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Crosstalk between T lymphocyte
and extracellular matrix in
tumor microenvironment
Die Lv †, Yujie Fei †, Hongli Chen, Junfeng Wang, Wenwen Han,
Bomiao Cui, Yun Feng, Ping Zhang and Jiao Chen*

State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical
Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University,
Chengdu, Sichuan, China
The extracellular matrix (ECM) is a complex three-dimensional structure

composed of proteins, glycans, and proteoglycans, constituting a critical

component of the tumor microenvironment. Complex interactions among

immune cells, extracellular matrix, and tumor cells promote tumor

development and metastasis, consequently influencing therapeutic efficacy.

Hence, elucidating these interaction mechanisms is pivotal for precision

cancer therapy. T lymphocytes are an important component of the immune

system, exerting direct anti-tumor effects by attacking tumor cells or releasing

lymphokines to enhance immune effects. The ECM significantly influences T cells

function and infiltration within the tumor microenvironment, thereby impacting

the behavior and biological characteristics of tumor cells. T cells are involved in

regulating the synthesis, degradation, and remodeling of the extracellular matrix

through the secretion of cytokines and enzymes. As a result, it affects the

proliferation and invasive ability of tumor cells as well as the efficacy of

immunotherapy. This review discusses the mechanisms underlying T

lymphocyte-ECM interactions in the tumor immune microenvironment and

their potential application in immunotherapy. It provides novel insights for the

development of innovative tumor therapeutic strategies and drug.
KEYWORDS

extracellular matrix, tumor microenvironment, T lymphocytes, immune escape,
targeted therapy
1 Introduction

The tumor microenvironment (TME) is a complex ecosystem including tumor cells,

immune cells, mesenchymal stromal cells, and ECM (1). It has become a hot research topic

in recent years because of its key role in immunomodulation (2), angiogenesis (3),

metabolic regulation, and ECM remodeling (4, 5). ECM is an important part of the
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tumor microenvironment and serves as a supportive architecture

around the cells, allowing them to attach, migrate, and interact with

each other. ECM molecules in the tumor microenvironment can

affect cell proliferation, differentiation, migration, and immune

escape, and play an important role in tumor cell immunotherapy.

Studies have shown that remodeling of tumor ECMwill regulate

the immune system, and tumor-associated ECM helps form an

immunosuppressive network that acts as a barrier to protect cancer

from treatment and promotes the malignant progression of tumors

(6). In the complex tumor microenvironment, the continuous

degradation and remodeling of ECM have important effects on

the proliferation, migration, and signal transduction activities of T

cells (7, 8). The ECM can also inhibit the antitumor effects of T cells

by secreting inhibitory factors or regulating the function of immune

cells (9).

At the same time, T cells can regulate ECM by releasing a

variety of proteases and cytokines, which play a key role in anti-

tumor immunotherapy (10, 11). T cells activate collagen synthesis

and secretion of fibroblasts by secreting cytokines such as

interferon-gamma (IFN-g) and tumor necrosis factor-a (TNF-a),
promoting collagen deposition and increased matrix stiffness (12,

13). T cells can also produce fibroblast growth factor (FGF) and

transforming growth factor b (TGF-b), which induce fibroblasts to

secrete collagen and hyaluronic acid, thereby altering the

structure and composition of the ECM (14). In this paper, the

interaction mechanism between ECM and T cells in the tumor

microenvironment and its impact on tumor therapy was

comprehensively described, which will help to deeply understand

the complexity of the tumor microenvironment and provide new

ideas and targets for future tumor treatment strategies.
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2 ECM in the
tumor microenvironment

The ECM plays an important regulatory role in the tumor

microenvironment (15). The composition, structure, and physical

properties of the ECM, as well as its interactions with tumor cells

and other cells, have an impact on tumor growth, invasiveness, and

metastatic ability (16, 17). The special microenvironmental state of

the tumor, such as hypoxia, PH, etc., also affects the degradation

and remodeling of ECM. Further study of the ECM in the tumor

microenvironment can help to better understand the biology of

tumors and provide new targets and strategies for the development

of tumor therapies (Figure 1).
2.1 ECM components

The ECM is mainly composed of protein, proteoglycan, and

glycosaminoglycan (18). Proteins mainly include collagen, elastin,

fibronectin (FN), laminin, and proteoglycan, among which collagen

is the most abundant protein in the ECM, forming fibers and

providing strength and toughness to tissues (19). In the tumor

microenvironment, collagen deposition increases gradually

due to the inflammatory response and the active secretion of tumor

cells (20). Abnormal collagen deposition can create an

immunosuppressive environment that prevents the infiltration and

activity of immune cells, thus weakening the ability to attack tumor

cells (21). Glycosaminoglycan (GAG) is a kind of macromolecular

polysaccharide, such as hyaluronic acid, chondroitin sulfate, etc (22).
FIGURE 1

The ECM in the tumor microenvironment. The tumor microenvironment mainly consists of tumor cells, immune cells, stromal cells, and ECM. The
ECM is composed of proteins, glycans, and proteoglycans, and is an important part of the tumor microenvironment.
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Studies have shown that tumor cells can produce more GAGs, and

their structure and composition may also be different from normal

tissues, and these changes may lead to an increase in tumor growth,

metastasis, invasion, and immune escape (23, 24). In addition, the

ECM also contains a variety of secreted proteins, including cytokines,

chemokines, and growth factors, which may be involved in immune

cell regulation (25). The type, content, and arrangement of these the

ECM components can influence the behavior of tumor cells and

tumor progression. The ECM can be divided into basement

membrane and interstitial matrix (26). The mesenchymal matrix,

which is mainly secreted by cells, is a loose network structure of

collagen fibers, mainly composed of type I and type III collagen,

fibronectin, elastin, and various proteoglycans (26). The basement

membrane is a dense sheet protein network structure composed of

type IV collagen, laminin, nestin, and heparan sulfate proteoglycan,

which separates cells from the surrounding matrix and acts as a

barrier for material transport (26, 27).
2.2 ECM structure and stiffness

Tumor development can lead to changes in ECM structure and

stiffness (26, 28). The ECM is a complex structure that is dynamically

remodeled through the synthesis and degradation of ECM proteins

(9). Firstly, tumor cells secrete enzymes, such as metalloproteinases

and glycoenzymes, that degrade ECM and change its stiffness triggers

mechanotransduction signals to stimulate matrix metalloproteinase

(MMP) secretion by cancer and stromal cells, elevated MMP activity

promotes ECM component degradation and reorganization (29).

