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Background: Interleukin (IL)-17-producing gdT (gdT17) cells mediate

inflammatory responses in barrier tissues. Dysregulated gdT17 cell activation

can lead to the overproduction of IL-17 and IL-22 and the development of

inflammatory diseases, including psoriasis. IL-23 and IL-1b are known to

synergistically activate gdT17 cells, but the regulatory mechanisms of gdT17
cells have not been fully elucidated. This study aimed to reveal the

contribution of the inflammatory cytokine tumor necrosis factor-like ligand 1A

(TL1A) to gdT17 cell activation and psoriasis development.

Methods: Anti-TL1A antibody was injected into an imiquimod (IMQ)-induced

murine psoriasis model. TL1A receptor expression was analyzed in splenic and

dermal gdT cells. gdT cells were tested for cytokine production in vitro and in vivo

under stimulation with IL-23, IL-1b, and TL1A. TL1A was applied to a psoriasis

model induced by intradermal IL-23 injection. Mice deficient in gdT cells were

intradermally injected with IL-23 plus TL1A to verify the contribution of TL1A-

dependent gdT-cell activation to psoriasis development.

Results: Neutralization of TL1A attenuated gdT17 cell activation in IMQ-treated

skin. TL1A induced cytokine production by splenic gdT17 cells in synergy with IL-

23. Dermal gdT17 cells constitutively expressed a TL1A receptor at high levels and

vigorously produced IL-22 upon intradermal IL-23 and TL1A injection but not IL-

23 alone. TL1A exacerbated the dermal symptoms induced by IL-23 injection in

wild-type but not in gdT cell–deficient mice.

Conclusion: These findings suggest a novel regulatory mechanism of gdT cells

through TL1A and its involvement in psoriasis pathogenesis as a possible

therapeutic target.
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1 Introduction

gdT cells bridge innate and adaptive immune systems through

their innate-like potential to rapidly secrete a large amount of

cytokines under inflammation (1, 2). gdT cells are particularly

abundant in barrier tissues, such as mucosa and skin, and

predominate in the early stage of immune responses against

microbial infections (2). gdT cells are largely segregated into

interferon-g (IFN-g) and interleukin (IL)-17 producers

functionally committed during intrathymic development. These

gdT-cell subsets can be distinguished by the expression or lack of

markers, including CD27, CC-chemokine receptor type 6, and IL-1

receptor (IL-1R) (1, 3–6). IL-17-producing gdT (gdT17) cells play
crucial roles in the body’s protection against fungi and bacteria, but

they are also involved in the pathogenesis of inflammatory and

autoimmune diseases as a major source of IL-17 and IL-22 in

inflamed tissues (5). It is generally known that inflammatory

cytokines IL-23 and IL-1b synergistically induce IL-17 and IL-22

production by gdT17 cells without T-cell receptor (TCR)

stimulation (6). In addition to IL-23 and IL-1b, other

environmental signals that can activate gdT17 cells have been

reported (7, 8). How gdT17 cells sense inflammation to elicit

innate function has not been fully elucidated.

Psoriasis is a chronic inflammatory skin disease grossly

characterized by inflamed plaques with adherent silvery scales (9).

The skin lesions show hyperproliferation and aberrant

differentiation of keratinocytes and large neutrophil infiltration.

IL-17-producing helper T (Th17) cells in psoriasis pathogenesis

have been intensely studied, suggesting a model in which IL-23

derived from dendritic cells and macrophages activates the cytokine

secretion of Th17 cells and that Th17-derived IL-17 and IL-22

provoke neutrophil recruitment and epidermal keratinocyte

proliferation in the skin (10, 11). In contrast, there is growing

evidence that gdT cells contribute to psoriasis development as a

primary source of IL-17 and IL-22 in skin lesions (12–15).

Deficiency of gdT, but not abT, cells attenuates IL-17 production

and relieves psoriasiform dermatitis in mice intradermally injected

with IL-23 (12). Massive infiltration of gdT17 cells has also been

found in skin lesions of patients with psoriasis (12).

