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Introduction: Recent evidence supports the contribution of gut microbiota

dysbiosis to the pathophysiology of rheumatic diseases, neuropathic pain, and

neurodegenerative disorders. The bidirectional gut-brain communication

network and the occurrence of chronic pain both involve contributions of the

autonomic nervous system and the hypothalamic pituitary adrenal axis.

Nevertheless, the current understanding of the association between gut

microbiota and chronic pain is still not clear. Therefore, the aim of this study is

to systematically evaluate the existing knowledge about gut microbiota

alterations in chronic pain conditions.

Methods: Four databases were consulted for this systematic literature review:

PubMed, Web of Science, Scopus, and Embase. The Newcastle-Ottawa Scale was

used to assess the risk of bias. The study protocol was prospectively registered at the

International prospective register of systematic reviews (PROSPERO,

CRD42023430115). Alpha-diversity, b-diversity, and relative abundance at different

taxonomic levels were summarized qualitatively, and quantitatively if possible.

Results: The initial database search identified a total of 3544 unique studies, of

which 21 studies were eventually included in the systematic review and 11 in the

meta-analysis. Decreases in alpha-diversity were revealed in chronic pain

patients compared to controls for several metrics: observed species (SMD=

-0.201, 95% CI from -0.04 to -0.36, p=0.01), Shannon index (SMD= -0.27, 95%

CI from -0.11 to -0.43, p<0.001), and faith phylogenetic diversity (SMD -0.35, 95%

CI from -0.08 to -0.61, p=0.01). Inconsistent results were revealed for beta-

diversity. A decrease in the relative abundance of the Lachnospiraceae family,

genus Faecalibacterium and Roseburia, and species of Faecalibacterium

prausnitzii and Odoribacter splanchnicus, as well as an increase in Eggerthella

spp., was revealed in chronic pain patients compared to controls.
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Discussion: Indications for gut microbiota dysbiosis were revealed in chronic

pain patients, with non-specific disease alterations of microbes.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42023430115.
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1 Introduction

The gut microbiota refers to the dynamic community of

microorganisms inhabiting the gastro-intestinal tract, whereby the

genetic and functional profile of microbial species is denoted as the

gut microbiome (1, 2). During the last decade, several studies

pointed out associations between alterations in microbiota

composition and diverse host disease conditions, among those

gastrointestinal conditions [e.g., irritable bowel syndrome (3),

gastroduodenal diseases (4)] as well as more physically remote

conditions among which neurodegenerative diseases (e.g.,

Parkinson’s disease, Alzheimer’s disease, or multiple sclerosis) (5),

or neuropsychiatric disorders (6). To accomplish these complex

involvements, neuro-immune-endocrine mediators underlie the

bidirectional communication network between the gut and the

central nervous system, i.e. the gut-brain axis (7). As such, the

gut-brain crosstalk ensures the proper maintenance of

gastrointestinal homeostasis, while it also connects the emotional

and cognitive centers of the brain with peripheral intestinal

functions and mechanisms through immune activation, intestinal

permeability, and entero-endocrine signaling (8).

The hypothalamic pituitary adrenal (HPA) axis, as part of the

limbic system, is the core stress efferent axis that reacts with secretion

of corticotropin-releasing factor from the hypothalamus in response

to stressors of any kind (e.g., emotion or stress), consecutively

leading to adrenocorticotropic hormone secretion from the

pituitary gland, which in turn leads to cortisol release from the

adrenal glands (9). While chronically elevated cortisol levels

negatively affect brain function (10), HPA axis activation also

alters the composition of the gut microbiota and increases

gastrointestinal permeability (11), triggering an inflammatory

response (12). Additionally, the autonomic nervous system drives

both efferent signals from the central nervous system to the intestinal

wall, mainly through vagal efferent fibers, and afferent signals from

the lumen through enteric, spinal, and vagal pathways to the central

nervous system (8). Unless the intestinal epithelium integrity is

affected, whereby gut microbiota can directly interact with the

vagal nerve, enteroendocrine cells recognize bacterial products or

bacterial metabolites (e.g., short-chain fatty acids) to facilitate an
02
indirect communication with vagal afferents through synaptic

connections (13, 14). Additionally, production of bacterial

metabolites (15), interference with the kynurenine pathway (16),

and neuroendocrine signaling (17) contribute to the communication

between the gut and the central nervous system.

Bidirectional interactions and connections between the pain

regulatory system and the autonomic nervous system have been

revealed (18), as well as altered sensitivity of the HPA axis in

relation to chronic pain and stress (19), which are both suggestive of

the involvement of the gut-brain axis in chronic pain due to shared

pathways. Therefore, the aim of this study is to systematically

evaluate the existing knowledge about gut microbiota alterations

across a spectrum of chronic pain conditions.
2 Methods

2.1 Protocol registration

This systematic review was conducted according to the PRISMA

statement (Preferred Reporting Items for Systematic Review and

Meta-Analyses) (20). The protocol was a priori registered in

PROSPERO under registration number CRD42023430115.
2.2 Search strategy

The search strategy was conducted in four databases: PubMed,

Web of Science, Embase, and Scopus on June 3rd, 2023. All authors

contributed to the development of the search strategy. The research

question was created according to the PICOS (Population-

Intervention-Control-Outcome-Study design) framework (21) to

investigate perturbations in gut microbiota (Outcome) in chronic

pain patients (Population). The final search strategy was built by

combining both free and MeSH terms. Between each part of the

PICO question, the Boolean operator AND was used. Within the

components, search terms were combined using the Boolean

operator OR. No limits were applied to this search strategy. The

complete search strategy for PubMed can be found in
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Supplementary Datasheet 1. After building the search string in

PubMed, it was individually adapted for the other three databases.
2.3 Eligibility criteria

Studies evaluating gut microbiota in chronic pain patients, in

comparison to controls, were eligible. All types of chronic pain [pain

> 3 months according to ICD-11 criteria (22)] were included, with the

exception of functional intestinal disorders. As study designs, both

observational and experimental designs were allowed, as long as a

control group of patients without chronic pain was included. Only

studies exploring gut microbiota were incorporated. Studies reporting

in languages other than English, Dutch, or French were excluded. Full

eligibility criteria are presented in Table 1.
2.4 Study selection

Two reviewers independently screened all retrieved articles for title

and abstract using online software Rayyan, after de-duplication in both
Frontiers in Immunology 03
EndNote X9 and Rayyan. During the next phase, two reviewers

independently performed full text screening. In case of conflicts at each

stage, they were resolved in a consensus meeting with a third reviewer.
2.5 Data extraction

The relevant data were selected by an a priori developed data

extraction form with information on publication details, participant

demographic and clinical characteristics, and methodological

information. As outcomes of interest, community-level measures of

gut microbiota composition (alpha- and beta-diversity) and

taxonomic findings at the phylum, family, genus, and species levels

(relative abundance) were extracted. The alpha-diversity refers to the

variation within an individual sample (i.e. microbial community)

with a differentiation between richness (i.e. number of species) and

evenness (i.e. how well each species is represented), while beta-

diversity refers to the variation between samples (2, 23). The data

extraction table was composed by one reviewer and checked for

correctness by another reviewer. Any sort of discrepancies were

discussed in a consensus meeting between both reviewers.
2.6 Quality assessment

The methodological quality of the included studies was

evaluated with the Newcastle-Ottawa Scale (NOS), a tool

developed for the purposes of evaluating nonrandomized studies

used in systematic reviews and meta-analyses (24, 25). This scale is

designed to assess the selection of participants (four items),

comparability (one item), and exposure (three items) domains. A

total NOS score ≤ 5 was considered as low quality, a score of 6 or 7

as moderate quality, and a score of 8 or 9 as high quality (26).
2.7 Data synthesis

Differences in alpha-diversity, beta-diversity, and relative

abundance were qualitatively presented for patients with chronic

pain, compared to controls. Additionally, random-effect meta-

analyses were performed for alpha-diversity metrics (e.g. observed

species, Chao1, abundance coverage estimator, Pielou, Shannon

index, Simpson index, inverse Simpson index, and faith

phylogenetic diversity) between chronic pain patients and

controls in case ≥2 effect sizes were available for a specific metric.