Secondly, the proliferation and spread of tumor cells will cause the

ECM to be tightly packed and increased, making the ECMmore rigid

(30). ECM with increased stiffness can activate signaling pathways in

tumor cells, promote cell proliferation, migration, and invasion, and

thus promote tumor growth and spread (31, 32). At the same time,

the structural changes of ECM can limit the invasion and migration

of T cells and prevent the infiltration of immune cells into the tumor,

thus weakening the immune response to the tumor. Studies have

found that the increased rigidity of ECM will lead to impaired

function of immune cells, such as the activation and proliferation

ability of T cells, and the antigen-presenting ability of dendritic cells.

This can cause immune cells to be less effective in fighting

tumors. Therefore, developing methods to modulate the structure

and stiffness of ECM to improve the infiltration and activity of

immune cells is critical to improving the effectiveness of

tumor immunotherapy.
2.3 Interaction between cells within the
TME and the ECM

The interaction between stromal cells, immune cells, tumor cells,

and the extracellular matrix (ECM) forms a robust tumor barrier,

significantly impacting therapeutic efficacy against cancer (1, 33).

Stromal cells can synthesize and secrete important components of the

ECM such as collagen, fibronectin, and are one of the main sources of

ECM (34, 35). They participate in the formation and regulation of
Frontiers in Immunology 03
the tumor microenvironment by regulating the degradation and

remodeling processes of the ECM, influencing tumor growth,

invasion, and metastasis (36, 37). Cancer-associated fibroblasts

(CAFs) play a significant role in the formation, progression, and

invasion of tumors and can also impact the function of immune cells

(38, 39). When discussing the degradation and remodeling of the

ECM, matrix metalloproteinases (MMPs) and lysyl oxidase (LOX)

have to be mentioned, as they play important roles in the tumor

microenvironment (40–42). During tumor development, MMPs

promote tumor cell migration by degrading collagen and

fibronectin, allowing them to penetrate the matrix barriers and

invade surrounding tissues and blood vessels (43). CAFs degrade

and remodel the ECM by producing MMPs and activating FAK to

limit the infiltration of effector immune cells while increasing the

recruitment of inhibitory immune cells (such as Tregs, myeloid-

derived suppressor cells (MDSCs), and TAMs), thereby suppressing

the initiation of immune responses (44). Immune cells in the tumor

microenvironment also play an important role in the degradation and

remodeling of ECM (45), with tumor-associated macrophages

(TAMs) being the most common immune inhibitory cells,

secreting factors that suppress immune responses, inhibit T cell

activity, and promote tumor growth and metastasis (46). LOX

primarily functions in collagen cross-linking, thereby increasing the

stability and mechanical strength of the extracellular matrix (47). In

the tumor microenvironment, LOX expression is typically

significantly increased, leading to abnormal matrix stiffening and

fibrosis (48). CAFs derived from oral squamous cell carcinoma

(OSCC) release sEVs containing a large amount of active LOX,

which preferentially bind to ECM inducing collagen cross-linking,

thereby promoting epithelial-mesenchymal transition (EMT) (49).

Additionally, increased secretion of LOX inhibits CD8+ T cells

infiltration, thereby reducing the effectiveness of immunotherapy

(50). Immunotherapy attempts to attack tumor cells by activating

the patient’s immune system. However, the presence of ECM and the

immunosuppressive effects of stromal cells can prevent immune cell

infiltration into the tumor area, limiting the effectiveness of

immunotherapy (51). Therefore, targeting the interaction between

ECM and TME cells in the tumor microenvironment is an important

research direction for cancer treatment, including targeting MMPs

and LOX to disrupt the fibrous network surrounding the tumor and

promote immune cells infiltration (52, 53). Inhibiting the

immunosuppressive effects of stromal cells, such as by targeting

TAMs or CAFs to reduce their numbers or alter their function,

and combining tumor microenvironment modulation with

immunotherapy are combined treatment strategies to improve

therapeutic efficacy (54).
2.4 ECM receptors in T cells

T cells express a variety of ECM receptors, including integrin,

discoidin domain receptor (DDR), leukocyte-associated

immunoglobulin-like receptor 1 (LAIR1), CD44, syndecan (SDC) (7,

55–57). These receptors bind to ECM components and regulate T cell

migration, activation, and function (9). Integrins such as LFA-1

(CD11a/CD18) bind to intercellular adhesion molecules (ICAMs),
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promote the stability of T cells and antigen-presenting cells (APCs),

contribute to immune synapse formation and T cells activation. VLA-4

(CD49d/CD29) can bind to vascular cell-adhesion molecule-1

(VCAM-1) and fibronectin, which are involved in T cells migration

and tissue localization (58, 59). DDR, including DDR1 and DDR2

subtypes, regulates the physiological process of cells mainly by binding

with collagen, and is involved in collagen deposition, ECM remodeling

and tissue regeneration and repair (7). CD44 is a hyaluronic acid

receptor that plays a role in T cell migration, activation, and

polarization, and is critical for maintaining microenvironment

localization and function of T cells (56). Collagen receptor LAIR1 is

a transmembrane receptor of the immunoglobulin superfamily.

Collagen deposition inhibits NK cells by inhibiting LAIR1 signaling

and promotes tumor colonisation (60). In melanoma, LAIR1 deletion

promotes its metastatic growth, LAIR1 expression is associated with

improved clinical outcomes in human metastatic melanomas, and

LAIR-1 may be a promising cancer therapeutic target (61). SDC is a

class of transmembrane glycoproteins, including four members: SDC1,

SDC2, SDC3 and SDC4, and its ligands include proteoglycans,

fibronectin, cytokines and growth factors. The interactions of these

ligands with syndecan are critical for biological processes such as ECM

formation, cell adhesion, and cell signaling (57) (Figure 2).

