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non-coding RNAs in
myasthenia gravis
pathogenesis and treatment
Benqiao Wang, Ying Zhu, Dan Liu, Chunxiang Hu
and Ruixia Zhu*

Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
Myasthenia gravis (MG) stands as a perplexing autoimmune disorder affecting the

neuromuscular junction, driven by a multitude of antibodies targeting

postsynaptic elements. However, the mystery of MG pathogenesis has yet to

be completely uncovered, and its heterogeneity also challenges diagnosis and

treatment. Growing evidence shows the differential expression of non-coding

RNAs (ncRNAs) in MG has played an essential role in the development of MG in

recent years. Remarkably, these aberrantly expressed ncRNAs exhibit distinct

profiles within diverse clinical subgroups and among patients harboring various

antibody types. Furthermore, they have been implicated in orchestrating the

production of inflammatory cytokines, perturbing the equilibrium of T helper 1

cells (Th1), T helper 17 cells (Th17), and regulatory T cells (Tregs), and inciting B

cells to generate antibodies. Studies have elucidated that certain ncRNAs mirror

the clinical severity of MG, while others may hold therapeutic significance,

showcasing a propensity to return to normal levels following appropriate

treatments or potentially foretelling the responsiveness to immunosuppressive

therapies. Notably, the intricate interplay among these ncRNAs does not follow a

linear trajectory but rather assembles into a complex network, with competing

endogenous RNA (ceRNA) emerging as a prominent hub in some cases. This

comprehensive review consolidates the landscape of dysregulated ncRNAs in

MG, briefly delineating their pivotal role in MG pathogenesis. Furthermore, it

explores their promise as prospective biomarkers, aiding in the elucidation of

disease subtypes, assessment of disease severity, monitoring therapeutic

responses, and as novel therapeutic targets.
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1 Introduction

Myasthenia gravis (MG) is an autoimmune disorder affecting the

neuromuscular junction, primarily instigated by the presence of

antibodies targeting various postsynaptic components (1). Among

these antibodies, anti-acetylcholine receptor antibodies (AChR-Ab)

stand as the most prevalent, while antibodies against MuSK (MuSK-

Ab), Lrp4, and agrin are comparatively less common (2). Additionally,

biomarkers such as ColQ, Kv1.4, titin, and RyR are indeed valuable,

albeit their specific pathogenic roles remain uncertain (3). The hallmark

feature of MG is fatigable muscle weakness, accentuated post-exertion

and relieved during rest (4). MG classification encompasses subgroups

based on antibody profiles, clinical manifestations, age of onset, and

thymus pathology (2). Notably, thymus involvement plays a pivotal role

in AChR-Ab-positive MG (AChR-MG), with hyperplasia observed in

early-onset MG (EOMG) and atrophy in late-onset MG (LOMG) (2).

Thymoma-associated MG (TAMG) represents a distinct subgroup (2).

The advent of high-throughput sequencing technology has redefined our

perception of ncRNAs, once considered “junk DNA,” as critical cellular

regulators (5). This vast class of genomic elements is typically categorized

into two main groups: small or short non-coding RNAs and long non-

coding RNAs (lncRNAs), based on whether their length exceeds 200

nucleotides (6). Additionally, circular RNAs (circRNAs), unique single-

stranded RNA molecules formed by covalent closure at the 5’ and 3’

ends, have emerged as noteworthy constituents of ncRNAs (7).

Intriguingly, ncRNAs have exhibited profound associations with

diverse diseases, spanning cancer, cardiovascular and cerebrovascular

conditions, as well as metabolic and autoimmune disorders (8–10). In

systemic lupus erythematosus (SLE), some miRNAs, such as miR-125a,

miR-125b, miR-21, miR-148a, miR,223, and miR-31, expressed

abnormally, others, like miR-7, miR-155, miR-146, and miR-182 were

reported to regulate B cells, T cells, or the formation of germinal centers

(GCs) (11–13). While in rheumatoid arthritis (RA), miR-146a, miR-155,

miR-22, and miR-10a-5p were related to the inflammatory environment

(13). Let-7g-5p and NEAT1, a lncRNA, were proved to promote the

proliferation of Th17 (14). With this backdrop, the investigation of

ncRNAs on MG pathogenesis has become a compelling area of study.

Despite significant advancements inMGmanagement, several challenges

persist (2). The etiological “triggers,” underlying molecular mechanisms,

and regulatory factors at the molecular level remain elusive, confounding

researchers (15). Furthermore, a subset of MG patients fails to achieve

remission or substantial clinical improvement with current

immunotherapies (16), a concern exacerbated by the drawbacks of

long-term immunosuppressant usage, including intolerance, delayed

therapeutic onset, and systemic toxicity (17). Our conviction lies in the

potential of precision-targeted immunotherapy as a promising avenue to

tackle these challenges. In this review, we delve into the role of ncRNAs

in MG pathogenesis and explore the significance of ncRNAs in MG

treatment and therapeutic monitoring.
2 miRNAs in MG

Among the diverse categories of small non-coding RNAs,

microRNAs (miRNAs) supreme as one of the most prominent
Frontiers in Immunology 02
classes, distinguished by their sheer number and prevalence in

research (18). These endogenous single-stranded molecules typically

comprise approximately 22 nucleotides (19) and were initially

discovered by Lee et al. in the early 1990s (20). In the realm of

immune system modulation, miRNAs play an integral role, which

explains why disruptions in their function have been associated with a

range of autoimmune conditions, such as MG (21, 22) (Table 1).
2.1 miRNAs involved in MG pathogenesis

In patients with MG, a series of dysfunctions occur at the

neuromuscular junction (NMJ), driven by T cells and mediated by B

cells, resulting in a complex pathogenic process (24). This process

involves an array of miRNAs and proinflammatory cytokines,

potentially contributing to the development of MG (Figure 1).