Standardized mean difference (SMD) was selected as metric for the

meta-analyses, with the following interpretation: SMD ≤ 0.2 as

trivial, < 0.2 < SMD < 0.5 as small, 0.5 ≤ SMD < 0.8 as moderate,

and SMD ≥ 0.8 as large (23, 27). In case the necessary information

could not be extracted adequately, the study authors were contacted

to request it. When the median with the first and third quartile or

interquartile range was provided, the mean and standard deviation

were calculated manually, according to formulas provided by Wan

et al. (2014) (28). In addition, if data were expressed only as a graph

(rather than numerical data within the text), the software Engauge

Digitizer 12.1 was used to extract numerical values. Heterogeneity
TABLE 1 In-and exclusion criteria applied during screening for the
systematic review.

*Topic *Inclusion *Exclusion

Population - Chronic pain - All types of chronic pain
will be included, except for
patients with functional
intestinal disorders among
which are irritable bowel
syndrome, chronic ulceritis,
functional abdominal pain,
etc.
- Animal studies,
computational models

Control - Healthy controls
(defined as no
presence of
chronic pain)

Design - Observational
designs (e.g. case-
controls, cross-
sectional, cohort
designs) with cases
and controls
- Interventional or
longitudinal
comparisons with a
control group.

- Reviews, case reports,
letters to the editor,
opinion articles, editorials
- Interventional or
longitudinal comparisons in
the absence of a
control group.

Outcome - Measures of gut
microbiota
composition (alpha
and beta diversity)
and taxonomic
findings at the
phylum, family, and
genus levels
(relative abundance).

- Measures of the HPA
axis, not related to the gut
microbiome
- Other microbiome than
gut microbiome for
example urinary
microbiome or
skin microbiome.

Language - English,
Dutch, French

- Other languages
HPA, hypothalamic pituitary adrenal.
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was evaluated with I² statistic and publication bias with Egger’s test.

All analyses were performed in R Studio version 2022.07.2. P values

<0.05 were considered statistically significant.
3 Results

3.1 Study selection

A total of 6285 articles were identified through the four selected

databases (Figure 1). After removing all duplicates, 3544 articles

were selected for screening. After screening on title and abstract, 37

articles remained eligible for full screening. The percentage of

agreement on title and abstract screening between both reviewers

was 99.8% (7 conflicts). The reasons for exclusion were wrong

population (n=1693), followed by wrong study design (n=1331),

wrong topic (n=224), wrong outcome (n=197), and to a lesser

extent wrong publication type, foreign language, and no controls.

Afterward, 2 articles were excluded because there was no full text

available. Citation screening identified 12 additional articles of

which 7 were deemed suitable for full text screening. After full-

text screening (N=42), 21 articles were included in this systematic

review. The percentage of agreement on full text screening between

both reviewers was 83.78%.
3.2 Study characteristics

Characteristics of the included studies are presented in Table 2.

Nine studies (42.8%) were conducted in the USA, four (19%) in

Asian countries, four (19%) in European countries, one (4.8%) in
Frontiers in Immunology 04
Canada, one (4.8%) in Australia, one (4.8%) in Ukraine, and one in

the USA, UK, and Australia (4.8%). In terms of chronic pain

populations, 19 studies explored chronic primary pain syndromes

(pain is conceived as a disease), while 2 evaluated chronic secondary

pain syndromes (pain manifests as a symptom of another disease).

Specifically, 9 (42.8%) studies evaluated myalgic encephalomyelitis/

chronic fatigue syndrome (ME/CFS), 4 (19%) studies included

patients with migraine, and 3 (14.3%) studies evaluated patients

with fibromyalgia. The following conditions were explored in only

one study: axial spondyloarthritis (4.8%), interstitial cystitis/bladder

pain syndrome (4.8%), Gulf War Illness (4.8%), complex regional

pain syndrome (CRPS) (4.8%), and chronic stable angina (4.8%). In

total, data from 962 chronic pain patients and data from 1212

controls without chronic pain were included. Patients and controls

were matched in 9 studies on the following variables: age (9 studies),

sex (7 studies), BMI (5 studies), geographical site/environment (3

studies), race/ethnicity (2 studies), date of sampling (1 study),

season of sampling (1 study), and general activity patterns (1

study). The NOS of the included studies ranged from 2-9, with 10

studies classified as low quality, 4 as moderate quality, and 7 as high

quality (Supplementary Table 1).
3.3 Microbiome characteristics

After collection of samples, 14 studies (66.7%) froze the samples

at -80°C until further use, 1 study (4.8%) at -70°C, 2 studies (9.5%) at

-20°C, and it was not reported for 4 studies (19%). In terms of stool

processing, a broad variety was observed (Supplementary Table 2).

Only one study explored eukaryotes (41). In terms of sequencing, 14

studies conducted 16S sequencing, 3 studies shotgun metagenomics,
FIGURE 1

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart. n, number.
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TABLE 2 Characteristics of the included studies.

Author Country Population Sample
size
(with
stool
samples)

Age Mean
BMI

%
Female

% Patients
on medication

Matching
variables

Bai et al.,
2022 (29)

USA, UK,
and
Australia

Migraine
(physician diagnosis)

P: 35
C: 341

11.5
± 3.8

62.9%
normal BMI;
21.0%
underweight;
16.1%
overweight/
obese

33.3% NA

Berlinberg
et al.,
2021 (30)

USA Axial
spondyloarthritis
who met the 2009
Assessment of
SpondyloArthritis
International
Society criteria

P: 21
C: 24

P: 44.92
± 12.1
C: 45.16
± 11.8

P: 43.5%
C: 50.0%

No antibiotics last 2 weeks,
no aspirin or NSAIDs last 7
days, no anticoagulation.

NA

Braundmeier-
Fleming et al.,
2016 (31)

USA Interstitial cystitis/
bladder
pain syndrome

P: 18
C: 16

P: 35 ± 9
C: 35
± 11

P: 100%
C: 100%

No antibiotics in previous
3 months

NA

Chen et al.,
2019 (32)

China Migraine P: 54
C: 54

P: 61.0 ±
8.4
C: 62.5
± 9.6

P: 26.2 ± 4.6
C: 25.4
± 3.35

P: 100%
C: 100%

Age and BMI

Clos-Garcia
et al.,
2019 (33)

Spain FM who met the
2016
diagnostic criteria

P: 105
C: 54

P: 52.52
± 10.3
C: 53.5
± 12.4

P: 69.52%
C: 48.15%

P: 70% painkillers; 55%
antidepressants/
benzodiazepines; 30%
antiepiliptic drugs

Age and
same
environment

Frémont et al.,
2013 (34)

Belgium
and
Norway

ME/CFS who met
Fukuda criteria

P Belgium:
18
P Norway:
25
C Belgium:
19
C
Norway: 17

P
Belgium:
38.5 (13)
P
Norway:
41 (12.5)
C
Belgium:
41 (12.6)
C
Norway:
45 (19)

P
Belgium:
83.3%
P Norway:
88%
C
Belgium:
78.95%
C
Norway:
82.3%

No use of antibiotics or
probiotics for four weeks
prior to sample collection.