3 Interaction between ECM and
T lymphocytes in
tumors microenvironment

3.1 Effect of the ECM on T lymphocyte
activation and proliferation

Undesirable alterations in the ECM within cancer contribute to

the development of a profoundly immunosuppressive tumor
Frontiers in Immunology 04
microenvironment, subsequently impacting the proliferation and

activation of T cells (62). Under physiological conditions, the

extracellular matrix (ECM) serves as a scaffold and conduit for

immune cells. However, within the tumor microenvironment

(TME), ECM composition and structure frequently undergo

alterations, potentially diminishing T cell activation and impeding

migration. Consequently, this hampers T cell-mediated tumor

cytotoxicity. RNA sequencing (RNAseq) analysis revealed that

Col4 suppressed the transcription of activated T cell genes while

enhancing the expression of immunosuppressive cytokines, thereby

diminishing T cell efficacy against tumors (63). Intestinal cancer

organoids and CAFs co-culture can spontaneously organize into

superstructures with high shrinkage and sclerotic ECM ability, and

this co-culture mode significantly inhibits the proliferation of T

cells, leading to the generation of immunosuppressor

microenvironments (64). On the other hand, the absence of the

ECM components may also lead to malignant progression of

tumors, col1 deletion in myofibroblasts is associated with

increased number of MDSCs, which specifically expresses high

levels of CD206, F4/80, arginase-1, CCL2, and interleukin-18.

These MDSCs further suppress the function of T and B

lymphocytes through arginase-1 and CD206, potentially

contributing to the immunosuppressive microenvironment in

pancreatic ductal adenocarcinoma (PDAC) (65). In addition, the

ECM can directly or indirectly regulate T cell proliferation by

interacting with T cell receptor signaling pathways (66). In breast

cancer, the collagen receptor DDR1 inhibits T cells activation and

infiltration by promoting collagen fiber alignment and further

contributes to tumor immune escape (6). The ECM also provides

interactions between T cells and other cell types and influences the

activation status of T cells through intercellular signaling pathways

(67). The ECM impacts the activation status and proliferation rate

of T cells through various mechanisms, thereby influencing the
FIGURE 2

ECM receptors and associated signaling pathways. Common receptors in T-cell-ECM interactions include integrins, DDR, LAIR1, CD44, and SDC,
through which changes in the extracellular matrix regulate multiple intracellular signaling pathways.
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tumor immune response (68). Understanding how the ECM

modulates T cells function in the tumor microenvironment can

offer crucial insights for the development of cancer

treatment strategies.
3.2 Effect of the ECM on T lymphocyte
infiltration and migration

The efficient migration of effector T cells to the tumor site is

closely associated with the prognosis and efficacy of cancer

immunotherapy. However, due to abnormal alterations in the

ECM within the tumor microenvironment, the migration and

infiltration of T cells are frequently restricted (8, 69). The ECM

provides support for cell adhesion and regulates cell movement

through its structure and stiffness (70). Under physiological

conditions, the structure and stiffness of the ECM provide

appropriate signals to T cells, thereby maintaining their normal

migration. However, in certain cancers, alterations occur in the

structure and stiffness of the ECM, leading to the formation of an

abnormal tissue known as tumor mesenchyme. This aberrant ECM

may restrict T cells infiltration and migration, consequently

dampening the immune response (71). Collagen develops

resistance to programmed cell death protein 1/programmed cell

death ligand 1 (PD-1/PD-L1) immunotherapy in lung tumors

through up-regulation of LAI R1 expression and downstream

signaling, and reduction of tumor collagen deposition through

lysyl oxidase like 2 (LOXL2) inhibition increases T cell

infiltration, reduces depletion of T cells, and eliminates resistance

against PD-1/PD-L1 (72). Interfering with collagen stability reduces

ECM content and tumor hardness, thereby improving T cells

migration and enhancing the efficacy of anti-PD-1 blocking (8).

In the tumor microenvironment, besides cancer cells, numerous

other cell types are present, including fibroblasts and immune cells.

These cells have the capacity to modify the properties of the ECM

and regulate T cell migration and infiltration either through

cytokine secretion or direct interaction with T cells (73). In

hepatocellular carcinoma (HCC), SPP1-positive macrophages and

CAFs participate in the formation of the ECM, promoting the

formation of TIB (Tumor immune barrier) structures, and

preventing CD8+ T cells from infiltrating into TIB-coated tumors

(74). In addition, MMPs, as a key enzyme regulating ECM, also

plays an important role in T cell infiltration. The high expression of

MMP1 has been confirmed in various types of cancers, indicating

poorer overall survival rates, and showing significant negative

correlations with the quantities of CD8+ T cells, CD4+ T cells,

and macrophage infiltration, suggesting MMP1 as a potential novel

biomarker for immunotherapy (75, 76). Furthermore, MMP1

expression correlates with dendritic cell (DC) markers HLA-

DQB1, HLA-DRA, and HLA-DPA. DCs can increase tumor

metastasis levels by enhancing Treg responses and inhibiting the

cytotoxicity of CD8+ T cells, consistent with high levels of Treg

markers FOXP3, CCR8, STAT5B, and TGFb (75). In melanoma,

MMP2 promotes CAFs infiltration to regulate the ECM, thereby

suppressing CD8+ T cells infiltration. Targeting MMP2 can

improve the tumor microenvironment and enhance sensitivity to
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between MMP2 and Treg infiltration, serving as a typical cancer

immunotherapy inhibitor (78). Interestingly, research has found

that Tregs inhibit the production of MMP2 in the early stages of

tumor development to control the invasion and migration

processes, possibly related to the dual nature of Tregs (79).

