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Immune checkpoint inhibitors (ICIs) are specialized monoclonal antibodies

(mAbs) that target immune checkpoints and their ligands, counteracting

cancer cell-induced T-cell suppression. Approved ICIs like cytotoxic T-

lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), its ligand PD-L1,

and lymphocyte activation gene-3 (LAG-3) have improved cancer patient

outcomes by enhancing anti-tumor responses. However, some patients are

unresponsive, and others experience immune-related adverse events (irAEs),

affecting organs like the lung, liver, intestine, skin and now the cardiovascular

system. These cardiac irAEs include conditions like myocarditis, atherosclerosis,

pericarditis, arrhythmias, and cardiomyopathy. Ongoing clinical trials investigate

promising alternative co-inhibitory receptor targets, including T cell

immunoglobulin and mucin domain-containing protein 3 (Tim-3) and T cell

immunoreceptor with immunoglobulin and ITIM domain (TIGIT). This review

delves into the mechanisms of approved ICIs (CTLA-4, PD-1, PD-L1, and LAG-3)

and upcoming options like Tim-3 and TIGIT. It explores the use of ICIs in cancer

treatment, supported by both preclinical and clinical data. Additionally, it

examines the mechanisms behind cardiac toxic irAEs, focusing on ICI-

associated myocarditis and atherosclerosis. These insights are vital as ICIs

continue to revolutionize cancer therapy, offering hope to patients, while also

necessitating careful monitoring and management of potential side effects,

including emerging cardiac complications.
KEYWORDS

immune checkpoint inhibitors, myocarditis, atherosclerosis, CTLA-4, PD-1, LAG-3, TIM-
3, TIGIT
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1340373/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1340373/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1340373/full
https://orcid.org/0000-0002-8713-2860
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1340373&domain=pdf&date_stamp=2024-02-05
mailto:cihakova@jhmi.edu
https://doi.org/10.3389/fimmu.2024.1340373
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1340373
https://www.frontiersin.org/journals/immunology


Jo et al. 10.3389/fimmu.2024.1340373
1 Introduction

Remarkable advances have been made in recent years in cancer

treatment (1). Immunotherapy represents a category of cancer

treatment that harnesses the immune system’s elements to

combat tumor cells (2). Techniques like adoptive cell transfer

(ACT) and immune checkpoint inhibitors (ICIs) fall under this

approach, offering promising methods in the fight against cancer

(3). This innovative approach, either administered alone or in

combination with conventional treatments like radiotherapy and

chemotherapy, has become a prevailing standard for numerous

cancers, exhibiting considerable success (4). A particularly

promising strategy to trigger therapeutic anti-tumor immunity

involves obstructing immune checkpoints (5).

The balance between co-stimulatory and inhibitory signals

governs the ultimate amplitude and quality of the T-cell response,

triggered by antigen recognition via the T-cell receptor (TCR) (5).

The immune system relies on inhibitory pathways, known as

immune checkpoints, to maintain self-tolerance and regulate the

duration and strength of the immune response in peripheral tissues,

thus minimizing collateral tissue damage (5). Unfortunately, tumor

cells exploit these inhibitory molecules by expressing immune

checkpoint proteins as a means to induce immune resistance and

T-cell exhaustion (3). Given that ligand-receptor interactions

initiate many immune checkpoints, these can be readily blocked

by antibodies or modulated through recombinant forms of ligands

and receptors (5). The treatment involving ICIs, particularly

targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),

programmed death-1 (PD-1), programmed death ligand-1 (PD-L1),

and lymphocyte activation gene-3 (LAG-3), has been proven

effective in activating anti-tumor T-cell activity and dynamically

regulating the anti-tumor immune response (6).

However, despite the promising outcomes observed with

immunotherapy in certain cancers, not all patients exhibit a

favorable response to ICIs, and the overall response rate (ORR) is

influenced by tumor type and specific drugs, ranging from 10.9%

for single-agent ipilimumab (monoclonal antibody (mAbs)

targeting CTLA-4, anti-CTLA-4 mAb) in previously treated

melanoma to 69% for pembrolizumab (anti-PD-1 mAb) in

relapsed/refractory classic Hodgkin ’s lymphoma (7–9).

Additionally, some patients may develop resistance to these

treatments over time (10). Furthermore, a new set of side effects

termed irAEs, immune-related adverse events, have been associated

with ICI therapy (11). These irAEs manifest as autoimmune

conditions affecting various organs throughout the body following

ICI administration, and they have distinct characteristics compared

to non-ICI therapy-related autoimmune diseases (11). Among the

reported cases of irAEs in cancer patients treated with ICI,

cardiotoxicity has emerged as a concerning issue in recent years

(12). Although immune-related cardiotoxicity is less frequent than

other irAEs, it is often fatal (13). Studies analyzing safety databases

have identified potential ICI-associated cardiac toxicities, including

myocarditis, cardiomyopathy, conduction defects (heart block),

vasculitis, atrial and ventricular arrhythmias, pericarditis/

pericardial effusion, venous thrombosis, acute coronary
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syndrome, tachycardia, hypotension, and cardiac dysfunction

(13–23). Significant focus of ICI cardiotoxicity research is

centered on myocarditis, a rare cardiac irAE with notable

mortality (24, 25). Recently attention has also expanded towards

ICI-associated atherosclerosis, given the ICI role in accelerating

atherosclerotic cardiovascular disease with substantial implications

for long-term vascular toxicity (26). In this review, ICI-myocarditis

and atherosclerosis are chosen as the primary focus, emphasizing

the clinical significance of these two major cardiotoxic irAEs. This

strategic selection underscores the critical need for a comprehensive

exploration and management of cardiovascular irAEs associated

with ICI therapy.

In an effort to increase the percentage of responsive cancers to

these therapies, researchers are exploring novel pathways and

molecules to enhance the response and effectiveness of ICI

therapy (27). Among the promising options are ICIs targeting T-

cell immunoglobulin and mucin-domain-containing-3 (Tim-3) and

T-cell immunoglobulin and ITIM domain (TIGIT), which show

potential for treating solid tumors and are currently under active

investigation in clinical trials (6). This review aims to provide a

comprehensive overview of the mechanisms and cardiotoxicity

associated with Food and Drug Administration (FDA)-approved

ICIs. Additionally, we focus on next-generation ICIs, Tim-3 and

TIGIT inhibitors, exploring their influence on T-cell function, role

in cancer treatment, and potential for cardiac irAEs.
2 FDA-approved immunotherapy
targets: CTLA-4, PD-1, and LAG-3

The mAbs that inhibit immune checkpoints have displayed

remarkable efficacy in clinical trials and have made significant

advancements in oncology (7, 28–32). While targeted therapies

often result in short-lived clinical responses due to the development

of drug resistance within a few months, immune checkpoint

blockade therapies have demonstrated durable clinical responses

(7, 32, 33). Some patients have experienced prolonged periods

without cancer progression, spanning several years (7, 32, 33).