Several studies have explored the role of dysregulated miRNAs

in MG by compiling a catalog of genes associated with MG

susceptibility based on existing literature (27, 28, 53, 56). Yang

et al. (28) conducted an analysis of 93 miRNAs associated with MG

risk pathways, shedding light on their regulatory role within these

pathways. Their work underscored the potential significance of

some specific miRNAs in MG pathogenesis, including miR-497,

miR-15a, miR-15b, miR-16, and miR-195. Cao et al. (56)

pinpointed miRNA-146a as an important contributor to the

regulation of numerous MG risk pathways, underscoring its

pivotal role in MG pathogenesis. Moreover, in the study of Bo

et al. (53), 13 dysregulated miRNAs, including miR-29b-3p, miR-

145-5p, and miR-451a, were believed to play a role in MG

pathogenesis. Among these risk-related miRNAs, miR-145-5p was

the sole miRNA found to exhibit differential expression, suggesting

its potential pivotal function in MG. In a complementary study,

Qian et al. (27) reported 30 abnormally expressed miRNAs, which

may participate in MG development by modulating Tregs.

Collectively, these identified miRNAs offer valuable insights and

may serve as guiding principles for future research endeavors aimed

at unraveling the intricate pathogenesis of MG.

2.1.1 Modulation of Tregs, Th17 and Th1
It is well-established that the initiation of MG critically hinges

on the activation of autoreactive T cells (57). Consequently, the

miRNAs exhibiting abnormal expression and responsibility for T

cell proliferation and activation may represent a pivotal link in MG

pathogenesis. Certain miRNAs have been identified to be involved

in the regulation of T cells in MG. Cron et al. (58) discovered that

miR-150 could target MYB, a proto-oncogene, thus affecting the

survival of CD4+ and CD8+T cells, which may contribute to the

maintenance of an immunologically activated state. Research

showed that miR-20b would inhibit T cell proliferation and

activation by suppressing the NFAT signaling pathway through

downregulating NFAT5 and CAMTA1 (33). Moreover, decreased

miR-522-3p can lead to the overexpression of CD25, CD69, IL-2,

and IL-10 by targeting SLC31A1, consequently promoting the

activation and proliferation of Jurkat cells, a T cell leukemia line

(31). Dysregulation of key immune cell populations, including
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TABLE 1 Differential expressed miRNAs in MG.

miRNA Sample Subtype Antibodies Expression Target Ref

let-7a-5p serum MG MuSK-Ab ↓ (23)

let-7c PBMC MG ↓ IL-10 (24)

let-7f-5p serum MG MuSK-Ab ↓ (23)

miR-
106a-5p

serum GMG, OMG ↓ (GMG<OMG) (25)

miR-
106b-5p

PBMC MG MuSK-Ab ↓ (26)

miR-122 serum LOMG AChR-Ab ↓ (27)

miR-
125a-5p

thymus EOMG AChR-Ab ↑ (28)

miR-
125a-5p

thymus TAMG ↑ foxp3 (29)

miR-126 serum MG AChR-Ab ↓ (30)

miR-
139-5p

thymus GMG AChR-Ab ↓ RGS13 (31)

miR-
140-3p

serum LOMG AChR-Ab ↓ (27)

miR-145 PBMC MG AChR-Ab ↓ CD28 and NFATc1 (32)

miR-146a PBMC EOMG AChR-Ab ↑ (33)

miR-146a PBMC EOMG AChR-Ab ↑ IRAK1, c-REL, TRAF6,
ICOS, and FAS

(34)

miR-146a thymus, serum EOMG AChR-Ab ↓ IRAK1, c-REL, TRAF6,
ICOS, and FAS

(34)

miR-146a serum MG AChR-Ab ↑ TRAF6 (35)

miR-146a B cells EAMG AChR-Ab ↑ (36)

miR-150 PBMC EOMG AChR-Ab ↓ MYB, P53 and AIFM2 (37)

miR-150 thymus, serum EOMG AChR-Ab ↑ MYB, P53 and AIFM2 (37)

miR-
150-5p

serum EOMG AChR-Ab ↑ (38)

miR-
150-5p

serum LOMG AChR-Ab ↑ (GMG>OMG) (39)

miR-
150-5p

serum refractory GMG AChR-Ab ↑ (40)

miR-
150-5p

serum EOMG, LOMG AChR-Ab AND
MuSK-Ab

↑ (41)

miR-
150-5p

serum LOMG AChR-Ab
AND Seronegative

↑ (GMG>OMG) (42)

miR-
150-5p

serum MG AChR-Ab
AND Seronegative

↑ (43)

miR-
151a-3p

serum MG MuSK-Ab ↓ (23)

miR-155 PBMC MG AChR-Ab ↑ BAFF-R/ TRAF3/NIK/
NF-ĸB

(44)

miR-
15a-3p

PBMC MG MuSK-Ab ↓ (26)

(Continued)
F
rontiers in Im
munology
 03
 frontier
sin.org

https://doi.org/10.3389/fimmu.2024.1342213
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1342213
TABLE 1 Continued

miRNA Sample Subtype Antibodies Expression Target Ref

miR-15b serum EOMG,
LOMG, TAMG

AChR-Ab ↓ (27)

miR-15b serum EOMG,
LOMG, TAMG

AChR-Ab ↓ IL-15 (28)

miR-181a PBMC MG ↓ TRIM9 (45)

miR-181c PBMC GMG, OMG AChR-Ab ↓ (GMG<OMG) IL-7 (46)

miR-185 serum LOMG AChR-Ab ↓ (27)

miR-192 serum EOMG AChR-Ab ↓ (27)

miR-
1930-5p

omohyoid muscles EAMG MuSK-Ab ↑ (47)

miR-
1933-3p

omohyoid muscles EAMG MuSK-Ab ↑ Mrpl27 and Impa1 (47)

miR-
19b-5p

thymus TAMG ↑ TSLP (48)

miR-20b serum EOMG AChR-Ab ↓ (27)

miR-20b serum EOMG AChR-Ab ↓ (GMG<OMG) IL-8 and IL-25 (49)

miR-20b thymoma tissues and serum TAMG ↓ NFAT5 and CAMTA1 (50)

miR-
210-3p

serum MG MuSK-Ab ↓ (51)

miR-21 serum MG AChR-Ab ↑ (30)