Therefore, ECM plays an important role in regulating T cells

migration and infiltration.
3.3 Effect of the ECM on
T lymphocyte function

Throughout cancer development, alterations in the structural

and physical characteristics of the ECM can disrupt the normal

function of T cells, potentially leading to detrimental effects on

immune system responses (80). Differential expression of surface

markers on T cells reflects differences in T cell function. The CD8

molecule typically serves as a marker for cytotoxic T cells (CTLs),

which play important roles in immune surveillance and clearing

abnormal cells by recognizing and eliminating infected pathogens

or cancer cells through the CD8 receptor on their surface (81). The

collagen density in the tumor microenvironment may reduce

the cytotoxic activity of tumor-infiltrating immune cells, suppress

the tumor-killing function of CTLs, and support tumor cell immune

escape by regulating CD8+ T cell nuclear size and the expression of

related genes (82, 83). The CD4 molecule is commonly used to

identify helper T cells (Th cells), with Th1 cells primarily activating

macrophages and cytotoxic T cells by producing interferon-gamma,

while Th2 cells promote the proliferation and differentiation of B

cells, leading to antibody production. Additionally, Th17 cells

primarily produce inflammatory factors such as IL-17,

participating in the regulation of inflammatory responses (84). In

the tumor microenvironment, the levels of Th1 and Th17 cells are

negatively correlated with collagen content, while the levels of Th2

and Treg cells are positively correlated with collagen content, with

lower collagen content possibly associated with longer disease-free

survival (85). The FoxP3 marks regulatory T cells, which possess

suppressive functions that can modulate immune responses,

maintain immune balance, and prevent autoimmune reactions

(86). ECM can influence the number and distribution of Tregs in

tumor tissues, with increased levels of ECM-related proteins

potentially promoting the recruitment and aggregation of Tregs,

affecting their differentiation and activity, thereby inhibiting

immune cell activity and promoting tumor immune escape

(87, 88). Immune checkpoint molecules such as PD-1 and

cytotoxic T-lymphocyte antigen 4 (CTLA-4) are typically used to

inhibit T cell activity, and the ECM in the tumor microenvironment

may enhance the expression of PD-1 on T cell surfaces by

interacting with cell surface receptors such as integrins and

CD44, thereby promoting tumor immune escape (89, 90). The

latest research shows that by changing the viscoelasticity of its

surrounding the ECM, it is possible to produce functionally

different T cell populations from T cells that receive the same

stimulus (91). In addition, proteases, chemokines, and cytokines in

ECM can directly interfere with the physiological function of T cells
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and are considered to be one of the main factors of tumor immune

tolerance. By binding to T cell surface receptors, these factors

inhibit the proliferation, differentiation, and production of effector

molecules of T cells, thus weakening the ability of T cells to kill

tumor cells (72). In conclusion, alterations in the ECM significantly

impact T cell function during tumor development. Hence,

comprehending the mechanisms underlying ECM-T cell

interactions could aid in the development of novel tumor

immunotherapy strategies.
3.4 Regulation of the ECM by T cells

In cancer, activated T cells within the tumor microenvironment

can secrete a variety of proteases, including metalloproteinases and

lysosomal enzymes. These proteases degrade major ECM

components such as collagen and fibrin, thereby altering the

physical properties of the tumor microenvironment (92). MMP

affects tissue integrity, immune cell recruitment, and tissue renewal

by degrading ECM components and releasing matrix components,

cell surface-bound cytokines, growth factors, or their receptors (41).

The ECM itself provides the signals needed for cell growth,

migration, and survival, and is involved in the process of tumor

development and metastasis (93). By degrading ECM, T cells can

disrupt the link between tumor cells and ECM, interfere with tumor

cell signaling, and thus inhibit cancer progression (94). On the other

hand, immune cells secrete chemokines and cytokines CXC, IFN-g,
TNF-a, IL4, and IL13 to activate collagen synthesis and secretion of

fibroblasts, thereby promoting collagen deposition and matrix

stiffness. IL-13 is believed to affect the synthesis and degradation

of ECM, and thus participate in the process of tissue repair and

fibrosis. T cells can directly or indirectly affect the function of

fibroblasts by secreting IL-13, and promote the production of more

ECM protein in fibroblasts. In addition, T cells can also regulate the

production and arrangement of collagen when they come into

contact with fibroblasts. These factors can promote the synthesis

and deposition of ECM, thereby increasing the adhesion of cancer

cells to the surrounding environment and enhancing the ability of

cancer cells to infiltrate and metastasize (95, 96) (Figure 3).
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4 Emerging therapeutic strategies
targeting the ECM

Research into targeting the ECM for tumor treatment is a

rapidly expanding field. Throughout tumor development, the

ECM can serve as a protective barrier against immune attack,

diminish immune cell infiltration, and facilitate tumor growth

and metastasis (20). By utilizing specific antibodies or other

biomolecules to disrupt the interaction between the ECM and

tumor cells (15). For example, antibodies are used to block

proteins in the ECM, such as fibronectin or hyaluronic acid,

thereby interfering with adhesion and signaling between tumor

cells and the ECM (97). These approaches are anticipated to

decrease the invasion and migration of tumor cells while

enhancing the capacity of immune cells to infiltrate tumors,

thereby inhibiting tumor growth and metastasis (6). In addition,

several studies have focused on developing ECM-related drug

delivery systems to improve the efficacy of anti-tumor drugs. By

binding drugs to molecules that interact with ECMs, the

enrichment of drugs in tumor tissues can be increased and their

release time can be prolonged. This strategy is expected to improve

the local efficacy of the drug while reducing toxicity to healthy tissue

(98). The ECM itself can serve as a promising anti-tumor

therapeutic target. By modifying the composition or structure of

the ECM, it is possible to modulate the tumor microenvironment

and influence the growth and metastatic potential of tumor cells.

Therefore, targeting the ECM has the potential to alter the

composition and structure of the ECM within the tumor

microenvironment, augment the infiltration and cytotoxicity of

immune cells, and enhance the efficacy of tumor immunotherapy

(9, 12) (Figure 4).
4.1 Targeting the ECM components

More and more evidence suggests that the ECM, a non-cellular

component of the tumor microenvironment, plays a significant role

in modulating responses to immunotherapy (99–101). Collagen is
FIGURE 3

Interactions between T cells and ECM. ECM density and hardness increase in the tumor microenvironment, which inhibits T cell activation and
migration. T cells induce ECM degradation and remodeling by secreting chemokines and cytokines, and then regulate anti-tumor immune response.
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the most abundant ECM protein in the tumor microenvironment

across various solid tumor types and plays a crucial role in tumor

progression and metastasis. Recent studies indicate that collagen

directly contributes to resistance to immune checkpoint inhibitors

(ICIs), therefore, targeting collagen may be a potential strategy to

improve the efficacy of tumor immunotherapy (72, 102) (103–105).

Strategies targeting the ECM, particularly collagen proteins, have

been proposed in combination with immune checkpoint inhibitors,

showing enhanced efficacy at least in murine models (106). LOX is a

key inducer of ECM rigidity, inhibition of LOX enzyme activity,

combined with anti-PD-1 administration, improved the infiltration

and accumulation of effector CD8+ T cells within tumors and

increased the efficacy of PD-1 blockade in a PDAC mouse model

(8). Loss of the highly expressed MRC2 collagen receptor within the

immunosuppressive the ECM myCAF subtype promoted CD8+ T

cell infiltration and enhanced sensitivity to immune checkpoint

inhibitor (ICI) in a murine model of breast tumors (107).

Hiroaki Wakimoto et al. detected the oncolytic adenovirus

ICOVIR17, which expresses hyaluronidase, mediating both

degradation of HA within the ECM and subsequent alteration of

the immune landscape of the TME. This study provides mechanistic

insights into combined immunotherapy with PD-L1/PD-1

blockade, reshaping both innate and adaptive immune cells (108).