Tumor necrosis factor (TNF)-like ligand 1A (TL1A) and its

receptor, death receptor 3 (DR3), belong to the TNF/TNF receptor

superfamily (16). TL1A is initially expressed as a membrane-bound

form, and its extracellular domain is released as a soluble protein

through cleavage by metalloproteinases (17, 18). TL1A expression is

upregulated by stimulation of Fcg receptors and Toll-like receptors

in dendritic cells and macrophages known as major sources of

TL1A under inflammatory conditions (19–21). DR3 is expressed in

various immune cells, including activated T cells, natural killer cells,

and innate lymphoid cells (16), and TL1A-DR3 interaction triggers

proinflammatory responses through nuclear factor-kB activation

and mitogen-activated protein kinase (17, 21, 22). Genetic studies

have revealed the association of TL1A gene (Tnfsf15)

polymorphisms with psoriasis (23, 24). Elevated TL1A levels in

the serum and increased TL1A and DR3 expression in skin lesions

have been reported in psoriasis patients (25, 26). Li et al. recently
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reported that anti-TL1A antibody injection alleviates psoriasis-like

symptoms in mice treated with imiquimod (IMQ), indicating the

involvement of TL1A in the pathogenesis of this animal model (27).

However, the role of the TL1A-DR3 pathway in gdT17 cells and its

relevance with psoriasis pathogenesis has not been investigated.

This study reports the crucial role of TL1A in gdT17 cell

activation and psoriasis pathogenesis. Anti-TL1A antibody

injection inhibited cytokine production by gdT17 cells in IMQ-

treated skin. DR3 was constitutively expressed in splenic and

dermal gdT cells. TL1A induced cytokine production by gdT17
cells synergistically with IL-23. The effect of TL1A was especially

striking in the enhancement of IL-22 production. TL1A exacerbated

the symptoms of the murine psoriasis model generated by

intradermal IL-23 injection, and TL1A-dependent gdT17 cell

activation was crucial in the early pathogenesis of this disease.

These findings suggest a novel regulatory mechanism of gdT17 cells
through TL1A and provide insights into psoriasis pathogenesis.
2 Materials and methods

2.1 Mice

C57BL/6 mice were purchased from Japan SLC. TCR g-chain
(Tcrd) knockout (KO) mice (B6.129P2-Tcrdtm1Mom/J) were

obtained from The Jackson Laboratory (28). Mice were

maintained under specific pathogen-free conditions in our animal

facility. All animal experiments were performed under the approval

of the Institutional Animal Care and Use Committee of Hokkaido

University (Approval no. 20-0172). When data from some

independent experiments were accumulated, each experiment was

conducted to include all groups consisted of one or more mice per

condition. In some experiments, test groups were set to contain

more mice than control groups, assuming that the drug treatment

produces larger variation among individuals.
2.2 Flow cytometry and cell sorting

To prepare single-cell suspensions, spleens were grinded on a

metal mesh by a syringe plunger and filtrated through nylon mesh.

Skin samples were treated with enzymes as follows prior to the

mechanical digestion. Ear pinnae were cut into small pieces and

incubated at 37°C for 1 h with 250 mg/mL Liberase TL (Roche

Diagnostics) and 1 mg/mL DNase I (Roche Diagnostics) in RPMI

1640 containing 5% fetal bovine serum (Sigma-Aldrich). The single

cell suspensions were incubated with antimouse CD16/CD32

(Biolegend) for the blockade of Fc receptors and stained with

fluorochrome-labeled monoclonal antibodies (all from Biolegend)

against cell surface proteins for 30min. Intracellular cytokine staining

was performed using a fixation and permeabilization buffer set

(Thermo Fisher Scientific) according to the manufacturer’s

directions. Data were obtained using FACSVerse, LSRFortessa, or

FACSAria II flow cytometer (BD Biosciences) and analyzed using

FlowJo version 10.3 (TreeStar). To isolate gdT cells, cells were
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incubated with fluorescein isothiocyanate (FITC)-labeled anti-B220,

-TCRb, -CD11c, -CD11b, and -NK1.1 antibodies (all from

Biolegend) and enriched by depleting antibody-bound cells using

anti-FITC-conjugated magnetic beads and columns (Miltenyi

Biotec). Cells were stained with anti-CD3e and anti-CD27

antibodies (Biolegend), and CD27+ and CD27− fractions in

FITC−CD3e+ cells were sorted using a FACSAria II (BD Biosciences).
2.3 Cell culture

To induce cytokine production, cells were cultured with 20 ng/

mL IL-23, IL-1b, and TL1A (all from Biolegend) alone or in

different combinations for 24 h. A protein transport inhibitor

(Thermo Fisher Scientific) was added during the last 4 h to

analyze intracellular cytokines.
2.4 Quantitative polymerase chain
reaction analysis

Total RNA was extracted from whole ear samples or specific

subsets of splenic gdT cells using the RNeasy Plus Micro kit

(Qiagen) and reverse transcribed using the PrimeScript RT

master mix (Takara Bio). Real-time PCR was performed using TB

Green Premix Ex Taq II (Takara Bio) on a LightCycler 96 System

(Roche Diagnostics). The primer sequences are listed in

Supplementary Table 1. Relative mRNA expression was analyzed

using the DDCt method and normalized to glyceraldehyde 3-

phosphate dehydrogenase.
2.5 IMQ treatment

Each ear was applied daily with 10 mg 5% IMQ cream (Mochida

Pharmaceuticals) or control Vaseline, defining the initial treatment

day as day 0. Where indicated, mice were intraperitoneally injected

once daily with 20 mg/kg anti-TL1A monoclonal antibodies (clone

5G4.6; Bio X Cell) from day −1 until a day before analysis (29).