miR-
21-5p

serum EOMG AChR-Ab ↑ (38)

miR-
21-5p

serum LOMG AChR-Ab
AND Seronegative

↑ (GMG>OMG) (42)

miR-
21-5p

serum MG AChR-Ab
AND Seronegative

↑ (43)

miR-
27a-3p

serum EOMG AChR-Ab ↓ (38)

miR-
27a-3p

PBMC MG MuSK-Ab ↓ (26)

miR-29 thymus EOMG AChR-Ab ↓ (52)

miR-
30e-5p

serum LOMG AChR-Ab ↑ (GMG>OMG) (39)

miR-
30e-5p

serum EOMG, LOMG AChR-Ab AND
MuSK-Ab

↑ (41)

miR-
30e-5p

serum LOMG AChR-Ab
AND Seronegative

↑ (42)

miR-320a PBMC MG ↓ MAPK1 (54)

miR-
324-3p

serum MG MuSK-Ab ↓ (51)

miR-
340-5p

PBMC MG MuSK-Ab ↓ (26)

miR-3651 PBMC EOMG AChR-Ab ↑ (53)

miR-3654 PBMC EOMG AChR-Ab ↑ (53)

miR-
423-5p

serum MG MuSK-Ab ↓ (23)

(Continued)
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Tregs, Th17, and Th1, exerts a significant influence on MG

pathogenesis. Studies have reported that the expression of Tregs

is associated with disease severity, with observations of decreased

Foxp3, a Treg-related cytokine, in peripheral blood mononuclear

cells (PBMCs) of MG patients (39). In an AIRE knockout mouse

model, reduced Tregs and increased Th17 cells in the thymus

rendered the mice more susceptible to experimental autoimmune

myasthenia gravis (EAMG) (42), mirroring the pathogenesis of

LOMG and TAMG (15). Villegas et al. (46) noted that an imbalance

between Tregs and Th17 cells is associated with chronic thymic

inflammatory conditions in AChR-MG.
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The lapses in Treg function result in the loss of their inhibitory

effect on excessive inflammatory responses, leading to uncontrolled

inflammatory cell activity in MG (25). This unchecked immune

activity gives rise to chronic inflammation and thymic hyperplasia,

further disrupting immune tolerance mechanisms. Recent research

outcomes have unveiled a miR-146b-TRAF6-NF-kB-Foxp3
pathway, which plays a crucial role in suppressing Treg

proliferation and its inhibitory function (49, 59). Intriguingly,

Yan et al. (60) proposed that overexpressed miR-146a may

contribute to the pathogenesis of MG by promoting TRAF6

expression, which could further disrupt Treg function. miR-125a-
TABLE 1 Continued

miRNA Sample Subtype Antibodies Expression Target Ref

miR-
452-5p

thymus GMG AChR-Ab ↓ RGS13 (31)

miR-
522-3p

thymoma tissue, serum, Jurkat cells
and CD4+ T cells

TAMG, MG
without thymoma

↓ (TAMG<MG
without thymoma)

SLC31A1 (54)

miR-548k thymus MG ↓ CXCL13 (55)

miR-612 PBMC EOMG AChR-Ab ↑ (53)

miR-7-5p thymus EOMG AChR-Ab ↓ CCL21 (28)

miR-
885-5p

serum LOMG AChR-Ab ↓ (27)
frontier
↓ means down regulated.
↑ means upregulated.
FIGURE 1

Dysregulated ncRNAs in MG pathogenesis. Abnormally expressed ncRNAs in different types of samples actively participate in the pathogenesis of
AChR-MG by regulating the differentiation of T cells, broking the balance between helper T cells (Th1 and Th17) and Treg cells, activating the B cells,
modulating the production of inflammatory cytokines, thus promoting the production of antibodies. Here, we delineate the regulatory relationship
between abnormally expressed ncRNAs and immune cells, cytokines, and related signaling pathways.
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5p was confirmed to negatively regulate Foxp3, consequently

inhibiting the generation of Treg with a great possibility (37).

Additionally, there is a positive correlation between the reduced

miR-126 and Foxp3 mRNA in MG, providing strong evidence for

the downregulation of Treg activity (50). In summary, differentially

expressed miRNAs in MG have been observed to inhibit Treg

proliferation and weaken their inhibitory function. Consequently,

these miRNA-mediated changes impair immunological tolerance

mechanisms and play an important role in the pathogenesis of MG.

Compelling scholarly evidence has demonstrated that the

activation of Th17 and Th1 cells, when losing the control of

Tregs, can lead to the release of pro-inflammatory cytokines such

as INF-g and IL-17 (61), which may build the bridge between some

dysregulated miRNAs and MG. For instance, Wang et al. (62)

revealed that miR-145 could serve as a regulator that promotes T

cell proliferation and differentiation into Th17 cells, by targeting

CD28 and NFATc1. Similarly, Cron et al. (34) reported a reduction

of the miR-29 family within thymic tissues of MG, potentially in

connection with an increase of IFN-b. Among these, miR-29a/b1,

part of a miR-29a genomic cluster, could possibly facilitate the

flourishing of Th17 cells. Besides, miR-19b-5p in TAMG has been

shown to post-transcriptionally inhibit thymic stromal

lymphopoietin (TSLP), thereby regulating Th17 cells and their

related cytokines (44). It’s reasonable to speculate that these

abnormally expressed miRNAs may function as regulators,

promoting the release of Th17-related cytokines (IL-6, TGF-b, IL-
17, IL-1b, and IL-23) and the proliferation of Th17 cells. On the

grounds of research by Cheng et al. (45), with the target of MAPK1,

miR-320a may influence the Th1-associated cytokines, like IL-2,

and IFN-g, by adjusting COX-2 through the regulation of ERK/NF-

kB pathways. In addition, several miRNAs contribute to the

pathogenesis of MG by influencing both Th1 and Th17 responses

concurrently. Liu et al. (63) reported that miR-15a could affect the

CXCL10 gene by regulating Th1- and Th17-related cytokines to

generate immune responses. In conclusion, the dysregulation of

miRNAs can disrupt Treg function, promote the proliferation of

Th1 and Th17 cells, and result in the overexpression of pro-

inflammatory cytokines, thus modulating the pathogenesis of MG.
2.1.2 miRNAs as regulators of B cell activation
B cells, integral players in the pathogenesis of MG, participate in

the formation of ectopic GCs, receive signals from antigen-

presenting cells (APCs), and contribute to the production of

autoimmune antibodies (38). Many dysregulated miRNAs can

modulate chemokines and specific signaling pathways to promote

the maturation of autoreactive B cells and the development of GCs.