NA

Giloteaux
et al.,
2016 (35)

USA ME/CFS who met
Fukuda criteria

P: 49
C: 39

P: 50.2
(12.6)
C:
45.5
(9.9)

P: 25.5 (4.9)
C: 27.1 (6.1)

P: 77.5%
C: 76.9%

NA

Guo et al.,
2023 (36)

USA ME/CFS cases who
met 1994 CDC and
2003 Canadian
consensus criteria

P: 106
C: 91

P: 47.8 ±
13.7
C: 47.0
± 14.1

P: 26.1 ± 5.2
C: 25.2 ± 4.7

P: 70.8%
C: 75.8%

P: 22.6% painkillers, 12.3%
antibiotics and 38.7%
antidepressants
C: 2.2% painkillers, 5.5%
antibiotics and
13.2% antidepressants

geographical/
clinical site, sex,
age, race/
ethnicity, and
date of
sampling ( ±
30 days)

Janulewicz
et al.,
2019 (37)

USA Gulf War Illness
fulfilling Kansas GWI
case criteria

P: 3
C: 5

P: 63.2 ±
15.5
C: 52.8
± 6.7

P: 31.9 ± 0.7
C: 28.6 ± 2.5

P: 33.3%
C: 0%

NA

Kitami et al.,
2020 (38)

Japan ME/CFS who met
Fukuda criteria in
1994, International

P: 48 (28
microbiome
data)

P: 37
(33-42)

P: 21 (19-23)
C: 20
(19.8-22)

P: 85.4%
C: 90.4%

Age, gender,
and BMI

(Continued)
F
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TABLE 2 Continued

Author Country Population Sample
size
(with
stool
samples)

Age Mean
BMI

%
Female

% Patients
on medication

Matching
variables

Consensus Criteria,
and Systemic
Exertion Intolerance
Disease criteria

C: 52 (39
microbiome
data)

C: 40
(34-45)

Kopchak et al.,
2022 (39)

Ukraine Chronic and Episodic
forms of migraine

P+C: 100 P+C:
38.6 ± 8

P
+C: 85.3%

NA

Lupo et al.,
2021 (40)

Italy ME/CFS who met
Fukuda criteria

P: 35
C: 35

P: 46.4
(16.1)
C:
55.2 (18)

P: 23.1 (4.4)
C: 23.5 (4.7)

P: 74.3%
C: 74.3%

No use of antibiotics,
cortisone and non-steroidal
anti-inflammatory drugs,
inhibitors of proton pump
inhibitors and probiotic
drugs in the two months
before the study.

Age, sex
and BMI

Mandarano
et al.,
2018 (41)

USA ME/CFS who met
Fukuda criteria
in 1994

P: 17 (11 for
alpha and
beta
diversity)
C: 17 (10
for alpha
and
beta
diversity)

P: 52
(11.9)
C:
44.6
(10.9)

P: 26.8 (4.7)
C: 27.4 (4.5)

P: 76.47%
C: 94.12%

NA

Minerbi et al.,
2019 (42)

Canada FM who met the
2016
diagnostic criteria

P: 77
C: 79

P: 46 ± 8 P: 100% No antibiotics in previous
2 months

NA, however,
controls include
first-degree
relatives,
household
members, and
unrelated
women.

Nagy-Szakal
et al.,
2017 (43)

USA ME/CFS who met the
1994 CDC Fukuda
and the 2003
Canadian
consensus criteria

P: 50
C: 50

P: 51.081
SEM±
1.607
C: 51.320
SEM
± 1.620

P: 56% BMI
< 25kg/m²
and 44% <25
kg/m²
C: 44% BMI
< 25kg/m²
and 56% <25
kg/m²

P: 82%
C: 82%

Age, sex, race/
ethnicity,
geographic/
clinical site and
season
of sampling

Reichenberger
et all.,
2013 (44)

USA CRPS who met
IEASP criteria (87.5%
Type 1)

P: 11 (no GI
symptoms)
C: 16

P: 40.45
C: 35.63

P: 25.70 ±
1.65
C: 23.68
± 0.70

P: 100%
C: 100%

No antibiotics or narcotics
previous 3 months. P: 63%
Antiepileptics; 57%
antidepressants;
31% antianxiolytics.

NA

Sheedy et al.,
2009 (45)

Australia CFS who met
Holmes, Fukuda and
Canadian
Definition Criteria

P: 108
C: 177

NA

Shukla et al.,
2015 (46)

USA ME/CFS who met
Fukuda criteria
in 1994

P: 10
C: 10

P: 48.6 ±
10.5
C: 46.5
± 13.0

P: 23.9 ± 4.3
C: 24.6 ± 3.3

P: 80%
C: 80%

No opioids or
immunomodulatory
medications,
antibiotics, probiotics.

Age, gender,
BMI, and self-
reported general
activity patterns

Weber et al.,
2022 (47)

Austria FM who met the
2016 American
College of
Rheumatology
criteria

P: 25
C: 26

P: 49.8 ±
8.6
C: 50.0
± 8.0

P: 25.6 ± 5.6
C: 23.8 ± 4.0

P: 88%
C: 81%

P: 68% NSAID, 36%
antidepressants, 20%
antihypertensive drugs; 24%
proton pump inhibitors;
12% antibiotics; 40%

Age and sex

(Continued)
F
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1 study paired-endmetagenomic sequencing, 1 study 18S sequencing,

and 2 studies did not report the sequencing. The 18S sequencing was

performed at region V9, while the 16S sequencing was performed at

regions V1-V2 (1 study), V2 (1 study), V3-V4 (4 studies), V3-V5

(1 study), V4 (4 studies), and V5-V6 (2 studies).

3.3.1 Alpha-diversity
Sixteen studies provided data for alpha-diversity, evaluated

through 8 different metrics. When evaluating richness through

observed species, non-significant differences were revealed for

patients with axial spondyloarthritis (30), ME/CFS (36, 40, 41),

migraine (32), and fibromyalgia (33, 47) compared to controls. For

patients with ME/CFS, only one study found significant differences

with higher richness in controls compared to patients (35).

Significantly increased values for observed species were found for

patients with Gulf War Illness (37), while significantly decreased

values for patients with CRPS (44) in relation to controls. Based on

pooled estimates, a significant SMD of -0.201 (95% CI from -0.04 to

-0.36, p=0.01, I²=41.9%, 11 effect sizes) was revealed, classified as a

small effect size, pointing towards lower observed species numbers in

chronic pain patients compared to controls (Figure 2). Egger’s test did

not reveal indications for funnel plot asymmetry (t=0.9, df=9,

p=0.39). For Chao1, significantly reduced values were obtained in

patients with CRPS (44) and in one study with ME/CFS patients (35),

while the other studies did not reveal significant differences between

chronic pain patients and controls (30, 33, 40, 41, 47, 48). Non-

significant results were revealed for the abundance coverage estimator

(33, 47), as confirmed with a meta-analysis (SMD of -0.17 (95% CI

from -0.44 to 0.10), p=0.22). For evenness, the Pielou metric resulted

in significantly lower values in patients with ME/CFS compared to

controls (36), while other reports did not reveal significant differences
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(29, 47). For richness/evenness, 15 studies explored the Shannon

index with significant differences in favor of chronic pain patients

(37), in favor of controls (29, 32, 35, 36, 44), and no significant

difference between controls and chronic pain patients (30, 33, 34, 38,

41, 42, 47, 48). A random-effect meta-analysis resulted in a

significantly decreased index in chronic pain patients compared to

controls (p<0.001) with a small effect size (SMD -0.27, 95% CI from

-0.11 to -0.43, 12 effect sizes, Egger’s Test t=0.25, df=10, p=0.81).

Non-significant results were revealed for the Simpson index between

chronic pain patients and controls (30, 33, 38, 40, 48), as was the case

for the inverse Simpson index (42, 47). Faith phylogenetic diversity

indicated increased values in controls in three studies (29, 33, 35),

while two other studies revealed no significant differences (41, 47)

between chronic pain patients and controls. A random-effect meta-

analysis resulted in a significantly decreased index in chronic pain

patients compared to controls (p=0.01) with a small effect size (SMD

-0.35, 95% CI from -0.08 to -0.61, 4 effect sizes, Egger’s Test t=0.71,

df=2, p=0.55). The meta-analysis for Chao1 and Pielou did not reveal

significant differences between controls and chronic pain patients.

The study of Zhao et al. (49) provided mean values for observed

species, Chao1, abundance coverage, Shannon index, and Simpson

index for patients with chronic stable angina compared to controls,

however, it was not clear whether the results were significant.

Therefore, these results were not qualitatively discussed, however,

they are incorporated into the meta-analyses.