These ICIs, including ipilimumab (anti-CTLA-4 mAb),

pembrolizumab, nivolumab, cemiplimab (anti-PD-1 mAb), as

well as atezolizumab, avelumab, and durvalumab (anti-PD-L1

mAb), have become standard in clinical practice (7, 33–37). They

have demonstrated remarkable effectiveness against diverse types of

cancer that was previously unparalleled (7, 33–37). In recent

developments, two agents directed at LAG-3 (eftilagimod alpha

and relatlimab, anti-LAG-3) have received approval for use in

combination with anti-PD-1 to treat advanced solid tumors due

to their crucial role in modulating the immune system (38).
2.1 Mechanism and signaling pathways
orchestrated by CTLA-4

CTLA-4, also referred to as CD152, represents one of the initial

negative modulators that have been targeted in clinical settings (39).
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It is predominantly present in conventional T cells following

activation and Foxp3+ regulatory T lymphocytes (Treg) cells, and

its main function is to regulate the intensity of early T cell activation

(40–43). The use of ipilimumab (anti-CTLA-4 mAb) either alone or

in combination with nivolumab (anti-PD-1 mAb) is currently

approved for the treatment of melanoma, colorectal cancer

(CRC), hepatocellular carcinoma (HCC), non-small cell lung

cancer (NSCLC), and renal cell carcinoma (RCC) (44).

CTLA-4 functions by counteracting CD28, a co-stimulatory

receptor on T cells (45–47), and shares ligands [CD80 (B7.1) and

CD86 (B7.2)] with CD28 (48–52). While the exact mechanisms of

CTLA-4 action are debated (5), one theory proposes that its higher

affinity for CD80 and CD86 dampens T cell activation by

outcompeting CD28 for binding (53–58). Upon binding to CD80

and CD86 on antigen-presenting cells, CTLA-4 triggers inhibitory

reactions via protein phosphatases SHP2 and PP2A, resulting in

immune suppression (59), including the blockade of T lymphocyte

response, reduced T lymphocyte proliferation, increased

Treg activity, decreased cytokine secretion, and overall

immunosuppression (60–62). Furthermore, it has been shown

that ipilimumab (anti-CTLA-4 mAb) selectively depletes

CTLA-4+ FOXP3+ Treg cells via antibody-dependent cell-

mediated (ADCC) cytotoxicity (40).
2.2 Mechanism and signaling pathways
orchestrated by PD-1/PD-L1

PD-1 and PD-L1 inhibitors function by blocking inhibitory

signals, thereby supporting the eradication of tumor cells through

sustained activation of T lymphocytes (63, 64). PD-1 is expressed on

various immune cells, including monocytes, T cells, B cells,

dendritic cells (DCs), and tumor-infiltrating lymphocytes (TILs)

(65, 66). On the other hand, PD-L1 is typically found on APCs and

tumor cells (66). In human cancers, PD-1 has been predominantly

detected in a wide range of malignancies, such as melanoma, lung

cancer, RCC, head and neck cancer, bladder cancer, ovarian cancer,

and gastrointestinal cancer (67).

In contrast to CTLA-4, which primarily regulates T-cell

proliferation in lymph nodes during early immune responses,

PD-1 plays a crucial role in limiting T cell activity in peripheral

tissues during inflammatory responses and contributes to

autoimmune control (68–74). PD-1 plays a significant role as an

immune r e s i s t a n c e me ch an i sm w i t h i n t h e t umo r

microenvironment (TME) (75–77). PD-1 expression counteracts

positive signaling events initiated by TCR and CD28 interactions,

leading to the inhibition of transcription factors vital for T cell

activation, proliferation, effector functions, and survival (39). This

includes suppression of activator protein 1 (AP-1), nuclear factor of

activated T cells (NFAT), nuclear factor-kB (NF-kB), and anti-

apoptotic proteins like Bcl-2 and Bcl-xL, impairing T-cell

survival (78). Ligand activation of PD-1 triggers a negative

feedback pathway, reducing cytokine production (59). Similarly,

to CTLA-4, PD-1 is highly expressed on Treg cells, potentially

enhancing their proliferation in the presence of its ligand (79).
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2.3 Mechanism and signaling pathways
orchestrated by LAG-3

Identified more than two decades ago as a CD4 homologue (80),

LAG-3’s role as an immune checkpoint was clarified in 2005 when it

was discovered to enhance Treg cell function (81, 82). Beyond its

influence on Treg cells, LAG-3 independently inhibits CD8+

effector T cells (83). Its sole known ligand is MHC class II

molecules, upregulated on certain epithelial cancers in response to

interferon-g (IFN-g), also found on tumor-infiltrating macrophages

and DCs (5). While the precise function of the LAG-3-MHC class II

interaction in inhibiting T cell responses is not fully understood,

LAG-3 antibodies that do not block this interaction have been

observed to enhance T cell proliferation and improve effector cell

functions in vitro and in vivo (5).

The specific molecular mechanisms underlying LAG-3

signaling and its interaction with other immune checkpoints are

largely uncertain (84). However, LAG-3 has shown remarkable

synergistic effects with PD-1, inhibiting immune responses in

various scenarios (85, 86). Particularly, the combination therapy

of relatlimab (anti-LAG-3 mAb; BMS-986016) with nivolumab

(anti-PD-1 mAb) has demonstrated impressive clinical

effectiveness in melanoma patients unresponsive to anti-PD-1/

PD-L1 therapy (87). Moreover, LAG-3 expression was

significantly higher in various cancers, including kidney renal

clear cell carcinoma (KIRC), pancreatic adenocarcinoma (PAAD),

skin cutaneous melanoma (SKCM), testicular germ cell tumors

(TGCT), lymphoid neoplasm diffuse large B‐cell lymphoma

(DLBC), and head and neck squamous cell carcinoma (HNSC),

compared to their corresponding normal tissues (88). This suggests

that targeting LAG-3 could have a substantial antitumor impact in

these cancer types (88).
2.4 Application of CTLA-4/PD-1/LAG-3
blockade in clinical settings

Immunotherapy with ICIs offers numerous benefits compared

to traditional cancer treatments (27). Clinical studies focusing on

melanoma, RCC, squamous cell carcinoma, and NSCLC have

shown remarkable increases in patient survival with both CTLA-4

and PD-1 checkpoint inhibitors compared to conventional

chemotherapy (89). Particularly, ICIs have demonstrated the

potential for durable responses and even the possibility of cure in

metastatic diseases (27). Another advantage of ICI treatment is the

availability of biomarkers to predict the response to therapy (27).

These biomarkers help identify patients who are likely to benefit the

most from immunotherapy, making it a more personalized and

targeted approach (90).