miR-155, found to be elevated in B cells, engaged in the immune

response through the BAFF-R/TRAF3/NIK/NF-kB p65 pathway,

mediating the survival of activated B cells and increasing the

production of AChR antibodies by regulating co-stimulatory

molecules (48). The binding of BAFF to BAFF-R is necessary for

B cell maturation and survival (43). And miR-155 can promote the

expression of BAFF-R and TRAF3 to facilitate the phosphorylation

of NIK, thus helping the NF-kB to translocate into the nuclear of B

cells (48). At the same time, miR-155 can also modulate the co-
Frontiers in Immunology 06
stimulatory molecules, such as CD40, CD80, and CD86, to enhance

the production of antibodies by B cells. Two independent studies

mentioned an elevation of miR-146a in AchR-specific B cells and

they also reported that miR-146a could affect B cell immunity (64,

65). Notably, one of these studies proposed that miR-146a may

facilitate the activation of B cells and the production of antibodies

by modulating the TLR4 and NF-kB pathways (64). In a study by

Bortone et al. (66), the downregulated miR-146a showed a

noteworthy negative correlation with IRAK1, c-REL, ICOS, and

FAS in the follicular hyperplastic thymus of EOMG. The genes

targeted by miR-146a appear to collectively contribute to the

activation of B cells and the formation of GCs. Firstly, the

downregulation of miR-146a allows IRAK1 to induce excessive

inflammation and disrupt immune tolerance through the TLR

signaling pathway. Secondly, the deficiency of miR-146a can

enhance the activation of c-REL, thereby promoting the

proliferation and differentiation of B cells and amplifying GCs

formation. Furthermore, reduced miR-146a may fail to effectively

restrict the aggregation of follicular helper T cells (Tfhs) and the

proliferation of B cells in GCs by targeting ICOS. Lastly, miR-146a

can downregulate FAS expression, promoting lymphoproliferation

and GCs formation. Wang et al. (67) found that miR-181a may

influence the levels of inflammatory cytokines, such as TNF-a, IL-4,
and IL-6, affecting B cell proliferation by regulating TRIM9.

Additionally, miR-548k, reduced in the thymus of MG, can

target CXCL13 (40), which plays a role in directing B cells and

facilitating GCs formation. miR-452-5p and miR-139-5p were

associated with the promotion of RGS13 expression, leading to B

cell proliferation and GCs expansion (54). miR-150-5p has shown a

positive correlation with CD19+ and CD27+ B cells, suggesting its

involvement in B cell differentiation, memory B cell formation, and

further possible immune responses, including B cell activation and

antibody production (30). Additionally, the abnormally expressed

miR-126 and miR-21 in PBMCs were proved to upregulate the

expression of IL-6, thus promoting the proliferation and

differentiation of B cells, consequently facilitating the production

of antibodies (50). let-7c was reported to target IL-10, probably

participating in MG pathogenesis by stimulating B cells (68).

Besides, the reduced miR-7 in thymus was reported to upregulate

the expression of CCL21, thus helping the formation of GCs (69).
2.2 miRNAs as clinical biomarkers and
therapeutic targets

2.2.1 miRNAs engaged in AChR-MG
AChR-Ab is the most prevalent antibody in MG, accounting for

approximately 85% of cases (70). AChR-MG can be further classified

according to clinical features. Interestingly, there are some differences

in thymus pathology among EOMG, LOMG and TAMG. EOMG

refers to individuals under the age of 50, characterized by hyperplastic

thymus pathology. In contrast, LOMG manifests in individuals over

the age of 50, commonly associated with thymic atrophy. TAMG, on

the other hand, represents a paraneoplastic syndrome of thymoma

(4). A few of studies (54, 55, 58, 64, 66, 69, 71) revealed some

differentially expressed miRNAs, such as miR-139-5p, miR-452-5p,
frontiersin.org
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miR-612, miR-3654, miR-365, miR-150, miR-20b, miR-192, miR-7,

miR-125a-5p, and miR-146a, in the AChR antibody-positive EOMG

(AChR-EOMG) patients. A decrease in miR-15b expression was

observed in the serum of both early-onset and late-onset AChR-

MG (71), which aligns with findings from an animal model of EAMG

in mice injected with Torpedo AChR (72). In addition, in patients

with AChR antibody-positive LOMG (AChR-LOMG), miR-122,

miR-140-3p, miR-185, miR-885-5p, miR-106b-3p, miR-223-5p,

miR-140-5p, miR-19b-3p, miR-30e-5p, and miR-150-5p were

found to express abnormally (29, 32, 71). These findings suggest a

nuanced expression profile of dysregulated miRNAs between EOMG

and LOMG. Many miRNAs were reported to express aberrantly in

TAMG, including miR-125a-5p, miR-19b-5p, miR-20b and miR-

522-3p (25, 33, 50, 58). Additionally, a study by Shi et al. (72)

indicated a decrease in miR-15b expression in TAMG, EOMG, and

LOMG patients.

