500 µg rat IgG1) or treated mice (500 µg rat anti-IFN-g) were injected with
rabbit anti-mCOL7C IgG, and serum was taken for LEGENDplex™ cytokine analysis. Values
are indicated as picograms per milliliter serum. Mann–Whitney U-test, mean (± SED), n =
11–12. Outliers were excluded from analysis. Significant differences in cytokine concentration
are indicated in gray.
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The serum concentrations of pathogenic anti-Col7 antibodies in

mice treated with IFN-g antibodies may be reduced due to indirect

effects on the FcRn. Specifically, IFN-g activates the JAK/STAT

pathway, which downregulates the expression of the FcRn. This

activation of the JAK/STAT-1 signaling pathway by IFN-g can

downregulate the functional expression of the MHC class I-related

neonatal Fc receptor for IgG (40). Conversely, blocking IFN-g
would lead to an increase in FcRn expression. Therefore, the

observed effects may also be partially attributed to the modulation

of the half-life of pathogenic (auto)antibodies. (see also

Supplementary Figure S1). The cause for the increased C3

deposits is potentially due to the IFN -g-mediated locally increase

in factor H (41). However, systemically, no difference in C3 or

factor H could be observed (Supplementary Figure S1).

Regarding the mode of action of IFN-g in promoting cutaneous

inflammation and blistering in experimental EBA, we suggest that

this is mainly mediated by an interaction of T cells and neutrophils.

We previously demonstrated that T cells critically contribute to skin

inflammation and blistering in experimental EBA through

regulating neutrophil functions. NK and gd T cells promote

inflammation in EBA by promoting neutrophil recruitment. By

contrast, Treg reduce inflammation in experimental EBA by

altering the migratory capabilities of myeloid cells. Depletion of

Treg aggravates skin inflammation in experimental pemphigoid

disease (including EBA) and changes cytokine expression in the

skin; with regard to IFN-g, an increase is noted (8, 21). As T cells

and macrophages are a main source of IFN-g (42, 43), we assume

that in the context of EBA, IFN-g is locally produced in the skin by

tissue-resident T cells and macrophages following the injection of

anti-COL7C IgG. In turn, this leads to an enhanced migration of

neutrophils into the skin (8). This may be in part mediated by an

increased expression of CD18 (44). In addition to promoting

neutrophil extravasation into the skin, enhanced CD18 expression

on neutrophils will also promote formation of the immunological

synapse after binding to the tissue-bound immune complexes (45).

Regarding clinical translation of our findings, blockade of IFN-g
had a significant, but moderate effect on the clinical disease

manifestation. This is in line with the observations made for

blockade of other cytokines in experimental pemphigoid diseases

(25–29). Thus, blockade of a single cytokine may not be sufficient to

achieve clinically relevant effects in patients. Exceptions may be single

patients, where pemphigoid disease is predominantly driven by a

specific cytokine, i.e., by presence of certain polymorphism within

specific cytokines or their receptors (46, 47). One possibility to

overcome this limited therapeutic efficacy of blocking a singly

cytokine in pemphigoid patients may be combined treatment.

However, this would most likely be prone to an increased rate of

adverse events. A more practicable and safe approach may be the

modulation of signaling events following binding of cytokines to their

receptors. Given the high level of promiscuity regarding receptor usage

(48), effects of several cytokines are impaired following blockade of

signaling downstream cytokine receptors. The potential clinical

application of this approach is supported by observations in

experimental models (49–53) and in case reports (54–56).

In summary, IFN-g contributes to cutaneous inflammation and

blistering in a preclinical model of EBA. The impact of IFN-g
Frontiers in Immunology 08
inhibition on disease manifestation is significant but, compared to

other drugs used in this model, relatively moderate. Thus, with the

exception for personalized treatment approaches, blockade of

signaling following cytokine binding to their respective receptors

will more likely have an impact on patient morbidity.
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