3.3.2 Beta-diversity
Ten studies explored beta-diversity with the aid of three

different metrics (Bray-Curtis, Weighted UniFrac, and

Unweighted UniFrac) (29, 30, 35, 36, 41–44, 48, 49). In patients

with migraine, inconsistent results were revealed with significant
TABLE 2 Continued

Author Country Population Sample
size
(with
stool
samples)

Age Mean
BMI

%
Female

% Patients
on medication

Matching
variables

tetrahydrocannabinol/
cannabidiol
C: 31% NSAID, 8%
antidepressants, 8%
antihypertensive drugs; 8%
proton pump inhibitors

Yong et al.,
2023 (48)

Korea Episodic migraine
(P1) and Chronic
migraine (P2) who
fulfilled ICHD-3
criteria of EM (code
1.1 or 1.2) or
CM (code 1.3)

P1: 42
P2: 45
C: 43

P1: 39.6
± 11.4
P2: 40.8
± 12.5
C: 43.2
± 11.7

P1: 22.8 ±
2.5
P2: 22.7 ±
3.5
C: 22.1 ± 3.6

P1: 78.6%
P2: 91.1%
C: 81.4%

P1: 47.6% anti-epileptic
medication, 26.2% beta
blockers, 4.8% anti-
depressant, 2.4% calcium-
channel blocker.
P2: 51.1% anti-epileptic,
17.8% beta blockers, 2.2%
anti-depressant.

Age, sex, BMI

Zhao et al.,
2021 (49)

China Chronic stable
angina who met
American College of
Cardiology/American
Heart
Association criteria

P: 30
C: 10

P: 62
(Q1-Q3:
41-80)
C: 60
(Q1-Q3:
40-76)

P: 22.5 (Q1-
Q3: 18.4-
24.1)
C: 22.3 (Q1-
Q3:
20.8-23.5)

P: 43.33%
C: 50%

P: 100% beta-blockers; 100%
long-lasting nitrates; 3.3%
ACE inhibitors; 20% calcium
channel blockers; 6.7%
angiotensin
receptor blockers

NA
BMI, body mass index; C: controls; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; NA, not applicable; P, patients.
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differences in beta-diversity according to Bai et al. (Bray-Curtis and

Weighted UniFrac) (29) and non-significant results by Yong et al.

(Bray-Curtis, Weighted UniFrac, and Unweighted UniFrac) (48). In

patients with ME/CFS, two studies pointed towards significant

differences in b-diversity, measured with Bray-Curtis, compared

to healthy participants (36, 43), and two other studies did not reveal

differences (35, 41). For patients with fibromyalgia (42), CRPS (44),

and chronic stable angina (49), significant differences in beta-

diversity were revealed, by one study for each condition. A non-

significant result was revealed for patients with axial

spondyloarthritis (30).

3.3.3 Differentially abundant microbes
Twenty out of twenty-one studies explored the relative

abundance of gut microbes in chronic pain patients compared to

controls (Table 3). Differences were found in 8 phyla, 14 families, 52

genera, and 73 species. An overview of the differences between the

populations can be found in Table 4. At the phylum level, four main

taxa were explored namely Actinobacteria (29, 33, 46),

Bacteroidetes (29, 33, 40, 46), Firmicutes (29, 32, 33, 35, 40, 44,

46, 49), and Proteobacteria (29, 35, 44, 49). For Actinobacteria,

Bacteroidetes, and Firmicutes both increases and decreases were

revealed in chronic pain patients compared to controls, pointing

towards inconsistent results. For Proteobacteria, a decrease was

revealed in chronic pain patients compared to controls in all four

studies (29, 35, 44, 49). Four fungal phyla were explored as well,

with an increase in abundance in controls in Ascomycotae and

decreased abundances in Basidiomycotae, Stramenopiles, and

Zygomycota (41). At the family level, Lachnospiraceae were most

often explored whereby 5 out of 6 studies indicated a decrease in
Frontiers in Immunology 08
relative abundance in chronic pain patients, compared to controls

(29, 33, 37, 40, 43). At the genus level, Faecalibacterium spp. were

most often explored, followed by Dorea spp., Eggerthella spp., and

Roseburia spp. A decrease was found in Faecalibacterium spp. in

patients with migraine (32, 48), ME/CFS (35, 38, 43) and chronic

angina (49). For Dorea spp., inconsistent results were revealed for

migraine patients (29, 48), an increase in patients with FM (33), and

a decrease in patients with ME/CFS compared to controls (43). For

Roseburia spp., 3 out of 4 studies revealed an increased relative

abundance in controls (34, 43, 48), while one study revealed an

increase in patients with fibromyalgia (33). In the genus Eggerthella,

an increased relative abundance was found in patients with

migraine (29, 48) and ME/CFS (35, 38). At the species level, a

decrease in the relative abundance of Faecalibacterium prausnitzii

was revealed for patients with migraine (32), ME/CFS (36, 43),

fibromyalgia (42), and bladder pain syndrome (31). Odoribacter

splanchnicus had a lower abundance in patients with migraine (32),

ME/CFS (43), and bladder pain syndrome (31). Clostridium

asparagiforme and Clostridium symbiosum increased in patients

with migraine and ME/CFS, while Coprococcus catus and

Ruminococcus obeum decreased in these patients (32, 43).

Flavonifractor plautii had an increased abundance in patients

with migraine and fibromyalgia (32, 42). Finally, Eggerthella lenta

also increased in patients with migraine (32, 39).
4 Discussion

This study evaluated alterations in gut microbiota composition

in chronic pain patients compared to controls. In terms of alpha-
A B

D

E

C

FIGURE 2

Forest plots of a-diversity metrics observed species (A), Chao1 (B), Shannon index (C), Pielou (D), and faith phylogenetic diversity (E). Standardized
mean differences were used as effect sizes whereby a negative point estimate denotes a higher value in controls and a positive estimate a higher
value in chronic pain patients.
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TABLE 3 Composition analysis of the included studies.

Relative abundance

Phylum level: Higher Bacteroidetes, Actinobacteria, Firmicutes, Probacteria in
P. Firmicutes also higher in C.
Family level: Higher unidentified family Lachnospiraceae, unidentified family
Erysipelotrichaceae in P than C. Higher unidentified family Christensenellaceae,
unidentified family Lachnospiraceae, and unidentified family Ruminococcaceae
in C.
Genus level: Higher Bacteroides, Parabacteroides, and Odoribacter, Eggerthella
and Varibaculum, SMB53, Lachnospira, Dorea, Veillonella, Anaerotruncus,
Butyricicoccus, Eubacterium, Coprobacillus, Sutterella in P than C. Higher
Anaerostipes and Oribacterium in C.

Species level: Higher
Bifidobacterium adolescentis and Porphyromonas bennonis in P. Higher
Streptococcus anginosus and Bacteroides dorei in C.

Species level: lower E. sinensis, C. aerofaciens, F. prausnitzii, O. splanchnicus,
and L. longoviformis in P.

Phylum level: higher Firmicutes in P.
Genus level: lower Faecalibacterium in P.
Species level: higher Faecalibacterium
prausnitzii, Bifidobacteriumadolescentis,
and Methanobrevibacter smithii in C.
Higher Blautia hydrogenotrophica, Clostridium asparagiforme, Clostridium
clostridioforme, Clostridium bolteae, Clostridium citroniae, Clostridium
hathewayi, Clostridium ramosum,
Clostridium spiroforme, Clostridium symbiosum, Eggerthella lenta, Flavonifractor
plautii, Lachnospiraceae bacterium, and
Ruminococcus gnavus in P. Higher
Bacteroides clarus, Bacteroides intestinalis, Bacteroides salyersiae, Bacteroides
stercoris, Butyrivibrio crossotus, Clostridium sp. L2_50, Coprococcus catus,
Eubacterium hallii, Eubacterium ramulus, Odoribacter splanchnicus,
Peptostreptococcaceae
noname unclassified, Prevotella copri, Ruminococcus callidus, Ruminococcus
champanellensis, Ruminococcus obeum, and Sutterella wadsworthensis in C.