Several dysregulated miRNAs in AChR-MG, compared with

ocular myasthenia gravis (OMG), have more severe abnormalities

in generalized myasthenia gravis (GMG), some of which are

correlated with quantitative myasthenia gravis scores (QMGs) or

myasthenia gravis composite scores (MGCs), reflecting the severity

of MG and further serving as potential biomarkers for disease

surveillance with great possibility. Research findings indicated that

both OMG and GMG patients showed elevated miR-150-5p, miR-

21-5p, and miR-30e-5p, which had a positive correlation with

MGCs and significantly more overexpressed in GMG than in

OMG (29, 32). Conversely, the lower expressed miR-181a, miR-

106a-5p, and miR-20b in MG, had a negative relationship between

QMGs, with GMG displaying notably reduced levels compared to

OMG (73–75). Additionally, several studies (51, 76) on curative

effect indicated a parallel between the reduction of AChR-Ab titers

and the improvement of symptoms. A fast decrease of AChR-Ab

titers more than 50% also made a clinical sense (23). Interestingly,

some studies showed that miR-126, and miR-145 were negatively

correlated with AChR-Ab titer (50, 62), while miR-21 was positively

related to AChR-Ab titer (50). We therefore speculate that specific

ncRNAs may also be useful for efficacy detection.

MiR-150-5p, miR-30e-5p, and miR-146a levels in the serum of

AChR-MG patients have shown promising responses to various

treatments like thymectomy and immunosuppression, indicating a

correlation between their levels and clinical improvement (26, 30, 32,

35, 52, 58, 66). These miRNAs could potentially serve as biomarkers

for monitoring therapeutic efficacy and reflecting the disease severity.

Furthermore, research by Zhang et al. (65) suggested that silencing

miR-146a could reduce the expression of CD40, CD80, and CD86 on

the surface of B cells, inhibit B cell differentiation, and consequently

reduce the production of anti-AChR antibodies. By comparing the

level of miR-146a and the expression of c-REL in the thymus of MG

in corticosteroid-naïve patients and corticosteroid-treated patients,

Bortone et al. (66) reported that after corticosteroid treatment, the

immune response of c-REL, which was originally active in GCs and

infiltrating B cells of untreated patients, was strongly inhibited,

highlighting the miR-146a/c-REL axis as a potential therapeutic

target for immunosuppressants. These discoveries suggests that

miR-146a could serve as both a therapeutic target and a

monitoring indicator for treatment efficacy. Moreover, Wang et al.
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(48) demonstrated that silencing miR-155 could inhibit the

production of anti-T-AChR antibodies, making miR-155 another

potential treatment target. Sengupta et al. (54) proposed that miR-

139-5p and miR-452-5p might be considered for MG treatment,

especially for EOMG, as their mimics inhibit B cell chemotaxis and

GCs formation. Additionally, Cavalcante et al. reported that AChR-

MG with abnormally expressed miRNAs such as miR-323b-3p, miR-

409-3p, miR-485-3p, miR-181d-5p, andmiR-340-3p are not sensitive

to immunosuppressants (47), suggesting the presence of these

miRNAs may result in poor treatment. In other words, these

miRNAs may be used to forecast clinical response.

In essence, miRNAs exhibit subtle variations in expression

across MG subgroups. Certain miRNAs with abnormal expression

levels have the potential to facilitate disease monitoring, aid in

targeted therapy, and assess treatment efficacy. Firstly, several

miRNAs tend to normalize after appropriate treatment. Secondly,

certain miRNAs may be implicated in antibody production, making

them potential targets for MG treatment. Lastly, the presence of

specific miRNAs may indicate the response to treatment. These

miRNAs hold promise as specific biomarkers reflecting disease

severity or treatment responses and may serve as novel targets for

MG therapy. Consequently, there arises the prospect of precision

therapy and personalized monitoring for individuals with MG.

2.2.2 miRNAs intertwined with MuSK-MG
MuSK antibodies are present in approximately 1-10% of MG

cases, predominantly affecting young women under the age of 40

(77). Although research on MuSK-Ab-positive MG (MuSK-MG) has

not been as extensive as that on AChR-MG, several studies have

reported differentially expressed miRNAs in this subgroup. Sabre

et al. (36) observed a significant decrease in miR-210-3p and miR-

324-3p levels in the serum of MuSK-MG. Punga et al. (78) identified

differential expression of let-7a-5p, let-7f-5p, miR-151a-3p, and miR-

423-5p in the serum of MuSK-MG compared to healthy controls. An

investigation of PBMCs in MuSK-MG revealed 5 overexpressed and

96 under expressed miRNAs, with marked decreases observed in

miR-340-5p, miR-106b-5p, miR-27a-3p, and miR-15a-3p (79).

Moreover, an animal study identified 13 abnormally expressed

miRNAs in the omohyoid muscle of MuSK-Ab-positive EAMG

mice, particularly highlighting the elevation of miR-1933-3p and

miR-1930-5p (80). Additionally, in a therapeutic study, the serum

level of miR-151a-3p in MuSK-MG patients decreased after

treatment (81), indicating a possibility for miR-151a-3p as potential

therapeutic target and monitor for treatment efficacy in MuSK-MG.

Unlike AChR and MuSK antibodies, Lrp4 and agrin antibodies

are rare in MG, resulting in limited research on these subgroups.

Although some miRNAs have been identified as potential regulators

of Lrp4 or agrin (82–88), the precise relationship between miRNAs

and these two antibodies remains undiscovered (89).
3 lncRNAs in MG

Being different from miRNAs, lncRNA genes exhibit low

conservation across evolution (90). They play a pivotal role in

modulating the immune system through various mechanisms, such
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1342213
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1342213
as guiding the development of immune cell lineages, orchestrating

dynamic transcriptional programs that activate immune cells (91),

and regulating immune-related genes (92). As an autoimmune

disease, MG has a close connection with lncRNAs (Table 2).
3.1 The role of lncRNAs in
MG pathogenesis

LncRNAs have the capacity to modulate the balance between T

cell subtypes and regulate proinflammatory cytokines, thereby

participating in the pathogenesis of MG (Figure 1). Interestingly,

some lncRNAs can serve as the ceRNA, certain RNA sequestering

another RNA to influence its primary targets through microRNA

response elements (MREs) (95) to regulate the development of MG.