Single-cell suspensions were prepared from ears on day 3 for

intracellular cytokine staining. Ear thickness was measured daily

at two specific sites using a micrometer caliper (Mitutoyo) and

averaged. Swelling was calculated as changes in the thickness

between day 0 and measurement time. Ear pinnae were obtained

for histopathological analysis on day 4.
2.6 Intradermal cytokine injection

Either side of mouse ears was injected intradermally with 0.5 mg
recombinant mouse IL-23 (Biolegend) alone or combined with 0.5

mg recombinant mouse TL1A (Biolegend) in 20 ml volume (30). To

analyze IL-17 and IL-22 production, single-cell suspensions were

prepared from ears 22 h after cytokine injection. To induce

psoriasis-like dermatitis, cytokine injection was repeated daily for

4 days, defining the initial treatment day as day 0. Ear thickness was
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monitored as described above. Ear pinnae were obtained for

histological analysis or qPCR at the indicated time points.
2.7 Histological analysis

Ear samples were fixed with 10% neutral buffered formalin.

Paraffin-embedded tissues were sectioned and stained with

hematoxylin and eosin (H&E). The sections were scanned using a

NanoZoomer 2.0-RS virtual slide scanner (Hamamatsu Photonics).

Dermis and epidermis thicknesses were measured as described

elsewhere with minor modifications (31, 32). The length from the

stratum corneum to the basal stratum of the interfollicular

epidermis and the length from right under the interfollicular

epidermis to the top of the cartilage layer were measured as

the epidermis and dermis thicknesses, respectively, using

ImageJ software. The dermis and epidermis thicknesses and the

number of epidermal layers were measured at eight randomly

chosen points in two 600 × 400 mm fields and averaged. For

immunohistochemical analysis, deparaffinized sections were

treated with 0.3% hydrogen peroxide-methanol. After antigen

retrieval, the sections were incubated with blocking 10% goat

serum and antimouse cytokeratin-5 (rabbit polyclonal;

Biolegend), antimouse proliferating cell nuclear antigen (PCNA)

(clone PC10; Calbiochem), or antimouse Gr1 (clone RB6-8C5; R&D

Systems) primary antibodies. The sections were incubated with

biotinylated secondary antibodies and streptavidin-conjugated

horseradish peroxidase (Nichirei). The sections were finally

reacted with 0.01% 3,3′-diaminobenzidine. PCNA+ and Gr1+ cells

were counted manually in two randomly chosen 200-mm-long

epidermal and dermal areas, respectively, and averaged for

statistical evaluation.
2.8 Statistical analysis

All data were assessed for normality using Shapiro-Wilk test.

Statistical significance was evaluated using two-tailed unpaired or

paired Student’s t-test, Mann-Whitney U test, or Wilcoxon signed-

rank test based on the result of normality test. Analysis was

performed with Prism 9.0 (GraphPad Software) and Excel

(Microsoft). In all figures, P-values < 0.05, 0.01, and 0.001 are

shown as *, **, and ***, respectively.
3 Results

3.1 Involvement of TL1A in gdT-cell
activation in IMQ-treated skin

Topical application of IMQ, a ligand of Toll-like receptor 7

(TLR7) and TLR8, to the skin induces psoriasis-like manifestations

in mice (33), where gdT cells are associated with disease

development (12). IL-17- and IL-22-producing lymphocytes were

identified in mouse ears after IMQ treatment for 3 consecutive days

(Figures 1A, B). Remarkably, gdT cells occupied 60%–80% of
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cytokine-producing lymphocytes in IMQ-treated ears (Figures 1C,