PDAC is considered a highly immune-suppressive and

heterogeneous tumor (109, 110). Immunotherapy with immune

checkpoint inhibitors (targeting CTLA4, PD1, PDL1) has not been

very successful in treating PDAC (109, 110). The hexosamine

biosynthetic pathway (HBP) is a diverting pathway of glycolysis

(111, 112). Serving as a metabolic node in cancer cells that, on the
Frontiers in Immunology 07
one hand, promotes survival pathways and, on the other, affects the

synthesis of hyaluronic acid in ECM (113–115). Sharma et al. found

that a small molecule glutamine analog (6-diazo-5-oxo-L-

norleucine [DON]) reduced the self-renewal potential and

metastatic ability of tumor cells (116). Moreover, the DON

treatment reduced hyaluronic acid and collagen in the tumor

microenvironment, leading to extensive the ECM remodeling and

increased infiltration of CD8+ T cells. Additionally, DON treatment

rendered pancreatic tumors sensitive to anti-PD1 therapy, resulting

in tumor regression and extended survival (116).
4.2 Target the ECM receptors and ECM-
related cytokine

Targeting ECM-related receptors on the cell membrane and

cytokines that regulate ECM contribute to enhancing anti-tumor

immune response. Integrin and DDR are both important ECM

receptors and promising and challenging targets for the treatment

of a variety of diseases (117, 118). Current research findings indicate

that mechanical forces originating from the ECM regulate the

stemness and cell cycle of breast cancer cells via the integrin and

DDR signaling pathways, thereby promoting tumor proliferation.

Targeting both integrin and DDR has been shown to yield enhanced

therapeutic effects on tumors (119). The co-inactivation of DDR1

and integrin can effectively reduce the radio resistance of human

glioblastoma cells (120). In addition, simultaneous targeting of

EGFR and integrin avb3 receptors can effectively regulate tumor

cells and the tumor ECM. This approach reduces F-actin levels in
FIGURE 4

Targeting ECM for tumor therapy. Several possible strategies for targeting ECM for tumor treatment include targeting the ECM components, ECM-
related receptor blocked, CAR-T cell therapy, drug delivery, and Bioprinting.
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tumor cells, decreases collagen content within the tumor ECM, and

enhances drug permeability (121). Therefore, ECM receptor multi-

target combination therapy may produce better efficacy. CD44, a

multifunctional receptor involved in cell-cell and cell-ECM

interactions, is expressed at high levels in many cancer cell types

and their metastases. Some tumors, such as glioblastomas, express

only standard CD44, while others, including gastrointestinal

cancers, bladder cancer, cervical cancer, breast cancer, and non-

Hodgkin lymphoma, also express CD44 variants (122). Shalom

et al. found that injecting reagents that disrupt CD44-ligand

interactions (such as CD44s- or CD44v-specific antibodies)

inhibited local tumor growth and metastatic spread in animal

models (122).

Tumor cells and their tumor microenvironment (TME) cells

secrete various factors, with proteoglycans further activating these

factors, which may be crucial for interactions between tumor cells

and their TME (123). Most proteoglycan can act as cell factor

receptors, playing a significant role in the localization of cytokines

(124, 125). Heparan sulfate proteoglycans (HSPGs) act as reservoirs

for cytokines by binding to them, thereby controlling the availability

and mobility of these biomolecules. On cell surfaces, HSPGs act as

co-receptors, mediating interactions between cytokines and their

receptors by binding to ligands and receptors (126). A key function

of HSPGs is to regulate the expression and function of cytokines,

chemokines, growth factors, morphogens, and adhesion molecules.

They can act as ligands or co-receptors for various signaling

transduction receptors, affecting pathways such as FGF, VEGF,

chemokines, integrins, Wnt, Notch, IL-6/JAK-STAT3, and NF-kB,
promoting tumor malignancy (127). Additionally, proteoglycan-

stimulated human dendritic cells (DCs) produce highly suppressive

regulatory T cells (Tregs) through mechanisms involving metabolic

reprogramming, PD-L1, IL-10, and IDO (128). Collagen I is one of

the main components of the ECM, with tumors in the tumor

microenvironment containing more type I collagen compared to

healthy tissues. The increase in these collagens can elevate the

concentration of nearby cytokines, promoting Treg cell infiltration

by upregulating the expression of CD4 and FOXP3, as well as the

percentage of CD4+/FOXP3+ T cells, thereby inducing immune-

suppressive TME (129–131). Thus, by regulating the synthesis and

secretion of proteoglycans and collagen I, tumors can increase the

concentration of nearby cytokines, influencing the immune

response and tumor growth in the tumor microenvironment.

MMPs can impact immunotherapy by modulating the profile of

cytokines residing in the ECM. In benign tumors, MMP expression

levels are typically low and participate in physiological ECM

turnover. However, in malignant tumors, MMP expression is

dysregulated and often increased, leading to excessive degradation

of ECM components and alterations in the cytokine profile. MMPs

can modulate the function of certain growth factors and cytokines,

promoting tumor growth (132). In immunotherapy, targeting

MMPs may significantly enhance the cytotoxicity of T cells

(CD8+ CTLs) and the ratio of cytotoxic T cells/regulatory T cells

(CD8+ CTLs/Tregs) and cytokine secretion by inhibiting the

production of pro-inflammatory cytokines and promoting the

production of anti-inflammatory cytokines, synergistically

eliminating primary tumor growth and effectively inhibiting
Frontiers in Immunology 08
tumor metastasis (133, 134). Yeow et al. engineered a TNFa
recombinant protein fused with a CSG peptide ligand that binds

to laminin-nidogen complexes (98, 135). The TNFa-CSG complex

reduces tumor hardness and expands tumor vessels by activating

immune cells to release ECM-degrading proteases, thereby

enhancing tumor perfusion and augmenting the uptake of

contrast agents (gadolinium and iron oxide nanoparticles) within

the tumor (98). Horn and colleagues assessed the combined

inhibition of TGF-b, PD-L1, and LAIR-1 signals in a cancer

mouse tumor model. This strategy reduced collagen content in

the ECM, enhanced infiltration of activated CD8+ T cells, and

decreased tumor growth (70, 106). The composition and

organization of tumor ECM impact drug delivery to tumor cells

(136, 137). Furthermore, targeting TGF-b has proven effective in

softening ECM as TGF-b signals ECM cell stiffening (98). Chen

et al. attempted to promote cytotoxic T-cell infiltration and drug

entry into the TME using multifunctional nanoparticles (98, 138).