Several studies have aimed to construct lncRNA-related

networks to uncover potential relationships among genes,

ncRNAs, and signaling pathways, thus shedding light on MG

pathogenesis. For instance, Xu et al. (104) identified LINC00173,

FAM13A-AS1, and OIP5-AS1 as closely associated with

phosphatase and tensin homolog (PTEN), with LINC00173

showing promise as a potential MG biomarker. Another study by

Lu et al. (97) suggested that lncRNAs such as NR_104677.1,
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NR_022008.1, and ENST00000581362.1 may play a role in MG

progression by acting as miRNA sponges in specific tuples involving

miRNAs like miR-15b-5p and miR-146a-5p. Hong et al. (93), in

their research involving culturing human primary myoblast cells

with AChR antibodies, established a co-expressed network of

lncRNAs and protein-coding RNAs. They found that MEG3,

RP11-184M15.1, and SNHG3 were co-expressed with several

protein-coding RNAs, and MEG3, in particular, was linked to

cellular homeostasis pathways. The dysregulation of MEG3 might

contribute to the development of MG by disrupting

cellular equilibrium.

3.1.1 Regulation of immune cells and cytokines
Just like miRNAs, dysregulated lncRNAs can also influence pro-

inflammatory cytokines and associated signaling pathways,

promoting the proliferation of CD4+ T cells and B cells,

inhibiting the proliferation of Treg cells, and activating Th17 and

Th1 cells to disrupt immune homeostasis in MG.

In the study by Xu et al. (98), GAS5 was found to decrease in

CD4+T cells and directly negatively regulate the expression of miR-

23a. Furthermore, overexpressed GAS5 was shown to disrupt the

balance between Th17 and Treg cells, restraining Th17

differentiation by sponging miR-23a. Another related study (103)
TABLE 2 Differential expressed lncRNAs in MG.

miRNA Sample Subtype antibodies Expression Target Ref

A_19_P00315959 PBMC TAMG, MG without thymoma ↑ (TAMG>MG without thymoma) (93)

A_21_P0002844 PBMC TAMG ↓ (93)

A_21_P0010030 PBMC TAMG ↓ (93)

A_24_P927716 PBMC TAMG ↑ (93)

ATP6VOE2-AS1 PBMC MG AChR-Ab ↓ (94)

ENSG000000218510.3 thymus TAMG ↓ (95)

ENSG00000250850.2 PBMC MG AChR-Ab ↓ (94)

ENSG00000259354.1 PBMC MG AChR-Ab ↑ (94)

ENST00000581362.1 serum exosome MG AChR-Ab ↑ (96)

ENST00000583253.1 serum exosome MG AChR-Ab ↑ (96)

GAS5 PBMC EOMG AChR-Ab ↓ miR-23a (97)

GAS5 PBMC GMG AChR-Ab ↓ (98)

HCG18 PBMC MG ↑ miR-145-5p (99)

IFNG-AS1 PBMC MG AChR-Ab ↓ (100)

LINC00173 PBMC MG ↑ (107)

MALAT-1 PBMC MG ↓ miR-338-3p (100)

NR_022008.1 serum exosome MG AChR-Ab ↑ (96)

NR_046098.1 serum exosome MG AChR-Ab ↑ (96)

NR_104677.1 serum exosome MG AChR-Ab ↑ (96)

(Continued)
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indicated that the upregulation of GAS5 was associated with

increased levels of IL-10, coinciding with an improvement in MG

symptoms. Two studies by Hu et al. (94, 102) demonstrated that

XLOC_003810 was elevated in thymic CD4+T cells in MG. In one

study, overexpression of XLOC_003810 in TAMG disrupted the

balance between Treg and Th17 by favoring Th17 differentiation

and increasing Th17-associated markers such as RORgt, IL-6, and
IL-17, while reducing Treg-related markers like Foxp3, TGF-b1,
and IL-10. Another study emphasized that XLOC_003810

promoted the expression of CD4+T cells and their inflammatory

cytokines, such as IFN-g, TNF-a, and IL-1b, highlighting its

significant role in MG pathogenesis, especially in TAMG. Luo

et al. (100) found lower levels of IFNG-AS1 in PBMCs of MG,

which were negatively correlated with HLA-DOB and HLA-DRB1.

They also demonstrated that increased IFNG-AS1 could suppress

the proliferation of Th1 cells and promote the expansion of Treg

cells, along with some of their transcription factors. IFNG-AS1 was

considered to downregulate CD40L and T-bet in CD4+T cells of

MG, partly dependent on HLA-DRB1, implying the involvement of

IFNG-AS1 in CD4+ T-related immune responses. HCG18, an

upregulated ceRNA in PBMCs, sponging miR-145-5p to

modulate CD28, was proved to inhibit apoptosis and enhance the

proliferation of Jurkat cells (99). Moreover, OIP5-AS1 was also

verified to have a similar effect on Jurkat cells in another study

(105), which can be achieved through regulating IL-7 by sponging

miR-181c-5p. Additionally, Wang et al. (101) demonstrated that the

upregulated SNHG16 can serve as a ceRNA, competitively binding

with let-7c-5p in PBMCs of MG. This action not only facilitates
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Jurkat cell proliferation and inhibits their apoptosis but also

influences the level of IL-10, potentially further promoting the

activation of B cells.
3.2 Clinical prospects and therapeutic
potential of lncRNAs

In AChR-MG, some of the abnormally expressed lncRNAs are

closely related to QMGs and MG Impairment Index (MGII), making

them indicative of disease severity, while others may aid in subgroup

diagnosis, particularly for TAMG. Luo et al. (100) found that IFNG-

AS1 in PBMCs exhibited significant negative correlations with

QMGs. Besides, GAS5 was also observed to have strong

associations with QMGs and MGII (103). In another expression

profile, five lncRNAs, NR_104677.1, ENST00000583253.1,

NR_046098.1, NR_022008.1, and ENST00000581362.1, were

reported to remarkedly overexpress in MG exosome, wherein,

NR_046098.1 was upregulated prominently with the severity of MG

(97). Another study profiling lncRNA expression identified numerous

dysregulated lncRNAs in PBMCs (96). Among them,

ENSG00000250850.2, ATP6VOE2-AS1, and XLOC_000734 were

the three most significantly downregulated lncRNAs, while

XLOC_003810, XLOC_005780, and ENSG00000259354.1 were the

top three highly upregulated lncRNAs when compared to healthy

controls. In the context of TAMG, there were 3,699 upregulated

lncRNAs and 661 downregulated lncRNAs identified. Notably,

XLOC_006297 exhibited the highest expression, while
TABLE 2 Continued

miRNA Sample Subtype antibodies Expression Target Ref

oebiotech_02627 PBMC MG without thymoma ↓ (93)

oebiotech_03926 PBMC MG without thymoma ↑ (93)

oebiotech_11933 PBMC TAMG, MG without thymoma ↑ (93)

oebiotech_13222 PBMC TAMG, MG without thymoma ↑ (TAMG>MG without thymoma) (93)

oebiotech_16223 PBMC TAMG, MG without thymoma ↓ (TAMG<MG without thymoma) (93)

oebiotech_22482 PBMC MG without thymoma ↓ (93)

oebiotech_22652 PBMC TAMG, MG without thymoma ↓ (TAMG<MG without thymoma) (93)