As the inhibitory roles of CTLA-4 and PD-1 in immune

responses, including antitumor responses, are distinct, their

effectiveness in cancer treatment depends significantly on the

cancer type and tumor size (27, 44). Notably, in melanoma, while

CTLA-4 blockade with ipilimumab was the first treatment to extend

overall survival in patients with advanced melanoma in a
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randomized setting, anti-PD-1 mAb treatment (nivolumab)

demonstrated higher efficacy in patients with smaller tumors

(7, 91–94). A phase 3 clinical trial directly comparing the two

ICIs found that patients treated with nivolumab (anti-PD-1 mAb)

had a better response rate (44%) and longer progression-free

survival (6.9 months) than those treated with ipilimumab (anti-

CTLA-4 mAb) (response rate of 19% and progression-free survival

of 2.8 months) (95).

The combination of CTLA-4 and PD-1 blockers has been

proposed to have a synergistic effect on activating anti-tumor

immune responses, leading to increased response rates in patients

(96). Numerous clinical studies have been conducted to assess the

safety and efficacy of this combination in various cancer subtypes

(97). Recent data indicates that the dual inhibition of PD-1 and

CTLA-4 may enhance the activity observed with single-agent therapy

by promoting the recruitment of peripheral T-cells and reducing

resident Tregs (96). Clinical results have shown that when PD-1/PD-

L1 inhibitors and CTLA-4 inhibitors are administered individually,

the response rates are typically around 20-25% at best (95). However,

when these inhibitors are combined, the response rate can reach up to

60%, with an associated survival benefit of 11.5 months (95). This

significant increase in response rates and median survival times has

been observed in melanoma and RCC, leading to the approval of the

ipilimumab (anti-CTLA-4 mAb) and nivolumab (anti-PD-1 mAb)

combination for the treatment of these cancers (98, 99).

Apart from CTLA-4 and PD-1/PD-L1, LAG-3 has emerged as a

promising target for tumor immunotherapy (100). Currently, more

than 80 clinical trials are ongoing worldwide to assess drug

candidates targeting LAG-3 (100). However, the efficacy of

relatlimab (anti-LAG-3 mAb) alone is limited, and it is typically

utilized in combination with other checkpoint inhibitors like

ipilimumab (anti-CTLA-4 mAb) or nivolumab (anti-PD-1 mAb)

to achieve synergistic enhancement of efficacy (101). Especially

noteworthy is the combination of relatlimab (anti-LAG-3) and

nivolumab (anti-PD-1), which has shown promising preliminary

efficacy in melanoma patients previously unresponsive to anti-PD-

1/PD-L1 therapy (NCT01968109) (86, 87). As a result of these

findings, the FDA approved relatlimab (anti-LAG-3 mAb) in

combination with nivolumab (anti-PD-1 mAb) in March 2022,

making it the first mAb to be approved for the treatment of

unresectable or metastatic melanoma (100).
3 Immune-related adverse events
arising from blockade of CTLA-4, PD-
1, or LAG-3

In clinical settings, ICIs, despite their proven efficacy, are

associated with numerous irAEs affecting various organ systems

(102). Approximately 60% to 80% of individuals undergoing ICI

treatment experience irAEs, with 13% to 23% encountering severe

grade 3 to 4 adverse events as per Common Terminology Criteria

for Adverse Events (102). Common mild side effects include

symptoms like diarrhea, fatigue, itching, rash, nausea, and

reduced appetite (89). Serious adverse responses encompass
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severe diarrhea, colitis, elevated alanine aminotransferase levels,

pneumonitis-related inflammation, and interstitial nephritis (95,

103, 104). Patients may also experience exacerbation of existing

autoimmune conditions or the emergence of new ones, such as type

1 diabetes mellitus (105–108). Severe adverse effects may necessitate

treatment discontinuation, although subsequent positive responses

could still occur (109). Particularly, specific treatment-related

autoimmune reactions, like rashes and vitiligo, have shown a

connection with improved disease prognosis, suggesting a

potential convergence between autoimmune and anti-tumor

immune responses (110).

Under normal physiological circumstances, PD-1 and CTLA-4

prevent autoimmunity and curb immune activation to safeguard

against unwanted inflammation (89). Using therapeutic antibodies to

inhibit these receptors for cancer treatment is linked to adverse effects

similar to autoimmune responses (89). Clinical studies contrasting

various ICIs observed a higher incidence of side effects in individuals

undergoing anti-CTLA-4 treatment (27.3%) compared to those

receiving anti-PD-1 treatment (16.7%) (95). Animal studies

corroborate this, with CTLA-4-deficient mice experiencing

spontaneous severe myocarditis and pancreatitis, while PD-1-

deficient mice develop lupus-like proliferative arthritis and

glomerulonephritis on C57BL/6 background and myocarditis on

BALB/c background (71, 72, 111). Thus, the nature of

inflammation and adverse reactions induced in these knockout

mice depends on their specific genetic background (72, 111–113).

Combined CTLA-4 and PD-1 blockade has increased anti-

cancer efficacy, but it may also result in heightened toxicity (44).

In melanoma or relapsed small cell lung cancer patients, combined

blockade led to more severe grade 3-4 adverse events (54% to 55%)

compared to solely anti-CTLA-4 (24% to 27%) or anti-PD-1 (15%

to 16%) treatment (114–116). Similarly, despite the therapeutic

enhancement achieved through combined PD-1 and LAG-3

targeting, there is a potential for increased toxicity. A study in

melanoma patients showed that relatlimab (anti-LAG-3 mAb) plus

nivolumab (anti-PD-1 mAb) led to a higher occurrence of adverse

events (81.1% vs. 69.9%) and grade 3–4 irAEs (18.9% vs. 9.7%)

compared to nivolumab (anti-PD-1 mAb) alone, with a notable rise

in hepatitis cases (3.9% vs. 1.1%) (117). Overall, 14.6% of patients

receiving the combinatory treatment discontinued it due to irAEs,

compared to 6.7% in the nivolumab (anti-PD-1 mAb)-only

group (117).

ICIs, by intensifying T cell activation, can enhance anti-tumor

immune reactions but may also perturb peripheral T cell tolerance,

potentially resulting in hyperinflammatory responses and

autoimmune conditions (118). irAEs are associated with the

infiltration of various inflammatory immune cells into affected

organs, often showing a significant increase in CD8+ lymphocytes

and a markedly elevated CD8+/CD4+ ratio (119, 120).
3.1 Cardiovascular immune-related
adverse events

The majority of irAEs are manageable during their early stages;

however, approximately 10–17% of these instances result in fatal
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outcomes (24, 25). While the incidence of cardiovascular adverse

events caused by ICIs is relatively low, the associated mortality rate

is alarmingly high (111). The spotlight on cardiac irAEs began in

2016, with Johnson et al. documenting two instances of fatal

myocarditis occurring after ICI treatment (121, 122).