Phylum level: Bacteroidetes and Firmicutes both increased and decreased,
Actinobacteria reduced in P.
Family level: Higher Rikenellaceae in P. Lower unassigned genus in
Bacteroidaceae and Lachnospiraceae families, Bifidobacteriaceae and
Erysipelotichaceae in P.
Genus level: Lower Bacteroides, Bifidobacterium, Eubacterium and Clostridium
in P. Higher Dorea, Roseburia and Alistipes in P.
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Author OTU Chao1 Abundance
coverage

Evenness Shannon Simpson Inverse
Simpson

Faith Beta
Diversity

Bai et al.,
2022 (29)

NS C higher
than P

C higher
than P

Bray-Curtis:
S
Weighted
UniFrac: S

Berlinberg
et al.,
2021 (30)

NS NS NS NS Bray-
Curtis: NS

Braundmeier-
Fleming et al.,
2016 (31)

Chen et al.,
2019 (32)

NS at
genus
and
species
level

Decreased in
P compared
to C

Clos-Garcia
et al.,
2019 (33)

NS NS NS NS NS P lower
than C
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TABLE 3 Continued

ative abundance

us level: Higher Lactonifactor and Alistipes in Norwegian P. Higher
buria, Syntrophococcus, Holdemania and Dialister in Norwegian C. Higher
onifactor in Belgian P. Higher Asaccharobacter in Belgian C.

um level: lower Firmicutes in P. Higher Proteobacteria in P.
ily level: higher Enterobacteriaceae, Prevotellaceae in P. Lower
inococcaceae, Bacteroidaceae, Rickenellaceae, Bifidobacteriaceae in P.
us level: Higher Oscillospira, Lactococcus, Anaerotruncus, Coprobacillus and
rthella in P. Higher Faecalibacterium and Bifidobacterium in C.

ies level: Lower F. prausnitzii, E. rectale, and C. secundus in P.
er R. lactatiformans, C. bolteae, R. gnavus, E. ramosum, C. scindens, Blauti
6H1.15, S. intestinalis, T. nexilis, and Lachnoclostridium sp. YL32 in P.

um level: NS
ily level: higher Lachnispiracae in C compared to P.
us level: Higher Dialister in C than P. Ruminococcus higher in P than C.

us level: Higher Blautia, Coprobacillus, Eggerthella in P. Higher Collinsella,
alibacterium and Lachnospira in C.

ies level: higher frequency of Alceligenes spp, Clostridium coccoides,
tridium propionicum, Eggerthella lenta, Pseudonocardia spp, Rhodococcus
Micromycetes spp (campesterol and sitosterol), Herpes simplex for P than C.

um level: Higher Bacteroidetes in P. Higher Firmicutes in C.
s level: Higher Bacteroidia in P. Higher Clostridia in C.
er level: Higher Clostridiales in C. Higher Bacteroidales in P.
ily level: Lower Lachnospiraceae in P. Higher Bacteroidaceae,
esiellaceae in P.
us level: Lower Anaerostipes in P. Higher Bacteroides and
colarctobacterium in P.
ies level: Higher Bacteroides ovatus and Bacteroides uniformis in P.

um level fungi: lower Ascomycota in P. Higher Basidiomycota,
enopiles and Zygomycota in P.

s level: higher Agaricomycetes, Tremellomycetes in P.
er level: lower Saccharomycetales in P. Higher Agaricales, Boletales,
porales, Tremellomycetes unknown, Malasseziales, Entomophthorales,
orales, Pleurosigma, Eustigmatales, Peronosporales, Cystofilobasidiales in P.
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Author OTU Chao1 Abundance
coverage

Evenness Shannon Simpson Inverse
Simpson

Faith Beta
Diversity

Re

Frémont et al.,
2013 (34)

NS Gen
Ros
Lac

Giloteaux
et al.,
2016 (35)

C:
1486.5
(456.5)
P:
1204.3
(351.2)
S

C:
2918.4
(884.9)
P: 2363.5
(705)
S

C: 5.9 (0.9)
P: 5.3 (0.9)
S

C: 73.4
(19.0)
P: 61.7
(16.7)
S

Weighted
UniFrac: NS
Unweighted
UniFrac: NS

Phy
Fam
Rum
Gen
Egg

Guo et al.,
2023 (36)

NS P lower
then C

P lower
then C

Bray-
Curtis: S

Spe
Hig
sp.

Janulewicz
et al.,
2019 (37)

P: 576
(SD:
12.9)
C: 415
(SD:
83.1)
S

P: 4.03 (SD:
0.15)
C: 3.79 (SD:
0.23)
S
(family
level)

Phy
Fam
Gen

Kitami et al.,
2020 (38)

NS NS Gen
Fae

Kopchak et al.,
2022 (39)

Spe
Clos
spp,

Lupo et al.,
2021 (40)

P:
215.6
(78)
C:
221.4
(60.8)
NS

P: 453.4
(194.7)
C: 422
(151.2)
NS

P: 17.7
(11.1)
C: 13.3 (7.3)
NS

Phy
Cla
Ord
Fam
Bar
Gen
Pha
Spe

Mandarano
et al.,
2018 (41)

C: 18.1
(SE:
6.9)
P: 14.1
(SE:
7.8)
NS

C: 26.6
(SE:
10.7)
P: 20.6
(SE:
10.9)
NS

C: 2.8 (SE:
1.2)
P: 2.3 (SE:
1.2)
NS

C: 6.7
(SE:2.1)
P: 6.0
(SE:2.4)
NS

Weighted
UniFrac: NS
Unweighted
UniFrac: NS

Phy
Stra
Cla
Ord
Poly
Mu
l

e
t

l

e

c
h
N

l

c

c

l
s

n

s
c

l
m
s

c
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TABLE 3 Continued

tive abundance

ellales, Sporidiobolales and Ustilaginales only observed in C.
es level: Higher Blastocystis in P.

es level: Lower F. prausnitzii and B. uniformis in P. Higher Intestinimonas
icipro ducens, Flavonifractor plautii, Butyricoccus desmolans, Eisenber giella
and Eisenbergiella massiliensis in P.

ly level: lower Lachnospiraceae and Porphyromonadaceae in P, while
r Clostridiaceae.
s level: lower Dorea, Faecalibacterium,
ococcus, Roseburia, and Odoribacter in P, while higher Clostridium and
obacillus.
es level: lower Faecalibacterium prausnitzii, Faecalibacterium cf., Roseburia
ivorans, Dorea longicatena, Dorea formicigenerans, Coprococcus catus,
ibacter splanchnicus, Ruminococcus obeum, and Parabacteroides merdae in
ile higher Clostridium asparagiforme, Clostridium symbiosum,
oprobacillus bacterium in P.

m level: Firmicutes 64.8% in C and 44% in P, Proteobacteria 0.078% in C
.1% in P.

es level: Higher E. Coli in C. Higher E. faecalis, S. sanguinis in P.

m level: Higher Bacteroidetes (P 27.71% vs C 22.43%), lower Firmicutes
.40% vs 65.29%) and lower Actinobacteria (P 0.58% vs C 1.06%) in P.
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Author OTU Chao1 Abundance
coverage

Evenness Shannon Simpson Inverse
Simpson

Faith Beta
Diversity

Rel

Trem
Spec

Minerbi et al.,
2019 (42)

NS NS Bray-
Curtis: S

Spec
buty
tayi,

Nagy-Szakal
et al.,
2017 (43)

Bray-Curtis:
C lower
than P.

Fam
high
Gen
Copr
Copr
Spec
inuli
Odo
P, w
and

Reichenberger
et all.,
2013 (44)

P:
mean
280.45
(195-
392
range)
C:
mean
328.63
(145-
591
range)
S

P: 520.76
(SE:
44.18)
C:
651.75
(SE:
54.12)
S

P: 3.89 (SE:
0.15)
C: 4.12 (SE:
0.12)
S

Unweighted
UniFrac
matrix: S
(since
clustering is
successful
based on
disease state)

Phyl
and

Sheedy et al.,
2009 (45)

Spec

Shukla et al.,
2015 (46)

Phyl
(P 5

Weber et al.,
2022 (47)

P:
194.85
(SD:
42.98)
C:
197.99
(SD:
49.69)
NS

P: 183.37
(50.84)
C:
187.96
(44.04)
NS

P: 212.46
(139.9)
C: 185.53
(41.58)
NS

P: 0.73 (0.05)
C: 0.73 (0.05)
NS

P: 5.58
(0.56)
C: 5.58
(0.56)
NS

P: 0.15
(0.04)
C: 0.14
(0.05)
NS

P: 16.07
(SD:2.71)
C: 16.13
(2.98)
NS
a
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i
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diversity, the richness metric observed species indicated a

significantly decreased number of unique operational taxonomic

units in chronic pain patients. Additionally, a lower Shannon index

and faith phylogenetic diversity were revealed in patients compared

to controls. For beta-diversity, inconclusive results were revealed.