They engineered approximately 40-nanometer nanoparticles of

heparin-cysteine 5.5/l-arginine (HFCA), which spontaneously

release nitric oxide (NO) and load chemotherapeutic drug

docetaxel (DTX) and immune checkpoint inhibitor anti-PD1,

enhancing the effectiveness of drugs to kill cancer cells and evade

the immunosuppressive TME. NO contributes to tumor vessel

normalization (98, 139) and activates matrix metalloproteinases

to degrade collagen components of tumor ECM (140).
4.3 Enhancement of CAR-T cell therapy

CAR-T therapy relies on the engineered transportation of T

cells to tumor sites, where the ECM serves as a physical barrier for

CAR-T cell infiltration and direct contact with cancer cells (141,

142). Engineering T cells indirectly to modulate the ECM

mechanism, giving them the ability to regulate ECM, holds

promise for tumor-infiltrating T cells and drug penetration within

tumors (98, 141). Mechanically priming CAR-T cells to gain the

capacity for self-infiltration into the dense and aligned ECM of solid

tumors represents a promising cellular engineering approach (98).

Thus, manipulation of mechanosensitive mechanisms existing in

the cell membrane (e.g., piezoelectric ion channels, integrins) or

body (e.g., actin filaments, microtubules) can serve as suitable

targets for improving T cell inclusion and migration (98).

Engineering CAR-T cells to express the gene encoding

heparanase (HPSE) has been shown to promote T cell infiltration,

thus demonstrating antitumor efficacy against matrix-rich solid

tumors (98, 143). Fibroblast activation protein (FAP), a

membrane-bound protease, targeted by CAR-T cells, effectively

enhances the killing of tumor cells in vitro and is considered a

suitable target for CAR-T cell therapy against immune-suppressive

TME components (106, 144). Preliminary data from a Phase I

clinical trial targeting FAP using CAR T cells for treating

mesothelioma suggest the feasibility of this approach (106, 145).

Expression of urokinase plasminogen activator receptor-associated

protein (uPARAP/Endo180/CD280/MRC2) delineates a subset of

stromal remodeling CAFs (107, 146). aiming to disrupt its role in

TME remodeling, positioning MRC2 as a putative stromal target for
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solid tumor CAR T therapy (106). Nattokinase (NKase), a

thrombolytic agent, has been found by Zhang et al. to, when

injected intratumorally, not only degrade the main component of

ECM, fibronectin but also inhibit the fibrosis produced by CAFs,

thereby reducing tumor stiffness, enhancing perfusion, and

alleviating hypoxia (147). In a xenograft human breast MDB-

MA-231 tumor model, pre-treatment with NKase has been shown

to facilitate the infiltration of CAR-T cells into the tumor, thus

favoring tumor suppression (147).
4.4 Drug delivery

Solid tumors are typically composed of heterogeneous cells and

an ECM arranged with high stiffness. The rigid ECM restricts the

recruitment and infiltration of immune cells into the tumor while

amplifying MDSCs in the tumor microenvironment, thereby

promoting suppressive immunity (98). Stiff ECM is frequently

targeted through various strategies to enhance T cell infiltration

(98). Hence, novel technologies for tumor-specific immune

therapeutic drug delivery systems are required.

According to reports, many drug carriers have increased the

efficacy of immunotherapeutic agents by enhancing the circulation

time of T cell activators, ICP inhibitors, and cytokinesis inhibitors,

as well as the targeting capability of immune cells (69, 148). Tissue

protease S (CatS) is significantly expressed in TAMs, DCs, and

MDSCs within the TME. Selective inhibition of CatS via engineered

nanocarriers using specific small molecule inhibitors or siRNA

targeting TAMs, DCs, and MDSCs showed targeted delivery and

functional release of inhibitors, offering new opportunities for

effective adjunctive therapies to promote anti-tumor immunity

(149). Collagenase, elastase, and hyaluronidase, among other

matrix-modulating enzymes, have been utilized to promote the

degradation of the ECM components, aiming to reduce tumor

stiffness (106, 150). The rapid advancements in nanomedicine

have introduced novel avenues for cancer immunotherapy.

Nanoparticles have exhibited advantages over conventional drug

delivery systems (67). In diverse tumor experimental models,

collagenase-functionalized nanoparticles have been demonstrated

to facilitate ECM degradation, thereby enhancing the permeability

and retention of anti-tumor drugs (106, 151–154). Pan et al. co-

delivered collagenase and trastuzumab into HER2-positive BT474

tumor-bearing mice using a thermosensitive hydrogel, promoting

the penetration of therapeutic antibodies into deeper tumor tissues

(106, 155). Dong et al. described nanoparticles loaded with

chemotherapeutic doxorubicin and a NO donor. NO-induced the

activation of MMPs within the TME, degrading collagen, and

facilitating the penetration of nanoparticles and their therapeutic

payload in an orthotopic 4T1 breast cancer model (106, 156).

The ECM acts as a critical barrier to the tumor infiltration of

CTLs, impairing T cell-dependent immunotherapy for HCC.

Tumor-acid-induced CaP dissolution promoted the release of IL-

12 and HAase responsible for ECM digestion, enhancing tumor

infiltration and CTL proliferation. Furthermore, MMP-2

overexpression triggered the in situ release of aPD-L1 in the

tumor, preventing tumor cells from evading CTL-mediated
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killing. This combinatorial strategy induced robust anti-tumor

immunity, effectively suppressing mouse HCC growth (94).

Triple-negative breast cancer (TNBC), a particularly aggressive

subtype, shows relative resistance to programmed cell death-1 (a-
PD1) therapy (157, 158). Zhao et al. applied doxorubicin

hydrochloride liposomes (Dox-L) as nanochemotherapy ICD

induction and used losartan as a matrix-depletion agent to

enhance the efficacy of a-PD1 (losartan + Dox-L + a-PD1).
Results indicated that losartan reduced the ECM, facilitating

enhanced delivery of Dox-L and further dendritic cell (DC)

maturation. Fibroblast activation protein (FAP), overexpressed on

CAFs, is considered a universal tumor-targeting antigen (159–161).