Subsequently, the spectrum of cardiovascular irAEs has expanded

to include conditions such as myocardial infarction, atrioventricular

(AV) block, various forms of arrhythmias (including

supraventricular and ventricular), sudden cardiac death, Tako-

Tsubo cardiomyopathy, non-inflammatory cardiomyopathy,

pericarditis, pericardial effusion, ischemic stroke, venous

thromboembolism and accelerated atherosclerosis (123).

3.1.1 Heart failure
In a retrospective analysis encompassing 424 patients who

underwent treatment involving at least one ICI, it was found that

62 individuals (14.6%) received diagnoses of new cardiovascular

disorders subsequent to the commencement of ICI therapy (124).

Within this group, 5.6% experienced the development of heart

failure during ICI monotherapy (124). This rate escalated to 6.1%

when a sequential administration of two ICIs was implemented

(124). A similar pattern emerged from a recent meta-analysis,

involving a patient cohort of 13,646 individuals who were

administered anti-CTLA-4, anti-PD-1, and/or anti-PD-L1

therapies (125). In the subset of patients receiving ICI as a sole

therapeutic approach, the incidence of cardiovascular adverse

events stood at 3.1% (125). Remarkably, this incidence nearly

doubled to 5.8% among pat ients who received dual

immunotherapy (125). The introduction of chemotherapy

alongside ICI did not substantially alter the incidence rate, which

remained at 3.7% (125). This data aligns with findings from clinical

trials, suggesting that CTLA-4 inhibition is prone to causing

immune-related cardiotoxicity, inclusive of conditions like

pericarditis and myocarditis (126, 127). Likewise, instances of

myocarditis have been recorded following the administration of

anti-PD-1 drugs such as nivolumab or pembrolizumab (128, 129).

An independent meta-analysis conducted by Dolladille et al.,

involving 32,518 patients, reinforced the association between ICI

usage and an elevated risk of myocarditis, pericardial diseases, heart

failure, dyslipidemia, myocardial infarction, and cerebral arterial

ischemia (130). Significantly, ICI-treated patients, heart failure was

more frequently observed adverse events. The calculated “number

needed to harm”, indicating the number of individuals who must be

exposed to a specific risk factor or treatment for one person to

experience a particular adverse event, was found to be 462 for

myocarditis and only 260 for heart failure (130).

3.1.2 Immune checkpoint inhibitor
associated myocarditis

Myocarditis, characterized by inflammation of the heart muscle,

has seen a remarkable increase in its association with ICIs in recent

years (15, 131, 132). Several preclinical studies have demonstrated a

correlation between ICI treatment and myocarditis, as illustrated in

Table 1 (133–138). Notably, the initial trials of ICIs did not include

proactive screenings for myocarditis, which raises concerns that
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some cases may have gone undetected (139). It was reported that

approximately 0.04% to 1.14% of cases involving ICI treatments are

linked to myocarditis (18, 121). Myocarditis stands out as the most

frequently reported cardiac irAE, primarily due to its significant

morbidity rates (13, 16, 140). In contrast to other irAEs, it carries a

significantly elevated mortality rate ranging from 25% to 50% (15,

16, 18, 122).

A risk factor for myocarditis associated with ICIs is the

utilization of combined ICI therapy (121). For instance, the

combined usage of nivolumab (anti-PD-1 mAb) and ipilimumab

(anti-CTLA-4 mAb) leads to a 4.74-fold increase in the risk of

myocarditis when contrasted with the utilization of nivolumab

(anti-PD-1 mAb) as a standalone therapy (122). Similarly, recent

trials involving combined nivolumab (anti-PD-1 mAb) and

relatlimab (anti-LAG-3 mAb) therapy revealed slightly elevated

instances of myocarditis in comparison to the usage of single

nivolumab (anti-PD-1 mAb) therapy (1.7% versus 0.6%,

respectively) (117). Furthermore, instances of myocarditis

stemming from combination therapies tend to have higher

severity and higher rate of fatality (15). One study revealed that

the mortality rate associated with the combination of anti-PD-1/

PD-L1 and anti-CTLA-4 therapies was 67%, in contrast to the 36%

fatality rate observed in anti-PD-1/PD-L1 monotherapy (15).

However, it is important to note that due to the study’s limited

sample size of only 59 patients, the reported fatality rate may not

accurately reflect the true extent of the risk.
3.1.2.1 Mechanism of immune checkpoint inhibitor
associated myocarditis: cardiac specific autoreactive
T cells

Patients who develop myocarditis may present with a diverse

range of symptoms, including chest pain, elevated cardiac troponin

levels, and abnormalities detected through electrocardiograms

(ECGs), echocardiograms, or cardiac magnetic resonance imaging

(127, 129, 141–143). However, it’s important to note that clinical

presentations can vary among cases (127, 129, 141–143). Similar to

viral myocarditis, ICI-related myocarditis has been characterized by

the infiltration of T cells into the myocardium (122). On a

histological level, the infiltrating cells observed in cases of ICI-

associated myocarditis are primarily composed of T cells and

macrophages (122, 127, 143–145). Among these infiltrating T

cells, CD8+ T cells tend to predominate over CD4+ T cells in

instances of ICI-associated myocarditis (122, 127, 143–145).

Researchers have postulated that T cells play a crucial role in the

development of myocarditis associated with ICIs, given the

predominant expression of PD-1 and CTLA-4 in T cells (138).

In the first case report of ICI-associated myocarditis, the

activation of shared T cell clones targeting both myocardium and

tumor has been suggested as the mechanism of its onset and

progress (122). Recently, our preclinical study revealed that

autoreactive T cells specific for cardiac myosin heavy chain, a

well-known heart autoantigen, lead to the development of ICI-

myocarditis in mice (138). This finding is supported by an

independent study reported by other researchers (146). In their

study, the experimental and clinical findings involving T cells
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responsive to cardiac myosin heavy chain in patients imply a clear

immunological relevance of cardiac myosin heavy chain expression

levels in the human ventricle concerning myocarditis associated

with ICIs (146). Notably, in those two studies, the development of

ICI-associated myocarditis in mice did not require tumor cells,

indicating that the activation of autoreactive T cells targeting the

heart by an ICI treatment is sufficient to cause ICI-associated

myocarditis. Furthermore, the findings from independent studies,

which highlight the involvement of cardiac myosin heavy chain-

reactive T cells in the development of ICI myocarditis, emphasize

the critical function of immune checkpoint molecules, such as PD-

1/PD-L1 and CTLA-4, in maintaining cardiac autoimmunity under

normal conditions (Figure 1) (147).