D). abT and TCR− cells appeared minor compared to gdT cells

(Figures 1C, D). These data indicated that gdT cells are the major

producers of IL-17 and IL-22 in the skin during the early phase of

the IMQ-induced psoriasis model.
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Neutralizing anti-TL1A antibodies were injected into IMQ-

treated mice. IL-17 and IL-22 production by CD3intgdTCRint

dermal gdT17 cells (34) was significantly repressed when TL1A

availability was limited (Figures 1E, F), suggesting the contribution

of TL1A to dermal gdT-cell activation in this psoriasis model. Anti-
A B

D

E

F

G

I

H

C

FIGURE 1

Imiquimod (IMQ) treatment activates dermal gdT cells through TL1A. (A–D) Mouse ears were smeared with IMQ cream or control Vaseline for 3
consecutive days. One day after the last treatment, single-cell suspensions from ears were analyzed for cytokine production (n = 5). (A, B) Frequencies
of cytokine-producing cells in the CD45+ gate. (C, D) TCR usage of IL-17+ and IL-22+ lymphocytes in IMQ-treated mice. DN, double negative. (E–I) Ears
were smeared with IMQ for 3 (E, F) or 4 (G–I) consecutive days. Anti-TL1A antibodies were injected from day −1 until the day before the analysis.
(E, F) CD3intgdTCRint cells from ears on day 3 were analyzed for cytokine production (n = 5). (G) Ear swelling was calculated as changes in thickness from
day 0 (IMQ-treated n = 6; Vaseline-treated n = 3). (H) H&E staining sections were prepared from ears on day 4. Scale bar, 100 mm. (I) Epidermal
keratinocyte layers and epidermal and dermal thicknesses were measured in the sections. Representative of three (A, C, E) and two (H) independent
experiments. Accumulated from three (B, D, F) and two (G, I) independent experiments. Error bars, mean ± standard error (SE). *P < 0.05; **P < 0.01;
***P < 0.001.
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TL1A injection relieved inflammatory symptoms, including skin

swelling and cellular infiltrations, after IMQ treatment for 4

consecutive days (Figures 1G, H). The number of epidermal cell

layers and the epidermis and dermis thicknesses in anti-TL1A-

injected mice were also significantly reduced (Figure 1I). Notably,

the effect of anti-TL1A to ease ear swelling was evident even at the

early time point after IMQ treatment for 2 consecutive days when

IL-17 and IL-22 are mainly produced by gdT cells (Figures 1C, D,

G). These data suggested the involvement of TL1A in dermal gdT-
cell activation and early disease development in IMQ-

induced dermatitis.
3.2 TL1A activates gdT17 cells in synergy
with IL-23

Expression of DR3, a TL1A receptor, in different gdT-cell
subsets was examined using spleen cells from C57BL/6 mice.

Splenic gdT cells had four different subsets according to CD27

and Vg4 expression (Figure 2A). CD27+ gdT cells are mostly IFN-g
producers, and IL-17 production is limited to CD27− gdT cells (15).

gdT17 cells include Vg6+ and Vg4+ cells that can roughly

correspond to natural and inducible gdT cells, respectively (6),

and Vg4+ gdT17 cells are mainly associated with psoriasis

development (35). DR3 expression was apparent in most CD27−

gdT cells regardless of Vg4 expression, whereas only a small fraction

of CD27+ gdT cells weakly expressed DR3 (Figures 2B, C). Type I

IL-1R was expressed exclusively in CD27− gdT cells (Figures 2B, C).

Weak IL-23R expression was detected in all gdT-cell subsets,

although CD27− gdT cells tended to express slightly higher levels

than CD27+ gdT cells (Figures 2B, C).

Expression of genes encoding these cytokine receptors was

assessed in CD27− and CD27+ gdT cells isolated from the spleen.

Tbx21 and Rorc encode transcription factors functionally

characterizing IFN-g-producing gdT and gdT17 cells, respectively

(6). qPCR analysis verified that CD27− gdT cells express higher

levels of Rorc and lower levels of Tbx21 than the CD27+ counterpart

(Figure 2D). As expected, Tnfrsf25 (encoding DR3), Il1r1, and Il23r

were highly expressed in CD27− gdT cells as Rorc whose expression

characterizes gdT17 cells (Figure 2D). These data suggested that

DR3 is preferentially expressed in gdT17 cells in the spleen.