Finally, there was a decreased relative abundance of

Lachnospiraceae in 83% of studies that evaluated this family in

chronic pain patients compared to controls. A decreased abundance

of Faecalibacterium prausnitzii and Odoribacter splanchnicus

species was demonstrated in patients compared to controls. Based

on this systematic review, with complementary meta-analyses, there

are indications for dysbiosis of gut microbiota in chronic

pain patients.

The interest in gut microbiota as a potential underlying factor of

disease maintenance has drastically increased during the last

decade. Gut dysbiosis is expected to contribute to the etiology of,

e.g., inflammatory bowel disease (50, 51), type 2 diabetes (52),

colorectal cancer (53, 54), hypertension (55), and rheumatic

diseases (23), besides its modulating role in chronic pain (56).

The mechanisms by which acute infectious pain becomes chronic

are very diverse and can include, among others, molecular mimicry

(structural similarity between microbial and host molecules which

could induce autoimmune responses), bystander activation, or

microbe invasion (57, 58). Specific microbes such as Borrelia

species and Mycobacterium leprae or viruses (e.g., HIV, SARS-

Cov-2) are associated with a high incidence of chronic pain (57). A

cross-disease meta-analysis was previously performed, whereby

consistent patterns characterizing disease-associated microbiome

changes were revealed (59). Some diseases were characterized by the

presence of potentially pathogenic microbes, whereas others

revealed a depletion of health-associated bacteria (59). About half

of the genera associated with individual studies were bacteria that

respond to more than one disease, supporting the hypothesis of

non-disease-specific alterations but shared alterations (i.e. non-

specific response) to health and disease (59). Based on this

hypothesis, the current systematic review and meta-analysis was

conducted in patients with chronic pain, regardless of the

underlying disease condition.

Gut microbiome alpha-diversity has been associated with

human health, whereby reduced levels are indicative of acute and

chronic diseases (60). Alpha-diversity metrics provide summary

statistics that focus on summarizing the breadth of diversity present

in an environment (61). The current study indicated a decrease in

alpha-diversity in patients with chronic pain compared to controls,

as reflected in several metrics namely, a decreased number of

unique operational taxonomic units, a decreased Shannon index

[which is a popular diversity index in the ecological field to reflect

the richness of bacterial community (62)], and a decreased Faith’s

phylogenetic diversity in chronic pain patients. Faith’s phylogenetic

diversity accounts for the phylogenetic relatedness of community

members and has been denoted as more sensitive to distinguishing

disease factors relative to other alpha diversity metrics (63). Despite

the small effect sizes, these alpha-diversity metrics all point towards

a decreased richness in chronic pain patients, which may point out

the need for nutritional interventions in patients with chronic pain.

The gut microbiota produces polyamines, which in turn excites N-
T
A
B
LE

3
C
o
n
ti
n
u
e
d

A
u
th
o
r

O
T
U

C
h
ao

1
A
b
u
n
d
an

ce
co

ve
ra
g
e

E
ve

n
n
e
ss

Sh
an

n
o
n

Si
m
p
so

n
In
ve

rs
e

Si
m
p
so

n
Fa

it
h

B
e
ta

D
iv
e
rs
it
y

R
e
la
ti
ve

ab
u
n
d
an

ce

Y
on

g
et

al
.,

20
23

(4
8)

N
S

N
S

N
S

W
ei
gh
te
d

U
ni
Fr
ac
:N

S
U
nw

ei
gh
te
d

U
ni
Fr
ac
:N

S
B
ra
y-

C
ru
ti
s:
N
S

P
hy
lu
m

le
ve
l:
no

di
ffe
re
nc
e.

C
la
ss

le
ve
l:
H
ig
he
r
T
is
si
er
el
lia

in
P
1
an
d
P
2
th
an

C
.

O
rd
er

le
ve
l:
H
ig
he
r
T
is
si
er
el
la
le
s
in

P
1
an
d
P
2
th
an

C
.

Fa
m
ily

le
ve
l:
H
ig
he
r
P
ep
to
ni
ph

ila
ce
ae

an
d
E
ub

ac
te
ri
ac
ea
e
in

P
1
th
an

C
.H

ig
he
r

P
ep
to
ni
ph

ila
ce
ae

in
P
2
th
an

C
.

G
en
us

le
ve
l:
H
ig
he
r
O
ls
en
el
la

in
P
1
th
an

C
.H

ig
he
r
H
un

ga
te
lla
,C

lo
st
ri
di
um

_g
6,

Eg
ge
rt
he
lla

an
d
Lo
ng
ic
at
en
a
in

P
2
th
an

C
.H

ig
he
r
C
at
en
ib
ac
te
ri
um

,
PA

C
00
01
95
_g
,F

us
ic
an

te
ni
ba
ct
er
,A

ga
th
ob
ac
te
r,
E
ub

ac
te
ri
um

_g
4,

R
os
eb
ur
ia
,

La
ch
no
sp
ir
ac
ea
e_
uc
,E

ub
ac
te
ri
um

_g
21

in
C
th
an

P
1.
H
ig
he
r
P
A
C
00
11
34
_g
,

C
at
en
ib
ac
te
ri
um

,P
A
C
00
06
92
_g
,H

ol
de
m
an

el
la
,P

A
C
00
11
37
_g
,P

A
C
00
01
95
_g
,

A
ga
th
ob
ac
te
r,
Eu

ba
ct
er
iu
m
_g
4,

R
os
eb
ur
ia
,F

ri
si
ng
ic
oc
cu
s,
Fa

ec
al
ib
ac
te
ri
um

,
D
or
ea

an
d
La

ch
no
sp
ir
a
in

C
th
an

P
2.

Z
ha
o

et
al
.(
49
)

P
:

32
3.
05

C
:

32
1.
9

P
:3

27
.8
6

C
:

32
7.
51

P
:3
36
.7
2

C
:3
35
.6
2

P
:5
.2
6

C
:5
.8
4

P
:0

.9
1

C
:0
.9
6

W
ei
gh
te
d

U
ni
Fr
ac
:S

P
hy
lu
m

le
ve
l:
lo
w
er

Fi
rm

ic
ut
es

in
P
,a
nd

hi
gh
er

P
ro
ba
ct
er
ia
in

P
.

G
en
us

le
ve
l:
hi
gh
er

A
na

er
os
ti
pe
s,
E
ry
si
pe
la
to
cl
os
tr
id
iu
m
,H

ol
de
m
an

el
la
,S
ar
ci
na

,
St
re
pt
oc
oc
cu
s,
an
d
W
ei
ss
el
la

in
P
.

Lo
w
er

Fa
ec
al
ib
ac
te
ri
um

,R
om

bo
ut
si
a,

an
d
Su
bd
ol
ig
ra
nu

lu
m

in
P
.

C
,c
on

tr
ol
s;
N
A
,n

ot
ap
pl
ic
ab
le
;N

S,
no

n-
si
gn
ifi
ca
nt
;P

,p
at
ie
nt
s;
S,
si
gn
ifi
ca
nt
.

frontiersin.org

https://doi.org/10.3389/fimmu.2024.1342833
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Goudman et al. 10.3389/fimmu.2024.1342833
TABLE 4 Changes in relative abundance of microbes in chronic pain patients compared to controls at phylum, family, genus and species level.