3.1.2.1.1 PD-1/PD-L1 pathway in immune checkpoint inhibitor
associated myocarditis

It is reported that autoreactive T cells specific for cardiac

myosin can be present in the mouse heart during a naïve state

due to the impairment of thymic selection and that they express a

high level of PD-1 to avoid autoimmune reactions (138, 148). In our

mouse model, anti-PD-1 mAb treatment seems to directly activate

autoreactive T cells targeting the heart by blocking the inhibitory

PD-1/PD-L1 pathway, leading to the excessive production of

effector cytokines and cytotoxic molecules such as IFN-g,
perforin, and granzyme B followed by myocardial damage and

myocarditis development (138). The clonal expansion of T cells
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specific for cardiac myosin was observed also in the peripheral

blood mononuclear cells of the patients with ICI-associated

myocarditis, suggesting their pathogenic role in clinical

settings (146).

3.1.2.1.2 CTLA-4 pathway in immune checkpoint inhibitor
associated myocarditis

Unlike the anti-PD-1 mAb treatment, it is unclear whether the

anti-CTLA-4 mAb regimen mediates ICI-associated myocarditis

development through the activation of autoreactive T cells targeting

cardiac myosin heavy chain. However, it is reported that CTLA-4-

deficient mice spontaneously develop lethal myocarditis at an early

age, indicating the activation of autoreactive pathogenic T cells

targeting the heart by the blockade of CTLA-4 (111). Additionally,

in our mouse model for ICI-associated myocarditis, cardiac

myosin-specific T cells exhibited an elevated level of CTLA-4

expression compared to bystander T cells (138). Thus, CTLA-4

inhibition using mAbs may cause fulminant myocarditis by

activating autoreactive T cells targeting cardiac myosin in clinical

settings as well as PD-1 inhibition.

IL-17-producing T cells, also known as Th17 cells, play a pivotal

role in the pathophysiology of different types of myocarditis in both

clinical and preclinical settings, as evidenced by various studies

(149–152). These cells are initiators of inflammation and contribute

to the progression from acute myocarditis to dilated

cardiomyopathy (149–152). Notably, disrupting the interaction
TABLE 1 Preclinical models for immune checkpoint inhibitor associated myocarditis studies.

Immune
Checkpoint
Inhibition

Myocarditis
induction

Susceptible
Mice Strain

Advantages Limitations Reference

Anti-PD-1 mAb &
Anti-PD-L1 mAb

CVB3 infection C3H/He
(4-9 weeks)

- Use of clinically relevant virus - High mortality
- High biosafety
standard required
- Not relevant induction
to clinical
ICI-myocarditis

Nagai et al. Cardiovasc
Res. 2007 (133)

Anti-PD-1 mAb &
Anti-PD-L1 mAb
PD-1-/- mice

T.cruzi infection C57BL/6
(6-8weeks)

- Use of clinically
relevant pathogen

- Pathogen strain-
dependent variability
- Long-term model

Silva et al. Infect Immun.
2011 (134)

PD-L1/2-/- mice Crossed to cMy-mOVA
mice and OT-I T
cell transfer

C57BL/6
(8-12 weeks)

- Biosafe
- Suitable to study T cell mediated
cytotoxicity
against cardiomyocytes

- Reactivity against non-
cardiac antigen
- In vitro T cell
activation
- Genetic not mAb
induced model

Lichtman et al.
Circulation. 2007 (135)

Pdcd-1-/- mice Crossed to MRL mice
(prone to
autoimmune disease)

C57BL/6 - Biosafe
- Suitable to study side effects of
anti-PD-1/PD-L1 therapy

- Multiorgan
involvement
- High mortality
- Genetic not mAb
induced model

Okazaki et al. Int
Immunol. 2010 (136)

Pdcd-1-/- mice Crossed to CTLA4+/- mice C57BL/6 - Biosafe
- Suitable to study side effects of
anti-CTLA-4 therapy

- High mortality
- Genetic not mAb
induced model

Moslehi and Allison et al.
Cancer Discov.
2021 (137)

Anti-PD-1 mAb Anti-PD-1 mAb alone A/J (8-12 weeks) - Biosafe
- Clinically relevant model to
study ICI-myocarditis

- Relatively low
incidence
- Reliance on A/J mice

Cihakova et al. Cell Rep.
2022 (138)
cMy, cardiac myosin; CVB3, Coxsackievirus B3; mOVA, membrane-anchored ovalbumin; PD-1, programmed death-1; PD-L1, programmed death ligand-1; Pdcd1, programmed cell death
protein 1; T.cruzi, Trypanosoma cruzi.
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between CTLA-4 and B7 molecules has been shown to enhance the

differentiation of Th17 cells, both in laboratory settings and in live

animals, subsequently promoting Th17-mediated autoimmunity in

murine models (153). Furthermore, multiple studies have indicated

CTLA-4’s role in maintaining peripheral heart tolerance (42, 111,

151–155). Collectively, these findings suggest that blocking CTLA-4

pathways has the potential to contribute to the development of

myocarditis and worsen the severity of the disease.

3.1.2.1.3 LAG-3 pathway in immune checkpoint inhibitor
associated myocarditis

Since LAG-3 has recently gained FDA approval, there is a

limited number of reported cases concerning ICI-related

myocarditis involving this factor. In animal experiments focusing

on LAG-3, it has been previously documented that the knockout of

LAG-3 in mice did not result in the onset of myocarditis (156).

However, when both LAG-3 and PD-1 were knocked out, a lethal

form of myocarditis emerged, characterized by T-cell infiltration,

heightened secretion of tumor necrosis factor (TNF), and persistent

inhibitory function of Tregs (157).

3.1.2.2 Treatment for immune checkpoint inhibitor
associated myocarditis

The management of ICI-associated myocarditis has

predominantly relied on the administration of glucocorticoids,

encompassing both oral prednisone and intravenous

methylprednisolone (18, 158). According to a limited dataset,
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approximately 86% of patients treated with glucocorticoids

exhibited improved outcomes, particularly when high-dose

glucocorticoids were employed (18). Therefore, it is advisable to

initiate high-dose steroid therapy at the outset, followed by a

gradual tapering regimen, contingent upon clinical progress and

ongoing troponin level monitoring (159). If there is an insufficient

clinical or biomarker response to steroids, alternative immune

modulators may be contemplated (159).

Case reports and small case series have documented successful

treatment of ICI-related myocarditis with various agents, including

intravenous immunoglobulin (160), mycophenolate (161),

infliximab (anti-TNF mAb) (162), anti–thymocyte globulin (145),

plasmapheresis (162), alemtuzumab (anti-CD52 mAb) (163), and

abatacept (CTLA-4 agonistic mAb) (164). In particular, the use of

abatacept either by itself or in combination with Ruxolitinib (mAb

targeting IFN-g/JAK2/STAT1 signaling pathway) has led to a

notable decrease in mortality among patients suffering from ICI-

associated myocarditis and myositis (165). The effectiveness of these

agents in ICI-related myocarditis remains uncertain and is generally

reserved for patients who do not respond adequately to

glucocorticoids (159).