Cytokine production by gdT cells was examined in vitro by

culturing spleen cells with different combinations of IL-23, IL-1b,
and TL1A. Stimulation with IL-23 alone induced substantial IL-17

and IL-22 production by CD27− gdT cells but not CD27+ gdT cells

(Figures 2E, F). Although the response to either IL-1b or TL1A

alone was poor, they enhanced cytokine production when mixed

with IL-23 (Figures 2E, F). Regarding the enhancement of IL-17

production, synergistic effects with IL-23 were similar between IL-

1b and TL1A (Figure 2F). In contrast, TL1A was significantly

stronger than IL-1b in IL-22 induction when used with IL-23

(Figure 2F). This striking effect of TL1A enhancing IL-22

production was evident in IL-22+ cell frequency (Figure 2F) and

fluorescence intensity (data not shown).
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3.3 Dermal gdT cells are ready to respond
to TL1A

gdT cells are abundantly present in the skin and provide a

barrier against microorganisms. They include gdT TCRhiVg5+

dendritic epidermal T cells (DETCs) and gdTCRintVg5− gdT cells

resident in the dermis (34). The latter, but not the former, gdT cells

can produce IL-17 and IL-22 (34). CD3higdTCRhi DETCs and

CD3intgdTCRint dermal gdT cells were identified in the single-cell

suspension prepared from untreated mouse ear pinnae (Figure 3A).

DR3 expression was seen in CD3intgdTCRint dermal gdT cells but

not CD3higdTCRhi DETCs (Figure 3B). Vg4+ and Vg4− dermal gdT
cells expressed DR3 at similar levels (Figures 3B, C). Although IL-

1R and IL-23R expression in dermal gdT cells was not so clear as

DR3, Vg4− dermal gdT cells expressed slightly higher IL-1R and IL-

23R than DETCs (Figures 3B, C).

Given the remarkable DR3 expression in dermal gdT cells in a

steady state, cytokine production by these gdT cells upon exposure

to IL-23 and TL1A in vivo was tested. Mouse ears were

intradermally injected with IL-23 alone or combined with TL1A,

and IL-17 and IL-22 production was examined. DETCs produced

little IL-17 and IL-22 in any conditions (Figures 3D, E). The overall

IL-17 and IL-22 production by dermal gdT cells was predominant in

the Vg4+ population and less in the Vg4− counterpart (Figures 3D,
E). IL-17 was produced at similar levels upon injection with IL-23

alone or combined with TL1A (Figure 3D). IL-22 production was

only slightly induced in the group injected with IL-23 alone and

remarkably enhanced (more than fourfold) by the combined

injection with TL1A (Figure 3E). These results suggested an

essential role of the TL1A-DR3 pathway in inducing immediate

IL-22 production by dermal gdT cells.
3.4 TL1A exacerbates the symptoms in the
IL-23-induced murine psoriasis model

IL-23 injection into the mouse skin is a popular psoriasis model

that shares various manifestations with human patients, including

epidermal hyperplasia (acanthosis), parakeratosis, and cellular

infiltration (12, 30, 36, 37). Intradermal IL-23 administration into

IL-22-deficient mouse ears has demonstrated the requirement of IL-

22 for acanthosis and neutrophil infiltration (36). Given that TL1A

was crucial for IL-22 production by dermal gdT cells in vivo

(Figure 3E), how IL-23-induced psoriatic symptoms are affected

by the combined administration with TL1A was examined. Mouse

ears were injected daily with IL-23 alone or combined with TL1A

for 3 consecutive days. As reported, mice injected with IL-23 alone

showed overt ear swelling and increased over time (Figure 4A).

Additional TL1A injection significantly enhanced the response

(Figure 4A). Notably, this effect of TL1A appeared only a day

after the initial cytokine injection (Figure 4A), implying the

involvement of immune cells, such as dermal gdT cells, ready to

respond to these cytokines in situ.
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Histological analysis revealed that TL1A massively enhances

epidermal hyperplasia and cellular infiltration in this psoriasis

model (Figures 4B, C). In mice injected with IL-23 plus TL1A,

epidermal hyperplasia was accompanied by increased epidermal cell

layers and hypertrophy of each cell in basal and spinosum layers
Frontiers in Immunology 06
(Figures 4C, D). Enlarged nucleoli indicating robust RNA synthesis