Migraine ME/CFS FM Axial
spondy-
oarthritis

Bladder
pain syndrome

Gulf-war CRPS Chronic
angina

Phylum level

Actinobacteria Higher
P (29)

Higher
C (46)

Higher
C (33)

Bacteroidetes Higher
P (29)

Higher P
(46)
Higher
P (40)

Higher P
(33)
Higher
C (33)

Firmicutes Higher C
(29)
Higher P
(29)
Higher
P (32)

Higher C
(46)
Higher C
(35)
Higher
C (40)

Higher P
(33)
Higher
C (33)

Higher
C (44)

Higher C (49)

Proteobacteria Higher
P (29)

Higher
C (35)

Higher
P (44)

Higher P (49)

Ascomycota Higher
C (41)

Basidiomycota Higher
P (41)

Stramenopiles Higher
P (41)

Zygomycota Higher
P (41)

Family level

Bacteroidaceae

Higher C
(35)
Higher
P (40)

Higher
C (33)

Barnesiellaceae
Higher
P (40)

Bifidobacteriaceae
Higher
C (35)

Higher
C (33)

Christensenellaceae
Higher
C (29)

Clostridiaceae
Higher
P (43)

Erysipelotrichaceae
Higher
P (29)

Higher
C (33)

Enterobacteriaceae
Higher
P (35)

Eubacteriaceae
Higher
P (48)

Lachnospiraceae

Higher P
(29)
Higher
C (29)

Higher C
(43)
Higher
C (40)

Higher
C (33)

Higher
C (37)

Peptoniphilaceae
Higher
P (48)

Porphyromonadaceae
Higher
C (43)

(Continued)
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TABLE 4 Continued

Migraine ME/CFS FM Axial
spondy-
oarthritis

Bladder
pain syndrome

Gulf-war CRPS Chronic
angina

Prevotellaceae
Higher
P (35)

Rikenellaceae
Higher
C (35)

Higher
P (33)

Ruminococcaceae
Higher
C (29)

Higher
C (35)

Genus level

Agathobacter
Higher
C (48)

Alistipes
Higher
P (34)

Higher
P (33)

Anaerostipes
Higher
C (29)

Higher
C (40)

Higher P (49)

Anaerotruncus
Higher
P (29)

Higher
P (35)

Asaccharobacter
Higher
C (34)

Bacteroides
Higher
P (29)

Higher
P (40)

Higher
C (33)

Bifidobacterium
Higher
C (35)

Higher
C (33)

Blautia
Higher
P (38)

Butyricicoccus
Higher
P (29)

Catenibacterium
Higher
C (48)

Clostridium
Higher
P (48)

Higher
P (43)

Higher
C (33)

Collinsella
Higher
C (38)

Coprobacillus
Higher
P (29)

Higher P
(43)
Higher
P (38)

Coprococcus

Higher C
(43)
Higher
P (35)

Dialister
Higher
C (34)

Higher
C (37)

Dorea

Higher C
(48)
Higher
P (29)

Higher
C (43)

Higher
P (33)

Eggerthella

Higher P
(29)
Higher
P (48)

Higher P
(38)
Higher
P (35)

(Continued)
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TABLE 4 Continued

Migraine ME/CFS FM Axial
spondy-
oarthritis

Bladder
pain syndrome

Gulf-war CRPS Chronic
angina

Erysipelatoclostridium Higher P (49)

Eubacterium

Higher C
(48)
Higher
P (29)

Higher
C (33)

Faecalibacterium

Higher C
(48)
Higher
C (32)

Higher C
(43)
Higher C
(38)
Higher
C (35)

Higher C (49)

Frisingicoccus
Higher
C (48)

Fusicantenibacter
Higher
C (48)

Holdemanella
Higher
C (48)

Higher P (49)

Holdemania
Higher
C (34)

Hungatella
Higher
P (48)

Lachnospira

Higher P
(29)
Higher
C (48)

Higher
C (38)

Lachnospiraceae_uc
Higher
C (48)

Lactococcus
Higher
P (35)

Lactonifactor
Higher
P (34)

Longicatena
Higher
P (48)

Odoribacter
Higher
P (29)

Higher
C (43)

Olsenella
Higher
P (48)

Oribacterium
Higher
C (29)

Oscillospira
Higher
P (35)

PAC000195_g
Higher
C (48)

PAC000692_g
Higher
C (48)

PAC001134_g
Higher
C (48)

PAC001137_g
Higher
C (48)

(Continued)
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TABLE 4 Continued

Migraine ME/CFS FM Axial
spondy-
oarthritis

Bladder
pain syndrome

Gulf-war CRPS Chronic
angina

Parabacteroides
Higher
P (29)

Phascolarctobacterium
Higher
P (40)

Romboutsia Higher C (49)

Roseburia
Higher
C (48)

Higher C
(43)
Higher
C (34)

Higher
P (33)

Ruminococcus
Higher
P (37)

Sarcina Higher P (49)

SMB53
Higher
P (29)

Streptococcus Higher P (49)

Subdoligranulum Higher C (49)

Sutterella
Higher
P (29)

Syntrophococcus
Higher
C (34)

Varibaculum
Higher
P (29)

Veillonella
Higher
P (29)

Weissella Higher P (49)

Species level

Alceligenes spp
Higher
P (39)

B. Uniformis
Higher
C (42)

Bacteroides clarus
Higher
C (32)

Bacteroides dorei
Higher
C (30)

Bacteroides intestinalis
Higher
C (32)

Bacteroides ovatus
Higher
P (40)

Bacteroides salyersiae
Higher
C (32)

Bacteroides stercoris
Higher
C (32)

Bacteroides uniformis
Higher
P (40)

Bifidobacterium adolescentis
Higher
C (32)

Higher
P (30)

(Continued)
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TABLE 4 Continued

Migraine ME/CFS FM Axial
spondy-
oarthritis

Bladder
pain syndrome

Gulf-war CRPS Chronic
angina

Blastocystis
Higher
P (41)

Blauti sp. N6H1.15
Higher
P (36)

Blautia hydrogenotrophica
Higher
P (32)

Butyricoccus desmolans
Higher
P (42)

Butyrivibrio crossotus
Higher
C (32)

C. aerofaciens Higher C (31)

C. bolteae
Higher
P (36)

C. scindens
Higher
P (36)

C. secundus
Higher
C (36)

Clostridium asparagiforme
Higher
P (32)

Higher
P (43)

Clostridium bolteae
Higher
P (32)

Clostridium citroniae
Higher
P (32)

Clostridium clostridioforme
Higher
P (32)

Clostridium coccoides
Higher
P (39)

Clostridium hathewayi
Higher
P (32)

Clostridium propionicum
Higher
P (39)

Clostridium ramosum
Higher
P (32)

Clostridium sp. L2_50
Higher
C (32)

Clostridium spiroforme
Higher
P (32)

Clostridium symbiosum
Higher
P (32)

Higher
P (43)

Coprobacillus bacterium
Higher
P (43)

Coprococcus catus
Higher
C (32)

Higher
C (43)

Dorea formicigenerans
Higher
C (43)

Dorea longicatena
Higher
C (43)

(Continued)
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TABLE 4 Continued

Migraine ME/CFS FM Axial
spondy-
oarthritis

Bladder
pain syndrome

Gulf-war CRPS Chronic
angina

E. coli
Higher
C (45)

E. faecalis
Higher
P (45)

E. ramosum
Higher
P (36)

E. rectale
Higher
C (36)

E. sinensis Higher C (31)

Eggerthella lenta

Higher P
(32)
Higher
P (39)

Eisenber giella tayi
Higher
P (42)

Eisenbergiella massiliensis
Higher
P (42)

Eubacterium hallii
Higher
C (32)

Eubacterium ramulus
Higher
C (32)

Faecalibacterium cf.
Higher
C (43)

Faecalibacterium prausnitzii
Higher
C (32)

Higher C
(36)
Higher
C (43)

Higher
C (42)

Higher C (31)

Flavonifractor plautii
Higher
P (32)

Higher
P (42)

Herpes simplex
Higher
P (39)

Intestinimonas
butyricipro ducens

Higher
P (42)

L. longoviformis Higher C (31)

Lachnoclostridium sp. YL32
Higher
P (36)

Lachnospiraceae bacterium
Higher
P (32)

Methanobrevibacter smithii
Higher
C (32)

Micromycetes spp (campesterol
and sitosterol)

Higher
P (39)

Odoribacter splanchnicus
Higher
C (32)

Higher
C (43)

Higher C (31)

Parabacteroides merdae
Higher
C (43)

Peptostreptococcaceae
Higher
C (32)

(Continued)
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methyl-D-aspartate receptors, a crucial factor of central nervous

system sensitization (64), which is common in patients with chronic

pain (65).