In addition to immunosuppressive therapy, conventional

systematic therapy is essential (159). For acute decompensated

heart failure, it is advisable to administer intravenous diuretics,

inotropes, and mechanical circulatory support, as outlined in the

American College of Cardiology/American Heart Association heart

failure guidelines (166).
FIGURE 1

Pathogenic mechanisms of immune checkpoint inhibitors associated myocarditis. Autoreactive T cells, which recognize cardiac myosin heavy chain,
main autoantigen in the heart, play a crucial role in the onset of ICI-myocarditis. These autoreactive T cells may be present in the heart in a naïve
state due to impaired thymic selection, expressing elevated levels of IC as a peripheral tolerance mechanism to prevent their activation. In a mouse
model, ICI treatment seems to directly activate these autoreactive T cells by obstructing the inhibitory IC pathway, specifically targeting the heart.
Recent reports have indicated that anti-CTLA-4 and anti-PD-1/PD-L1 treatments result in the clonal expansion of T cells specific to cardiac myosin,
observed in peripheral blood mononuclear cells of patients with ICI-associated myocarditis, indicating their pathogenic role in clinical scenarios.
Anti-CTLA-4 is associated with the promotion of Th17-mediated autoimmunity in EAM, while anti-PD-1/PD-L1 is linked to excessive production of T
cell derived cytokines and cytotoxic molecules like IFN-g, perforin, and granzyme B, ultimately contributing to myocarditis development. Notably,
anti-LAG-3 has only been associated with ICI-myocarditis when combined with anti-PD-1. CTLA-4, cytotoxic T-lymphocyte antigen-4; EAM,
experimental autoimmune myocarditis; IC, immune checkpoint; ICI, immune checkpoint inhibitor; IFN-g, interferon-g; LAG-3, lymphocyte activation
gene-3; MHC, major histocompatibility complex; PD-1, programmed death-1; PD-L1, programmed death ligand-1, TCR, T-cell receptor; Th17, IL-17-
producing T cell (type 17 helper T cell); TIGIT, T cell immunoreceptor with immunoglobulin and ITIM domain; Tim-3, T cell immunoglobulin and
mucin domain-containing protein 3; TNF, tumor necrosis factor; Treg, regulatory T lymphocytes.
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Due to the substantial mortality risk associated with ICI-related

myocarditis, the prevailing consensus suggests discontinuing ICI

therapy even in cases of mild toxicity when there is suspicion of this

condition (159). Furthermore, it remains uncertain whether ICI

therapy can be safely resumed following the successful treatment of

ICI-related myocarditis (159). A case report indicates that resuming

ICI therapy with a different agent after myocarditis developed on

nivolumab resulted in worsened heart failure hospitalization with

pembrolizumab (167). Consequently, it is not advisable to consider

reattempting ICI therapy in patients with a history of ICI-related

myocarditis (159).

3.1.3 Immune checkpoint inhibitor
associated atherosclerosis

Atherosclerosis represents the predominant pathological

process underlying cardiovascular diseases (168). This ailment

pertains to the development of atherosclerotic plaques within

large- and medium-sized arteries (169). These plaques include

necrotic cores, calcified regions, accumulated modified lipids,

inflamed smooth muscle cells, endothelial cells, leukocytes, and

foam cells (169). The intricate composition of these plaques

underscores the complexity of atherosclerosis, involving

numerous components of the vascular, metabolic, and immune

systems (168).

Emerging data propose that ICIs might expedite the progression

of atherosclerosis, potentially resulting in an elevation of

atherosclerosis-related cardiovascular events like acute myocardial

infarction, ischemic stroke, and peripheral arterial disease (21, 170–

175). Specifically, substantial foundational cellular and animal

studies indicate that the immune checkpoint proteins such as

CTLA-4, PD-1, PD-L1, and LAG-3 serve as crucial negative

regulators of atherosclerosis (176–178). Consequently, their

inhibition could potentially accelerate atherosclerosis by

intensifying effector T cell responses, constraining the function of

Treg cells, and infiltrating the vascular endothelium (177–181).

Moreover, a growing body of clinical evidence reinforces these

preclinical discoveries by demonstrating that ICI therapy

contributes to the hastened advancement of atherosclerotic

plaque, consequently amplifying the susceptibi l i ty to

atherosclerotic cardiovascular ailments (182–184).

In a comprehensive study, Bar et al. performed a retrospective

analysis to examine the occurrence of acute vascular complications

in a group of 1,215 cancer patients receiving ICI therapy (185). 1%

of these patients underwent myocardial infarction or ischemic

stroke within 6 months of initiating ICI treatment (185).

Furthermore, a recently issued systematic review of 17 studies,

comprising a total of 10,106 participants, examined the frequency of

arterial thrombotic events, specifically focusing on stroke and

myocardial infarction, following the administration of ICI therapy

(186). They found an incidence rate of arterial thrombotic events

among ICI-treated patients at 1.1% (186). Particularly, this risk

appeared consistent regardless of whether patients were subjected to

single or combined ICI treatment strategies (186, 187).
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3.1.3.1 Mechanism of immune checkpoint inhibitor
associated atherosclerosis

There have been no direct mechanistic studies in humans to

evaluate accelerated atherosclerosis in the setting of ICI therapy

(26). However, extrapolating data from mouse models for ICI-

associated atherosclerosis and ICI-myocarditis provides insight into

several plausible pathways for immune checkpoint blockade to

cause plaque progression (26).

One potential mechanism is that the revitalization of T cells by

ICI may lead to excess inflammation, resulting in pro-atherogenic

effects. The interaction between immune checkpoints expressed on

T cells and their ligands on DCs within the microenvironment plays

a crucial role in T-cell inactivation and the maintenance of an

immunosuppressive microenvironment within plaques (Figure 2)

(188). However, ICIs can disrupt this process by activating T cells,

triggering the production of proinflammatory cytokines such as

TNF and IFN-g (188). These cytokines, in turn, induce various

detrimental effects, including smooth muscle cell proliferation,

collagen deposition, and macrophage activation (188). These

changes contribute to increased phagocytosis of low-density

l ipoprote in (LDL) in macrophages , leading to their

transformation into foam cells (173, 177). Ultimately, these

structural alterations in the plaque lead to the formation of a

necrotic core, rendering the plaque more unstable (188).