Zhen et al. utilized ferritin (a compact nanoparticle protein cage) as

a photosensitizer carrier and linked FAP-specific single-chain

variable fragments (scFv) to the surface of ferritin. They found

that nano-PIT inhibited the secretion of C-X-C motif chemokine

ligand 12 (CXCL12) and ECM deposition regulated by untreated

CAFs, mediating T cell exclusion and preventing physical contact

between T cells and cancer cells (161).
4.5 Bioprinting

Bioprinting technology can be used to fabricate three-

dimensional tumor models with complex structures, simulating

the interaction between lymphocytes and the ECM within actual

tumors. Such models aid in studying the influence of the ECM on

lymphocyte activity and infiltration capabilities. T cells play a

crucial role in adaptive immune responses within the body,

especially in combating intracellular pathogens and cancer.

Research into T cell activation often utilizes two-dimensional

(2D) culture systems, which do not replicate the interactions

between naturally activated cells and the ECM that affect

activation (162, 163). Mechanical characterizations suggest that

hydrogels have pathophysiologically relevant stiffness, mimicking

the structure of lymph node tissues (164, 165). Joseph et al. found

that using a mouse T cell lymphoma line EL4 or primary mouse T

cells in 3D bioprinting, and activating them with a combination of

10ng/mL phorbol myristate acetate (PMA) and 0.1mM ionomycin,

resulted in a 1.3-fold increase in the ratio of active EL4 cells in soft

substrates compared to those in hard substrates (164). Primary

mouse T cells activated with PMA and ionomycin exhibited 1.35

times more active cells in soft substrates compared to those in

hard substrates. This demonstrated variations in T cell responses

within the 3D bioprinting scaffold, faithfully reproducing T cell

activation and revealing the pathophysiological characteristics of

T cells in infectious biology, autoimmune diseases, and

cancer (164).
5 Conclusion and challenges

This review summarizes the interactions between ECM and T

cells in the tumor microenvironment, as well as potential anti-

tumor immunotherapy strategies targeting ECM. Tumor cells and

stromal cells modulate the ECM through secretion of various
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proteases and production of ECM components, impacting T cells

activation and migration, among other functions. Conversely, T

cells influence the anti-tumor immune response by releasing

cytokines and chemokines that remodel the ECM. Intervening

with the ECM surrounding the tumor can disrupt the interaction

between tumor cells and their environment, thereby inhibiting

tumor cell growth, dissemination, and metastasis. However, the

ECM also serves vital physiological functions in normal tissues,

necessitating ECM-targeted therapies to be specific enough to avoid

adverse effects on normal tissues. Tumor heterogeneity,

characterized by diverse cell types and matrix components within

tumors, mandates individualized therapeutic approaches tailored to

specific tumor types. Overall, targeting the ECM for anti-tumor

immunity holds promise as a significant strategy for future cancer

therapy. Nevertheless, further research and clinical validation are

imperative to address challenges and assess effects across various

tumor types and individuals.
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Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute
lymphoblastic leukemia. Cell Death Dis. (2019) 10:357. doi: 10.1038/s41419-019-
1593-2

56. Bollyky PL, Wu RP, Falk BA, Lord JD, Long SA, Preisinger A, et al. ECM
components guide IL-10 producing regulatory T-cell (TR1) induction from effector
memory T-cell precursors. Proc Natl Acad Sci U.S.A. (2011) 108:7938–43. doi: 10.1073/
pnas.1017360108

57. Chen K, Wang Y, Hou Y, Wang Q, Long D, Liu X, et al. Single cell RNA-seq
reveals the CCL5/SDC1 receptor-ligand interaction between T cells and tumor cells in
pancreatic cancer. Cancer Lett. (2022) 545:215834. doi: 10.1016/j.canlet.2022.215834

58. Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ.
Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to
inflammation and autoimmune diseases. Med Res Rev. (2002) 22:146–67.
doi: 10.1002/med.10001

59. Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell adhesion
molecules and their roles and regulation in the immune and tumor
microenvironment. Front Immunol. (2019) 10:1078. doi: 10.3389/fimmu.2019.01078

60. Wu Q, Tian P, He D, Jia Z, He Y, Luo W, et al. SCUBE2 mediates bone
metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic
niches. Cell Res. (2023) 33:464–78. doi: 10.1038/s41422-023-00810-6
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Arévalo I, et al. A tumor-associated heparan sulfate-related glycosaminoglycan
promotes the generation of functional regulatory T cells. Cell Mol Immunol. (2023)
20(12):1499–512. doi: 10.1038/s41423-023-01096-9

129. Gao H, Tian Q, Zhou Y, Zhu L, Lu Y, Feng J, et al. 3D collagen fiber
concentration regulates Treg cell infiltration in triple negative breast cancer. Front
Immunol. (2022) 13:904418. doi: 10.3389/fimmu.2022.904418

130. Rømer AMA, Thorseth M-L, Madsen DH. Immune modulatory properties of
collagen in cancer. Front Immunol. (2021) 12:791453. doi: 10.3389/fimmu.2021.791453

131. Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, et al. Targeting type I collagen
for cancer treatment. Int J Cancer. (2022) 151(5):665–83. doi: 10.1002/ijc.33985

132. Sheu B-C, Chang W-C, Cheng C-Y, Wang P-H, Lin S, Huang S-C. Extracellular
matrix proteases-cytokine regulation role in cancer and pregnancy. Front Biosci. (2009)
14:1571–88. doi: 10.2741/3325

133. Yan J, Zhang Z, Zhan X, Chen K, Pu Y, Liang Y, et al. In situ injection of dual-
delivery PEG basedMMP-2 sensitive hydrogels for enhanced tumor penetration and chemo-
immune combination therapy. Nanoscale. (2021) 13(21):9577–89. doi: 10.1039/
D1NR01155C

134. Shen K, Sun G, Chan L, He L, Li X, Yang S, et al. Anti-inflammatory
nanotherapeutics by targeting matrix metalloproteinases for immunotherapy of
spinal cord injury. Small. (2021) 17:e2102102. doi: 10.1002/smll.202102102

135. Yeow YL, Kotamraju VR, Wang X, Chopra M, Azme N, Wu J, et al. Immune-
mediated ECM depletion improves tumour perfusion and payload delivery. EMBOMol
Med. (2019) 11:e10923. doi: 10.15252/emmm.201910923

136. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface
with the entire organism. Dev Cell. (2010) 18:884–901. doi: 10.1016/j.devcel.2010.05.012

137. Narunsky L, Oren R, Bochner F, Neeman M. Imaging aspects of the tumor
stroma with therapeutic implications. Pharmacol Ther. (2014) 141:192–208.
doi: 10.1016/j.pharmthera.2013.10.003