OIP5-AS1 PBMC MG ↑ miR-181c-5p (101)

SNHG16 PBMC MG ↑ let-7c-5p (102)

XLOC_000734 PBMC MG AChR-Ab ↓ (94)

XLOC_003810 PBMC MG AChR-Ab ↑ (94)

XLOC_003810 thymus TAMG ↑ (103)

XLOC_003810 thymus, PBMC TAMG ↑ (104)

XLOC_005780 PBMC MG AChR-Ab ↑ (94)

XLOC_006297 thymus TAMG ↑ (95)
frontie
↓ means down regulated.
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ENSG000000218510.3 had the lowest expression levels among the

identified lncRNAs (106). In a study involving 34 MG patients and 13

healthy controls, Luo et al. (107) identified significant dysregulation of

lncRNAs in PBMCs. Their findings revealed distinct expression

patterns when comparing different experimental and control

groups. Some of their key observations relied on the fact that,

compared with the control group, oebiotech_11933 and

A_24_P927716 were the top two overexpressed lncRNAs, while

A_21_P0010030 and A_21_P0002844 were the least expressed in

TAMG patients. They have also verified that the expression of

A_19_P00315959 and oebiotech_13222 in TAMG was much more

elevated than that in non-thymoma MG, while the level of

oebiotech_22652 and oebiotech_16223 in TAMG patients was

much lower. Finally, oebiotech_11933 and oebiotech_03926 were

significantly upregulated, whereas ebiotech_02627 and

oebiotech_22482 were substantially reduced in MG patients without

thymoma versus healthy controls.

In addition to serving as biomarkers, the dysregulated lncRNAs

also have the potential to be targeted for treatment. Kong et al. (108)

suggested that MALAT-1 may function as an endogenous sponge,

competing with male-specific lethal 2 (MSL2) to bind miR-338-3p.

This interaction could lead to the inhibition of T cells and

potentially play a protective role, making the MALAT-1-miR-

338-3p-MSL2 network a promising therapeutic target.
4 circRNAs in MG

circRNAs were first reported in viroids by Sanger et al. (109) in

1976. Thesemolecules, characterized by their circular structure, can be

categorized into fourmain types (110): exonic circRNAs (ecircRNAs),

exon-intron circRNAs (EIciRNAs), intronic circRNAs (ciRNAs), and

tRNA intronic circular RNAs (tricRNAs).While the functions ofmost

circRNAs remain poorly understood, they are known to play crucial

roles in immune regulation, including the adjustment of immune cells,

handling immune responses, and modulating immune signaling

pathways (111).

Recent research has begun to shed light on aberrant circRNAs

in MG (Table 3), although only a limited number of studies have

explored the connection between circRNAs and MG to date. These

abnormally expressed circRNAs may contribute to the pathogenesis

of MG, reflect disease severity, and present a potential as

therapeutic targets.

Two published studies on circRNAs and MG have identified

several circRNAs with altered expression patterns that may

participate in MG pathogenesis and serve as potential biomarkers:

First, four circRNAs, circ-5333-4, circ-0076490, circ-0047056, and
Frontiers in Immunology 10
circ-16293-1, were found to be dysregulated in the peripheral blood

of MG patients. Among these, circ-5333-4 exhibited significant

upregulation and was associated with QMGs, indicating a potential

connection between its expression and MG severity (112). The

specificity of circ-5333-4 for MG was highlighted by comparing MG

and SLE cohorts. And circ-5333-4 was proposed to be part of a

ceRNA regulation network involving miR-4310 and MORF4L2,

warranting further investigation of potential for MG diagnosis and

monitoring. Second, in a more recent study investigating circRNAs

in MG serum, circ-FBL was identified as an overexpressed circRNA

(113). It was suggested to function as a ceRNA by sponging miR-

133, thereby promoting the expression of Pax7. This interaction was

found to enhance myoblast proliferation, potentially compensating

for MG-related muscle weakness, suggesting a therapeutic effect

when Pax7 regulated by circ-FBL expressed to a great extent.
5 Conclusions and future directions

MG is characterized by complexity in diagnosis, treatment

variability, and lacks curative options. ncRNAs have emerged as

vital biomarkers for delineating MG subgroups, assessing severity,

monitoring responses, and offering treatment targets. Research

highlights aberrant ncRNAs in MG pathogenesis, suggesting their

potential as biomarkers (Table 4). While immune dysregulation and

antibody production are known MG drivers, precise disease

initiators remain elusive. ncRNAs are integral in MG

pathogenesis, potentially offering avenues for disease prevention.

Some differentially expressed ncRNAs could modulate T cell

differentiation, disrupt the delicate balance between helper T cells

and regulatory T cells, activate B cells, regulate inflammatory

cytokine production, and function as ceRNAs or not to construct

intricate networks involving related pathways. Moreover, Losen

et al. (115) reported that short hairpin RNA (shRNA) could disturb

the neuromuscular transmission by reducing the level of rapsyn, a

bridge protein between AChR and the cytoskeleton in the

postsynaptic membrane (2). In addition, some ncRNAs were

reported to protect the muscle endplate from the complement

attack (116). The regulation of several miRNAs, such as miR-206,

miR-127, and miR-29b, can affect the differentiation of satellite

cells, the main muscle stem cells (117). A few of ncRNAs were

found to serve as ceRNAs to modulate the muscle development

(113, 117). It follows that ncRNAs may not only influence the

production of specific antibodies, but also take part in the

stabilization of postsynaptic membrane, the regulation of

complement, and the regeneration of muscle.