Another proposed mechanism for atherosclerosis associated

with ICI involves the activation of T cells that recognize

autoantigens specific to atherosclerosis (26). This recognition is

analogous to the phenomenon observed in ICI myocarditis, where

cardiac antigen-specific T cells contribute. Recent single-cell RNA

analysis of human coronary atherosclerotic plaques has revealed

clonal expansion of antigen-experienced T cells (189). This finding

underscores a potential pathway through which self-reactive

epitopes may expedite atherosclerosis by interacting with

smooth muscle cells and macrophages within the plaque

microenvironment (189).
3.1.3.1.1 The role of CTLA-4 in atherosclerosis associated with
immune checkpoint inhibitors

The interaction between CTLA-4 and CD80/CD86 binding

appears to have immunoregulatory effects that suggest a

protective role in atherosclerosis (190). Poels et al. conducted an

assessment of the impact of antibody-mediated CTLA-4 inhibition

on the progression of atherosclerosis (191). Their findings indicated

a two-fold increase in the size of atherosclerotic lesions in mice

treated with CTLA-4 inhibiting antibodies (191). This increase was

predominantly attributed to a shift towards an activated T-cell

profile, with limited alterations observed in the macrophage

inflammatory profile (191). Furthermore, the inhibition of CTLA-

4 was associated with the progression of plaques towards more

advanced phenotypes (191). These advanced phenotypes were

characterized by reduced collagen content, augmented intimal

thickening, and larger necrotic core areas (191). Consistent with

the observations from studies involving antibody-mediated CTLA-
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4 inhibition, or mice overexpressing CTLA-4 exhibited decreased

intimal thickening, with a remarkable reduction of 58.5% (181, 191,

192). These mice also displayed reduced numbers of CD4 T-

cells, diminished proliferation activity, and a decrease in

proinflammatory cytokine production (181, 191, 192).
3.1.3.1.2 The role of PD-1/PD-L1 in atherosclerosis associated
with immune checkpoint inhibitors

PD-1’s ability to suppress Th1 cytokine production and

facilitate Treg cell development points towards a plausible role in

safeguarding against atherosclerosis (193). This protective effect of

PD-1/PD-L1 activity becomes evident in knockout mice that

manifest enlarged plaques characterized by heightened T-cell and

macrophage populations, elevated levels of TNF, intensified T-cell

activation by APCs, and amplified cytotoxicity exhibited by CD8+ T

cells (177, 179). These combined factors contribute to escalated
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inflammation and the formation of plaques (177, 179).

Additionally, the interaction of PD-1 with PD-L1 leads to the

inhibition of cytokine production in differentiated Treg cells,

effectively targeting Th1 cell cytokines such as IFN-g and TNF

(194). Since IFN-g plays a pivotal role in atherogenesis by

stimulating T-cell and macrophage recruitment, driving cytokine

secretion, and enhancing antigen presentation by endothelial cells,

the PD-1/PD-L1 binding serves to curtail both plaque size and the

inflammatory response of T cells (195, 196). Similarly, in the

context of humans, multiple studies have reported reduced

expression of PD-1 or its ligands in individuals with coronary

artery disease (CAD) and acute coronary syndrome (180, 197). This

observation further substantiates the protective role of PD-1 in

atherogenesis and the progression towards advanced plaque

phenotypes (180, 197). Notably, within human atherosclerotic

plaques, T cells exhibit elevated PD-1 expression, indicative of T-

cell exhaustion in the setting of chronic inflammation (178). This
FIGURE 2

Underlying mechanisms of atherosclerosis linked to immune checkpoint inhibitors. ICI-associated atherosclerosis encompasses an intricate process
of plaque formation within arterial walls, commencing with the retention of LDL-cholesterol that triggers inflammation and recruit monocytes into
artery walls. These monocytes evolve into cholesterol-laden macrophages, eventually transforming into foam cells, creating a central necrotic area
within the plaque. Persistent lipoprotein uptake and macrophage proliferation contribute to plaque enlargement, attracting immune cells, particularly
T cells, to the plaque’s periphery. Th1 cells release IFN-g and TNF, promoting macrophage activation and destabilizing the plaque, potentially leading
to heart attacks or strokes. ICIs disrupt this process by activating T cells, producing proinflammatory cytokines like TNF and IFN-g. These cytokines
induce detrimental effects such as immune cell recruitment, smooth muscle cell proliferation, collagen deposition, and macrophage activation,
triggering further proinflammatory cytokine release syndrome. This results in increased LDL phagocytosis and foam cell formation, ultimately causing
structural changes within the plaque, including the formation of a necrotic core, rendering the plaque more unstable. Anti-CTLA-4, PD-1/PD-L1, and
Tim-3 have been demonstrated to be pro-atherogenic, fostering the proliferation of inflammatory immune cells while suppressing the development
of Treg and regulatory B cells. CTLA-4, cytotoxic T-lymphocyte antigen-4; IC, immune checkpoint; ICI, immune checkpoint inhibitor; IFN-g,
interferon-g; IL, interleukin; LAG-3, lymphocyte activation gene-3; LDL, low-density lipoprotein; MHC, major histocompatibility complex; PD-1,
programmed death-1; PD-L1, programmed death ligand-1, TCR, T-cell receptor; Th1, type 1 helper T cell; TIGIT, T cell immunoreceptor with
immunoglobulin and ITIM domain; Tim-3, T cell immunoglobulin and mucin domain-containing protein 3; TNF, tumor necrosis factor; Treg,
regulatory T lymphocytes.
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complex interplay of PD-1-expressing T cells coexisting with

activated counterparts within human plaques raises concerns that

the inhibi t ion of PD-1 could potent ia l ly exacerbate

atherosclerosis (190).

3.1.3.1.3 The role of LAG-3 in atherosclerosis associated with
immune checkpoint inhibitors

Instances of atherosclerosis or CAD associated with anti-LAG-3

therapy haven’t been documented in clinical trials. Nevertheless,

independent findings have shown that the presence of LAG-3 on

exhausted T cells present within atherosclerotic plaques (198, 199).

Additionally, an observational study conducted on the Multiethnic

Study of Atherosclerosis (MESA) cohort revealed that individuals with

CAD displayed elevated levels of LAG-3 (199). This study further

established LAG-3 as a noteworthy predictor of CAD risk (199).
3.1.3.2 Treatment for immune checkpoint inhibitor
associated atherosclerosis

The treatment for ICI-associated atherosclerosis is currently in

the exploratory phase (26). Statins and proprotein convertase

subtilisin/kexin type 9 (PCSK9) inhibitors have proven to be safe,

effective, and well-established treatments for atherosclerosis (26).

However, further investigation is needed to fully characterize the

risks and benefits of their application in the context of ICIs and

cancer within this complex patient population (26).

Recent studies have highlighted the effectiveness of statin

treatment in significantly slowing the annual progression rate of

plaque volume among atherosclerosis patients (26, 183). Notably,

concurrent statin use has shown promise in enhancing ICI activity,

leading to increased cytotoxic CD8 T cell function and reduced pro-

inflammatory cytokines (200–202). However, it is unclear if

concurrent statin and ICI therapy could further elevate the low

risk of statin-induced myopathy (203).