was also observed in these epidermal cells (Figure 4D). Signs of

hyperkeratosis and parakeratosis (remaining nuclei in the thickened

stratum corneum as indicated in Figure 4D, arrowheads) were

obvious after the combined injection with IL-23 and TL1A. These
A B

D

E

F

C

FIGURE 2

TL1A activates splenic gdT17 cells synergistically with IL-23. (A) CD3+gdTCR+ cells were subdivided into four fractions based on CD27 and Vg4
expression. (B) Expression of DR3, type I IL-1 receptor (IL1-R), and IL-23R in indicated gdT-cell subsets. (C) Expression levels of cytokine receptors in
each gdT-cell subset are shown as relative fluorescence intensities normalized with the mean fluorescence intensity in total gdT cells defined as 100
(n = 6). (D) CD27+ and CD27− gdT cells isolated by sorting were analyzed by qPCR for the expression of the indicated genes (n = 3). mRNA
expression in CD27− gdT cells is shown as relative levels in CD27+ gdT cells defined as 1. The statistical significance of the expression levels between
CD27+ and CD27− cells is shown by asterisks. (E, F) Spleen cells were cultured with the indicated cytokines for 24 (h) A protein transport inhibitor
was added for the last 4 (h) IL-17 and IL-22 production was analyzed by intracellular staining. (E) Representative flow cytometry profiles of gdT cells
at the end of culture. (F) Frequencies of IL-17+, IL-22+, and IL-17+IL-22+ gdT cells (n = 5). Representative of three (A, B) and four (E) independent
experiments. Cumulative results from three (C, D) and four (F) independent experiments. Error bars, mean ± SE. *P < 0.05; **P < 0.01; ***P < 0.001.
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mice also showed neutrophil infiltration into the epidermal layer

(Figure 4D, closed arrows) and the collection of neutrophils in

the stratum corneum (Figure 4D, open arrow), similar to

Munro microabscesses characteristic of psoriasis patients (38).

Microabscesses were absent in all mice injected with phosphate-

buffered saline (PBS) or IL-23 alone under the experiment

condition that gives the treatment only four times (Figure 4E).

Keratin-5 expression in suprabasal layers, a hallmark of

keratinocyte hyperproliferation in psoriasis (39), was remarkable

in mice injected with IL-23 and TL1A (Figure 4F). Similarly,

PCNA+ epidermal cells undergoing proliferation increased in

those mice (Figures 4F, G). Gr1 signals mainly existed in the

reticular layer of the lower dermis in mice injected with IL-23
Frontiers in Immunology 07
alone (Figure 4F). However, in mice given IL-23 and TL1A,

infiltration of Gr1+ neutrophils was more intense and extended to

the papillary layer of the upper dermis and even into the epidermis,

resulting in microabscess formation (Figures 4F, G).
3.5 TL1A-mediated gdT-cell activation is
pivotal for the early development
of psoriasis

The disease caused by intradermal IL-23 injection is

significantly attenuated in mice deficient in gdT cells compared to

wild-type (WT) mice (12). Based on observations that dermal gdT
A

B

D

C

E

FIGURE 3

Dermal gdT cells are ready to respond to IL-23 and TL1A. (A) CD45+ gate in single-cell suspensions from ears contained CD3higdTCRhi dendritic
epidermal T cells (DETCs) and CD3intgdTCRint conventional dermal gdT cells. CD3intgdTCRint dermal gdT cells were divided into Vg4+ and Vg4− cells.
(B) Expression of DR3, type I IL-1R, and IL-23R in DETCs and dermal gdT cells. (C) Expression levels of cytokine receptors in Vg4+ and Vg4− gdT cells
are shown as relative fluorescence intensities normalized with the mean fluorescence intensity in DETCs defined as 100 (n = 5). (D, E) Mouse ears
were intradermally injected with IL-23 alone or combined with TL1A. Twenty-two hours later, DETCs and gdT cells were analyzed for IL-17 (D) and
IL-22 (E) by intracellular staining (n = 7 per group). Representative data of three independent experiments (A, B). Cumulative results from four
(C–E) independent experiments. Error bars, mean ± SE. *P < 0.05; **P < 0.01; ***P < 0.001.
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cells were ready to respond to TL1A (Figure 3) and TL1A promoted

IL-23-induced skin swelling only within a day (Figure 4A), the

contribution of TL1A-dependent gdT-cell activation to the early

inflammation was assessed by analyzing the ear samples one day

after single dose cytokine injection. IL-17-producing lymphocytes

were detected at comparable levels between the groups injected with

IL-23 alone and in combination with TL1A (Figures 5A, B). In

contrast, IL-22-producing lymphocytes were evident only in the

combined injection group at this early time point (Figures 5A, B).
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gdT cells occupied most IL-17- or IL-22-producing lymphocytes

(Figures 5C, D).