Several drugs targeting T cells and B cells have sprung up to

treat MG. In parallel, the burgeoning interest in the role of ncRNAs

in modulating B cells and T cells presents a fertile ground for

exploration. With the potential for regulating GCs formation, B cell

differentiation, certain ncRNAs, such as miR-146a, miR-155, miR-

139-5p, and miR-452-5p, exhibit potential as innovative therapeutic

targets, while others may serve as prognostic indicators for clinical

response. Furthermore, some ncRNAs with protective roles in MG

may harbor therapeutic potential, like circ-FBL (113).
TABLE 3 Differential expressed circRNAs in MG.

miRNA Sample Subtype Expression Target Ref

circ-
5333-4

serum MG ↑ (112)

circ-FBL serum MG ↑
miR-133
and PAX7

(113)
↑ means upregulated.
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Beyond their therapeutic implications, ncRNAs can also serve

as indicators for monitoring clinical therapeutic responsiveness, by

changing in their levels before and after the treatment and effecting

on antibody titers, thus facilitating individualized treatment

approaches. Notably, the presence of some miRNAs, such as

miR-323b-3p, miR-409-3p, miR-485-3p, miR-181d-5p and miR-

340-3p, made patients insensitive to immunosuppressive therapies

(47), suggesting the need for a reevaluation of treatment strategies.

The preceding findings underscore the significance of further

exploration into the role of ncRNAs in MG. However, several

critical areas remain uncharted. Firstly, a subset known as

‘seronegative MG’ (41) patients that lack detectable antibodies

still present a diagnostic challenge, and the exploration of

ncRNAs may offer insights into the diagnosis of them.

Furthermore, we know less about the ncRNAs associated with

uncommon antibodies at the neuromuscular junction, such as

anti-LRP4 and Agrin antibodies. Secondly, many studies have
Frontiers in Immunology 11
focused solely on documenting the aberrant expression of

ncRNAs without delving into their specific roles in MG

pathogenesis. Lastly, there is a paucity of research on circRNAs in

MG, despite their potential to uncover novel aspects of MG

pathogenesis and open new avenues for treatment. In summary,

the enigmatic pathogenesis of MG and its association with ncRNAs

necessitate comprehensive and ongoing exploration to expand our

understanding. This expanded knowledge will better equip us to

navigate the complexities associated with the disease and develop

more tailored and effective treatment approaches.
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TABLE 4 Sn, Sp, and AUC of ncRNAs as MG biomarker candidates.

ncRNAs subtype Sn Sp AUC Ref

miR-423-5p MuSK-MG NA NA 0.740 (78)

miR-340-5p MuSK-MG NA NA 0.809 (79)

miR-30e-5p EOMG, LOMG 55.60% 85.70% 0.69 (114)

miR-30e-5p OMG, GMG 96.00% NA NA (29)

miR-29c-5p EOMG NA NA 0.875 (34)

miR-29b-3p EOMG NA NA 0.792 (34)

miR-29a-3p EOMG NA NA 0.93 (34)

miR-27a-3p MuSK-MG NA NA 0.913 (79)

miR-15a-3p MuSK-MG NA NA 0.936 (79)

miR-151a-3p MuSK-MG NA NA 0.74 (78)

miR-150-5p EOMG 90.00% 58.40% 0.77 (114)

miR-150-5p EOMG, LOMG 85.20% 48.20% 0.7 (114)

miR-146a EOMG NA NA 0.782 (66)

miR-146a MG 73.20% 67.60% 0.782 (60)

miR-106b-5p MuSK-MG NA NA 0.809 (79)

miR-106a-5p OMG NA NA 0.728 (73)

miR-106a-5p GMG NA NA 0.813 (73)

let-7f-5p MuSK-MG NA NA 0.726 (78)

let-7a-5p MuSK-MG NA NA 0.659 (78)

GAS5 GMG NA NA 0.8969 (103)

circ-5333-4 MG 84.21% 75.00% 0.7895 (112)

circ-16293-1 MG 84.21% 65.00% 0.7263 (112)

circ-0076490 MG 78.95% 65.00% 0.7816 (112)

circ-0047056 MG 55.00% 84.21% 0.6921 (112)
Sn, sensibility; Sp, specificity; AUC, area under the curve; NA, not available.
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AChR-Ab anti-acetylcholine receptor antibodies

AChR-EOMG AChR antibody-positive EOMG

AChR-LOMG AChR antibody-positive LOMG

AChR-MG AChR-Ab-positive MG

APCs antigen-presenting cells

ceRNA competing endogenous RNA

circRNAs circular RNAs

ciRNAs intronic circRNAs

EAMG experimental autoimmune myasthenia gravis

ecircRNAs exonic circRNAs

EIciRNAs exon-intron circRNAs

EOMG early-onset MG

GCs germinal centers

GMG generalized myasthenia gravis

lncRNAs long non-coding RNAs

LOMG late-onset MG

MG myasthenia gravis

MGCs myasthenia gravis composite scores

MGII MG Impairment Index

miRNAs microRNAs

MREs microRNA response elements

MSL2 male-specific lethal 2

MuSK-Ab antibodies against MuSK

MuSK-MG MuSK-Ab-positive MG

ncRNAs non-coding RNAs

NMJ neuromuscular junction

OMG ocular myasthenia gravis

PBMCs peripheral blood mononuclear cells

PTEN phosphatase and tensin homolog

QMGs quantitative myasthenia gravis scores

shRNA shRNA short hairpin RNA

SLE systemic lupus erythematosus

TAMG thymoma-associated MG

Tfhs follicular helper T cells

Th1 helper 1 cells

Th17 helper 17 cells

Tregs regulatory T cells

tricRNAs tRNA intronic circular RNAs

TSLP thymic stromal lymphopoietin
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