A reduction in the relative abundance of the Lachnospiraceae

family was found in patients with chronic pain. All Lachnospiraceae

members are anaerobic, fermentative and chemoorganotrophic,

and are already present in early infancy (66). Aging is associated

with increases in Lachnospiraceae abundance (67). The genera

Blautia and Roseburia, belonging to the Lachnospiraceae family,

are often associated with a healthy state (68). These genera are the

main short-chain fatty acid (SCFA) producers [whereby SCFA

activity modulates the surrounding microbial environment and

interacts with the host immune system (69)] and are involved in

the control of gut inflammatory processes, and maturation of the

immune system (66, 70). A higher relative abundance of Roseburia

ssp. was revealed in controls compared to chronic pain patients,
Frontiers in Immunology 19
highlighting the value of this genus in health states. Additionally, a

decrease in the relative abundance of Odoribacter splanchnicus,

another common SCFA-producing member of the human intestinal

microbiota (71), was found in chronic pain patients. This finding

was previously also described in patients with inflammatory bowel

disease (72, 73).

Another finding was a decreased relative abundance of the

Faecalibacterium genus, belonging to the family Ruminococcaceae,

which comprises only one val idated species , namely

Faecalibacterium prausnitzii (74). A decrease in Faecalibacterium

prausnitzii was observed in chronic pain patients, a species known

to play a crucial role in host wellbeing and gut physiology (75). It is

one of the main butyrate producers in the intestine (76), whereby

butyrate is involved in maintaining mucosal integrity, alleviating

inflammation (via macrophage function as well as a reduction in

proinflammatory cytokines), and increasing anti-inflammatory
TABLE 4 Continued

Migraine ME/CFS FM Axial
spondy-
oarthritis

Bladder
pain syndrome

Gulf-war CRPS Chronic
angina

Porphyromonas bennonis
Higher
P (30)

Prevotella copri
Higher
C (32)

Pseudonocardia spp
Higher
P (39)

R. gnavus
Higher
P (36)

R. lactatiformans
Higher
P (36)

Rhodococcus spp
Higher
P (39)

Roseburia inulinivorans
Higher
C (43)

Ruminococcus callidus
Higher
C (32)

Ruminococcus champanellensis
Higher
C (32)

Ruminococcus gnavus
Higher
P (32)

Ruminococcus obeum
Higher
C (32)

Higher
C (43)

S. intestinalis
Higher
P (36)

S. sanguinis
Higher
P (45)

Streptococcus anginosus
Higher
C (30)

Sutterella wadsworthensis
Higher
C (32)

T. nexilis
Higher
P (36)
C, controls; P, patients.
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mediators (77). Thus, this species is known for its anti-

inflammatory properties (75). In murine models, it was revealed

that Faecalibacterium prausnitzii cells could reduce the severity of

both acute, chronic, and chemical-induced inflammation (78–80).

Faecalibacterium prausnitzii depletion has been reported in adults

with Crohn’s disease, ulcerative colitis, and colorectal cancer (81–

84), as well as in patients with rheumatic disorders (23, 85) and is

proposed as a biomarker to discriminate between gut disorders and

healthy subjects (75). This alteration may not be specific to

inflammatory diseases and may be a more generic phenomenon

of disease states since it is also revealed in chronic pain patients.

Combining these findings, it seems that SCFAs [mainly

composed of acetic acid, propionic acid, and butyric acid (86)]

play an important role in the context of chronic pain (Figure 3).

There are two main mechanisms through which SCFAs can enter

cells and consequently alter inflammation, namely cell signal

transduction and passive diffusion combined with transport

proteins. The latter functions through sodium-coupled

monocarboxylate transport 1/2 (SMCT1/2), Na+ coupled

transporters in the apical membrane of colonic epithelium, and

monocarboxylate transporter 1/4 (MCT1/4), H+ coupled

transporters mainly expressed in the apical and basolateral

membrane of the colonic epithelium (89). Once SCFAs enter the

cell through passive diffusion or transporters, they inhibit histone

deacetylation (86). In dendritic cells and macrophages, inhibition of

histone deacetylation is the main pathway to exert anti-inflammatory
Frontiers in Immunology 20
effects, while in neutrophils and monocytes, SCFAs inhibit tumor

necrosis factor expression, the NF-kB signaling pathway, and histone

deacetylase in addition to promoting interleukin-10 production as an

anti-inflammatory cytokine. Cell signal transduction is realized by

SCFAs through G protein-coupled cell membrane receptors

GPR109A, GPR43, and GPR41 (90, 91). In macrophages, butyrate

activates GPR41 to down-regulate pro-inflammatory factors among

which are nitric oxide synthase, tumor necrosis factor, interleukin 6,

and monocyte chemoattractant protein-1 (92). In macrophages and

neutrophils, SCFAs down-regulate interleukin 8 expression through

activation of GPR43 and GPR41 (93). Finally, SCFAs can also

regulate inflammation by activating anti-inflammatory signaling

pathways by inhibiting histone deacetylase (86). Besides the role

of SCFAs in inflammation, they also regulate the differentiation

of T cells and B cells and regulate the function of innate immune

cells among which are macrophages, neutrophils, and dendritic

cells (86).

This study evaluated gut microbiome alterations in chronic pain

patients compared to controls without chronic pain. Studies from

different parts of the world were included among which were the

USA, Europe, Asia, and Australia. There is no universal healthy gut

microbiota (94, 95), since nationality and food preferences, among

other factors, induce an influence on the gut microbiota. For

example, the gut microbiome of a healthy European (including

Slavic nationality) is characterized by the dominance of the phyla

Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria,
FIGURE 3

Hypothesized schematic representation of the role of short-chain fatty acids (SCFAs) in the regulation of gut and systemic immunity in relation to
chronic pain (86–88). SCFAs can regulate inflammation through cell signal transduction by binding at G-protein coupled receptors GPR109A,
GPR43, and GPR41 and down-regulate the NOS, TNF, MCP-1, IL-6, IL-8, and the NF-kB signaling pathway. Through passive diffusion and transport
proteins (MCT1, MCT4, SMCT1, SMCT2), SCFAs can inhibit histone deacetylase. This is a simplified representation of the pathways involved in
inflammation with the pathways expected to be relevant in the setting of chronic pain.
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Fusobacteria, and Verrucomicrobia, while the gut microbiome of

Asians is very diverse and rich in members of the genera Prevotella,

Bacteroides Lactobacillus, Faecalibacterium, Ruminococcus,

Subdoligranulum, Coprococcus, Collinsella, Megasphaera,

Bifidobacterium, and Phascolarctobacterium (96). Therefore, this

study only included studies that compared gut microbiota to a

control group to limit the influence of local differences in gut

microbiota composition.

The field of chronic pain and gut microbiota composition is still

in its infancy, wherefore condition-specific alterations remain to be

elucidated when more research is available, in case the hypothesis of

shared alterations is not valid in pain settings. The majority of

studies explored chronic primary pain syndromes, wherefore gut

dysbiosis in chronic secondary pain syndromes still needs to be

explored in more detail. When interpreting the results of this study,

it should be taken into account that medication was previously

denoted as an important covariate, and more specifically antibiotics,

osmotic laxatives, inflammatory bowel disease medication, female

hormones, benzodiazepines, antidepressants, and antihistamines

(60). Recently, a multi-omics analysis elaborated on the concept

of opioid-induced dysbiosis in gut microbiota (97), which further

supports the hypothesis of addressing the gut-brain axis in patients

with chronic pain, especially in those patients who take opioids as

pain medication. Medication use was reported for every individual

study, however, it was not possible to take a numerical output for

medication use into account in the conducted meta-analysis. As

revealed by this review, there is no common pipeline to conduct

laboratory analyses, statistical evaluations, or quality assurance for

gut microbiome data. Future steps should be conducted towards

harmonization of processing gut microbiome data to ensure better

comparability of the results.
5 Conclusions

This review pointed towards the potential value of dysbiosis in

chronic pain patients, with non-specific disease alterations

of microbes.
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