To directly examine the involvement of gdT cells in early disease

development, WT and gdT cell–deficient mice were similarly

injected with IL-23 alone or combined with TL1A once, and

manifestations that appeared within a day were compared. The

effect of TL1A enhancing IL-23-induced skin swelling was absent in

gdT cell–deficient mice (Figure 5E). Histological analysis also

showed that gdT-cell deficiency abrogated TL1A-dependent
frontiersin.or
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FIGURE 4

TL1A exacerbates symptoms in the IL-23-induced murine psoriasis model. Mouse ears were intradermally injected with PBS, IL-23 alone, or the
combination of IL-23 and TL1A for 4 consecutive days from days 0 to 3. (A) Thickness of ears was monitored (n = 4). Swelling was calculated as
changes in thickness before the treatments. (B–E) H&E staining sections were prepared on day 4. (B) Representative view with low magnification.
Scale bar, 100 mm. (C) Epidermal layers of keratinocytes and epidermal and dermal thicknesses were measured (n = 6). (D) Magnified view of the
epidermis. Scale bar, 50 mm. (E) Number of microabscesses per section (n = 6). nd, not detected. (F) Immunohistochemical analysis. Scale bar, 25
mm (top), 50 mm (middle), and 100 mm (bottom). (G) PCNA+ and Gr1+ cells were counted in epidermal and dermal areas, respectively (n = 6).
Cumulative results from two (A) and three (C, E, G) independent experiments. Representative data of three independent experiments (B, D, F). Error
bars, mean ± SE. *P < 0.05; **P < 0.01; ***P < 0.001.
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epidermal responses, including the increase of layers and thickness

(Figures 5F, G). gdT-cell deficiency did not affect dermal thickness

at statistically significant levels (Figure 5G). Finally, the effect of

gdT-cell deficiency on the expression of genes associated with

psoriatic skin lesions a day after cytokine injection was examined.
Frontiers in Immunology 09
Expression of antimicrobial proteins, such as S100A7, S100A8, and

S100A9, are induced in psoriatic keratinocytes (40, 41). S100A8 and

S100A9 mRNA expression in ear tissues was significantly elevated

by the combined cytokine injection compared to IL-23 alone in WT

mice, but this TL1A-dependent response was absent in gdT cell–
A B

D

E F

G

H

C

FIGURE 5

Involvement of TL1A-mediated gdT-cell activation in early psoriasis. Mouse ears were intradermally injected with indicated cytokines. One day later,
ears were harvested. (A–D) Single-cell suspensions were prepared for flow cytometry analysis (n = 7). (A, B) Frequencies of cytokine-producing cells
in the CD45+ gate. (C, D) IL-17+ and IL-22+ lymphocytes were analyzed for CD3 and gdTCR expression. (E–G) Comparison of wild-type and Tcrd-
knockout mice. (E) Ear thickness was measured before and a day after the treatments (n = 4–5). (F, G) Histological analysis of H&E sections.
(F) Representative views from mice injected with IL-23 plus TL1A. Scale bar, 50 mm. (G) Epidermal layers and epidermal and dermal thicknesses
(n = 4–5). (H) Ear samples were subjected to qPCR analysis (n = 4–6). mRNA expression is shown relative to the average values in wild-type mice
injected with IL-23 alone defined as 1. Representative of two (F) and four (A, C) independent experiments. Accumulated from two (E, G, H) and four
(B, D) independent experiments. Error bars, mean ± SE. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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deficient mice (Figure 5H). Likewise, the effect of TL1A enhancing

the mRNA expression of keratinocyte-derived chemokine CCL20

(42, 43) was gdT cell–dependent (Figure 5H). S100A7 and CCL2

mRNA expression showed nonsignificant but similar result

(Figure 5H). These data indicated that TL1A-dependent gdT-cell
activation contributes to the psoriasis development in the very early

stage of the disease.
4 Discussion

This study demonstrated the involvement of the TL1A-DR3

pathway in gdT17 cell activation. TL1A in cooperation with IL-23,

but not by itself, induced IL-17 and IL-22 production. This effect of

TL1A was similar to that of IL-1b, a major cytokine regulating

gdT17 cell activation (44). However, there was a clear difference

between DR3 and IL-1R in their expression pattern. Among gdT-
cell subsets in the spleen and skin, IL-1R expression was clearly

detected only in splenic CD27− gdT17 cells. This result aligned with

the observation in a previous study that IL-1R expression in gdT17
cells varies depending on anatomic sites, including the intestine and

the lung (45). In contrast, DR3 was more broadly expressed in

various gdT-cell populations distinct in phenotype and anatomic

location. Notably, dermal gdT cells in steady state expressed high

levels of DR3, suggesting a role of TL1A signaling for the immediate

response of dermal gdT cells in situ. gdT cell activation through IL-

1b has been shown critical for the disease development in IMQ-

induced psoriasis model (46, 47). Although IL-1b and TL1A can

similarly activate gdT cells, they might act on different gdT cell

populations (e.g. skin-resident versus migratory) and/or in different

stages (e.g. inflammation trigger versus progression) during

psoriasis development. How these cytokines cooperate for

psoriasis development is an intriguing question for future studies.

Intradermal IL-23 and TL1A injection demonstrated that

dermal gdT cells strongly depend on TL1A for IL-22 production.