138. Chen H, Shi T, Wang Y, Liu Z, Liu F, Zhang H, et al. Deep penetration of nanolevel
drugs and micrometer-level T cells promoted by nanomotors for cancer
immunochemotherapy. J Am Chem Soc. (2021) 143:12025–37. doi: 10.1021/jacs.1c03071

139. Sung YC, Jin PR, Chu LA, Hsu FF, Wang MR, Chang CC, et al. Delivery of nitric
oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer
therapies. Nat Nanotechnol. (2019) 14:1160–9. doi: 10.1038/s41565-019-0570-3

140. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H.
Activation of matrix metalloproteinases by peroxynitrite-induced protein S-
glutathiolation via disulfide S-oxide formation. J Biol Chem. (2001) 276:29596–602.
doi: 10.1074/jbc.M102417200

141. Owyong M, Efe G, Owyong M, Abbasi AJ, Sitarama V, Plaks V. Overcoming
barriers of age to enhance efficacy of cancer immunotherapy: the clout of the
extracellular matrix. Front Cell Dev Biol. (2018) 6:19. doi: 10.3389/fcell.2018.00019

142. Liu L, Qu Y, Cheng L, Yoon CW, He P, Monther A, et al. Engineering chimeric
antigen receptor T cells for solid tumour therapy. Clin Transl Med. (2022) 12:e1141.
doi: 10.1002/ctm2.1141
Frontiers in Immunology 13
143. Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase
promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes.
Nat Med. (2015) 21:524–9. doi: 10.1038/nm.3833

144. Bughda R, Dimou P, D'Souza RR, Klampatsa A. Fibroblast activation protein
(FAP)-targeted CAR-T cells: launching an attack on tumor stroma. Immunotargets
Ther. (2021) 10:313–23. doi: 10.2147/itt.S291767

145. Hiltbrunner S, Britschgi C, Schuberth P, Bankel L, Nguyen-Kim TDL, Gulati P,
et al. Local delivery of CAR T cells targeting fibroblast activation protein is safe in
patients with pleural mesothelioma: first report of FAPME, a phase I clinical trial. Ann
Oncol. (2021) 32:120–1. doi: 10.1016/j.annonc.2020.10.474

146. Jenkins L, Jungwirth U, Avgustinova A, Iravani M, Mills A, Haider S, et al.
Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to
immune-checkpoint blockade. Cancer Res. (2022) 82:2904–17. doi: 10.1158/0008-
5472.Can-21-4141

147. Zhang Y, Pei P, Zhou H, Xie Y, Yang S, Shen W, et al. Nattokinase-mediated
regulation of tumor physical microenvironment to enhance chemotherapy,
radiotherapy, and CAR-T therapy of solid tumor. ACS Nano. (2023) 17:7475–86.
doi: 10.1021/acsnano.2c12463

148. Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T
cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor
immunity. Nat Commun. (2017) 8:1747. doi: 10.1038/s41467-017-01830-8

149. Fuchs N, Meta M, Schuppan D, Nuhn L, Schirmeister T. Novel opportunities
for cathepsin S inhibitors in cancer immunotherapy by nanocarrier-mediated delivery.
Cells. (2020) 9(9):2021. doi: 10.3390/cells9092021

150. Hauge A, Rofstad EK. Antifibrotic therapy to normalize the tumor
microenvironment. J Transl Med. (2020) 18:207. doi: 10.1186/s12967-020-02376-y

151. Murty S, Gilliland T, Qiao P, Tabtieng T, Higbee E, Al Zaki A, et al. Nanoparticles
functionalized with collagenase exhibit improved tumor accumulation in a murine xenograft
model. Part Part Syst Charact. (2014) 31:1307–12. doi: 10.1002/ppsc.201400169

152. Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, et al. Collagenase
nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano.
(2019) 13:11008–21. doi: 10.1021/acsnano.9b02395

153. Xu F, Huang X, Wang Y, Zhou S. A size-changeable collagenase-modified
nanoscavenger for increasing penetration and retention of nanomedicine in deep
tumor tissue. Adv Mater. (2020) 32:e1906745. doi: 10.1002/adma.201906745

154. Wang X, Luo J, He L, Cheng X, Yan G, Wang J, et al. Hybrid pH-sensitive
nanogels surface-functionalized with collagenase for enhanced tumor penetration. J
Colloid Interface Sci. (2018) 525:269–81. doi: 10.1016/j.jcis.2018.04.084

155. Pan A, Wang Z, Chen B, Dai W, Zhang H, He B, et al. Localized co-delivery of
collagenase and trastuzumab by thermosensitive hydrogels for enhanced antitumor
efficacy in human breast xenograft. Drug Delivery. (2018) 25:1495–503. doi: 10.1080/
10717544.2018.1474971

156. Dong X, Liu HJ, Feng HY, Yang SC, Liu XL, Lai X, et al. Enhanced drug delivery
by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion.
Nano Lett. (2019) 19:997–1008. doi: 10.1021/acs.nanolett.8b04236

157. Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, et al.
Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic
foci of immune regulation. Cancer Immunol Res. (2014) 2:616–31. doi: 10.1158/
2326-6066.Cir-14-0027

158. Ochoa de Olza M, Navarro Rodrigo B, Zimmermann S, Coukos G. Turning up
the heat on non-immunoreactive tumours: opportunities for clinical development.
Lancet Oncol. (2020) 21:e419–30. doi: 10.1016/s1470-2045(20)30234-5

159. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal
fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci
U.S.A. (1990) 87:7235–9. doi: 10.1073/pnas.87.18.7235

160. Huber MA, Kraut N, Park JE, Schubert RD, Rettig WJ, Peter RU, et al.
Fibroblast activation protein: differential expression and serine protease activity in
reactive stromal fibroblasts of melanocytic skin tumors. J Invest Dermatol. (2003)
120:182–8. doi: 10.1046/j.1523-1747.2003.12035.x

161. Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu Z, et al. Protein nanocage
mediated fibroblast-activation protein targeted photoimmunotherapy to enhance
cytotoxic T cell infiltration and tumor control. Nano Lett. (2017) 17:862–9.
doi: 10.1021/acs.nanolett.6b04150

162. Prestwich GD. Hyaluronic acid-based clinical biomaterials derived for cell and
molecule delivery in regenerative medicine. J Control Release. (2011) 155:193–9.
doi: 10.1016/j.jconrel.2011.04.007
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