IL-22 acts on epidermal keratinocytes and promotes the release of

antimicrobial proteins (40, 41). Hence, TL1A-DR3 signaling in

skin-resident gdT17 cells may contribute to the host defense by

maintaining the barrier against microbial invasion. Additionally,

IL-22 also supports the renewal of the skin epidermis by

downregulating the molecules associated with the terminal

differentiation of keratinocytes and promoting their proliferation

(40, 41). IL-22 also has prosurvival effects on intestinal epithelial

cells by inducing antiapoptotic genes (48). These regenerative

activities of IL-22 suggest that TL1A-dependent dermal gdT-cell
activation is important for the homeostatic renewal and wounded

tissue repair of the epidermis. The possible role of TL1A and gdT
cells in skin homeostasis is an issue that can be addressed in

the future.

The function of dermal gdT17 cells immediately producing

cytokines in response to inflammation is beneficial for early

pathogen clearance, but this characteristic can underlie

inflammatory skin diseases. Results showed that gdT cells produce

most IL-17 and IL-22 in murine psoriasis models before overt

clinical manifestations appear. In the intradermal IL-23-injection
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model, TL1A significantly accelerated skin swelling only within a

day in a gdT cell–dependent manner. A recent study showed that

IL-17 derived from gdT cells is primarily required to induce

experimental autoimmune encephalomyelitis (49). Therein, the

early wave of IL-17 from Vg4+ gdT cells within several hours after

autoantigen immunization was critical for recruiting IL-1b-
secreting inflammatory monocytes and neutrophils, in turn

promoting the priming of pathogenic T cells (49). Likewise,

dermal gdT17 cell activation through TL1A during may initially

condition the inflammatory environment for subsequent immune

responses, including the recruitment of conventional abT cells.

However, whether and how this TL1A-dependent gdT17 cell

activation in acute phase of inflammation eventually results in

chronic manifestations of psoriasis remains to be clarified. It is

possible that TL1A also modulates immune reactions in the later

stages of the disease. TL1A exacerbates inflammatory bowel disease

by synergistically acting with IL-23 on Th17 cells and enhancing

their IL-17 production (50). Similarly, the progression of psoriatic

disease with repetitive cytokine injections and IMQ treatments in

the experiments may involve the action of TL1A on abT cells.

IL-17 and IL-22 are cooperatively associated with psoriasis

pathogenesis. Deficiency of either of these cytokine signals

attenuates but does not fully abolish psoriatic disease

development in mice (36, 51). These cytokines are derived from

the same sources (gdT17 and Th17 cells) similarly triggered by IL-

23. Therefore, upstream factors that differentially activate T cells

toward secreting IL-17 or IL-22 have been unclear. Although the

involvement of Th22 cells producing IL-22 but not IL-17 has been

reported in psoriasis patients (52), the gdT-cell population with

such functional characteristics was not observed in this study. In a

recent study, anti-TL1A antibody injection was shown to relieve the

disease in the IMQ-induced psoriasis model (27). TL1A

neutralization represses IL-17 and IL-22 production by gdT cells

in IMQ-treated skin. Although anti-IL-17 and anti-IL-17 receptor

antibodies are effective for psoriasis (53, 54), the blockade of TL1A-

DR3 interaction can also be an alternative therapeutic approach by

repressing IL-22 overproduction.

Genome-wide association studies have revealed the link of

TL1A gene (Tnfsf15) variants with various autoimmune and

inflammatory diseases, including psoriasis (23, 24), IBD (55–58),

Graves’ disease (59), uveitis (60), Behcet’s disease (61), and systemic

lupus erythematosus (62). Increased TL1A levels in the serum or

inflamed tissues from patients have also been reported in psoriasis

(25, 26), rheumatoid arthritis (63, 64), and IBD (65). The

pathogenic roles of TL1A in these diseases have been

experimentally demonstrated in animal models or patient

lymphocytes (22, 27, 50, 66, 67). Accumulating evidence suggests

the role of gdT17 cells in these diseases (12, 44, 68, 69), but the

significance of TL1A-mediated gdT17 cell activation in

pathogenesis has not been directly shown. Thus, fundamental

knowledge from this study can aid in elucidating the pathogenesis

of various inflammatory and autoimmune diseases.

In conclusion, this study revealed that TL1A activates gdT17
cells synergistically with IL-23, and this regulatory pathway is

associated with the early pathogenesis of psoriatic disease in mice.
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These findings provide insights into psoriasis pathogenesis and aid

in developing therapeutics targeting gdT cells.
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