PCSK9 inhibitors, a novel class of monoclonal antibodies used

in atherosclerosis treatment, operate by reducing the deviation of

LDL receptors and increasing LDL-cholesterol clearance in the

bloodstream (204). Alirocumab and evolocumab are two FDA-

approved PCSK9 inhibitors (204). Similar to studies on statins,

recent findings reveal that PCSK9 inhibitors can enhance ICI

therapeutic efficacy (205–207). Studies have shown that

combining PCSK9 with ICIs improves intra-tumoral cytotoxic T

cell infiltration, antigen presentation, and the expression of co-

inhibitory checkpoint molecules (205–207).

Despite nonspecific immunomodulatory agents, such as

steroids, being associated with a lower annual rate of plaque

progression, they are not recommended for preventing or

suppressing ICI-induced plaque development due to their side

effects (183) and the linkage of chronic glucocorticoid therapy to

adverse cardiovascular outcomes (208–212).

While targeted therapies addressing the underlying immune-

mediated mechanisms are still in development, the optimal

management of ICI atherosclerosis should prioritize recognizing

immunotherapy as a significant risk factor for atherosclerotic

cardiovascular disease (26). This involves early risk stratification
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involving both oncologists and cardiologists to determine

appropriate screening and medical management strategies (26).
4 Next generation immune
checkpoint inhibitors:
Tim-3 and TIGIT

To address the challenges posed by ICIs, researchers are

exploring alternative approaches involving different immune

checkpoints within the TME (6). Novel pathways and molecules

are being studied with the aim of enhancing the effectiveness and

broader application of immune checkpoint inhibition therapy (27).

Among these options, Tim-3, also referred to as hepatitis A virus

cellular receptor 2 (HAVCR2), and TIGIT, known by various

names including Washington University cell adhesion molecule

(WUCAM), V-set and transmembrane domain containing protein

3 (Vstm3), and V-Set and immunoglobulin domain containing

protein 9 (VSIG9), have emerged as viable and promising

candidates for the treatment of solid tumors (6). Ongoing clinical

trials are actively investigating their therapeutic potential as

immune checkpoints (6, 213). Employing antibodies to target

these receptors, either independently or in conjunction with other

ICIs such as anti-PD-1, has demonstrated the ability to enhance the

immune response against tumors in animal models (214–227).

These findings highlight the potential of Tim-3 and TIGIT as

promising therapeutic targets to address the limitations observed

in previous ICI treatments (6).
4.1 Mechanism and signaling pathways
governed by Tim-3

Tim-3, formerly known as HAVCR2, belongs to the Tim gene

family, which includes Tim-1 and Tim-4 (228). Tim-3 has four

ligands: soluble ligands Galectin-9 (LGALS9) and high-mobility

group protein B1 (HMGB1), and surface-bound ligands

carcinoembryonic antigen cell adhesion molecule 1 (CEACAM-1)

and phosphatidylserine (PtdSer) (229–233). Unlike other immune

checkpoints, Tim-3 is exclusively upregulated by CD4+ and CD8+

cells producing IFN-g (214, 215). Initially identified on CTLs and

Th1 cells, Tim-3 inhibits type 1 immune responses, suppressing

cytokine generation, including TNF and INF-g (228, 234, 235) and
is expressed in various tumor cells and immune cells including

Th17, Tregs, TILs, natural killer (NK) cells, macrophages, and DCs

(228, 236–243).

Understanding Tim-3 signaling pathways is incomplete, with its

interactions with intracellular partners for its inhibitory function

largely unexplored (234). Research suggests both inhibitory and

stimulatory roles for Tim-3 (234). Tim-3 lacks conventional

inhibitory signaling motifs and structural elements for recruiting

inhibitory phosphatases in its cytoplasmic tail (244). It has five

conserved tyrosine residues, with phosphorylation of Tyr256 and
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Tyr263 (Tyr265 and Tyr272 in humans) being crucial (234). In the

current model, upon T-cell activation, Tim-3 migrates to lipid rafts

and interacts with BAT3 and LCK (245, 246). In the absence of

ligand binding, BAT3 remains bound to Tim-3’s tail, recruiting an

active form of LCK, promoting T-cell proliferation and survival

(246, 247). However, ligand engagement displaces BAT3, allowing

recruitment of tyrosine phosphatases (CD45 and CD148),

inactivating LCK, downregulating TCR signaling, suppressing T-

cell proliferation and survival (247). Galectin-9 and CEACAM-1

induce phosphorylation of Tyr256 and Tyr263 by ITK, leading to

BAT3 release, allowing Tim-3 to exert its inhibitory function (232,

248). BAT3-mediated regulation of Tim-3 signaling is associated

with inhibitory actions towards T cells, and its potential application

in other cell types like DCs is under investigation (247).
4.2 Mechanism and signaling pathways
governed by TIGIT

TIGIT, previously known as Vstm3, VSIG9, or WUCAM, is

characterized by a protein structure with an extracellular IgV

domain and an intracellular domain containing both a canonical

ITIM and an immunoglobulin tyrosine tail (ITT) motif (249, 250).

Its expression is specifically limited to lymphocytes, prominently

observed in subsets such as NK cells, effector and regulatory CD4+

T cells, follicular helper CD4+ T cells, and effector CD8+ T cells

(217, 250–254). Notably, TIGIT is found in various cancers,

including melanoma, NSCLC, colon cancer, HCC, gastric cancer,

glioblastoma, and hematological malignancies (218–220, 255–263).

Moreover, TIGIT is significantly overexpressed by Tregs in the

peripheral blood mononuclear cells of both healthy individuals and

cancer patients, with further upregulation within TME (255, 264).

TIGIT exhibits binding affinity for two members of the nectin

family, CD155 (poliovirus receptor, Necl-5), and CD112 (poliovirus

receptor related-2, Nectin-2) (249). Its affinity for CD155 (Kd=1-3

nM) surpasses its affinity for CD112 (Kd remains unmeasurable)

(249). CD112 has a stronger affinity for CD112R (PVRIG) than for

TIGIT, primarily suppressing T cells through binding to CD112R

rather than TIGIT (265–267). Consequently, TIGIT’s modulation

of T cell and NK cell functions mainly occurs through its interaction

with CD155 (251).

Functionally, TIGIT has the ability to hinder CD8+ T cell

proliferation and activation by directly influencing TCR

expression, leading to the downregulation of the TCR-a chain

and other components forming the TCR complex (268).

Additionally, TIGIT can curtail TCR-induced p-ERK signaling

within CD8+ T cells, thereby suppressing CD8+ T cell priming,

differentiation, and cytotoxic activity (269). Similar to CTLA-4’s

inhibition of CD28’s co-stimulatory interaction with shared ligands

CD80 and CD86, TIGIT exerts its effects indirectly (251). It

competes for ligand binding with CD226 (DNAM-1),

consequently diminishing T-cell co-stimulation through CD226

(253). Furthermore, TIGIT can obstruct co-stimulatory signaling

via CD226 by impeding CD226’s homo-dimerization (217).

Ultimately, TIGIT indirectly suppresses T cells by modulating the

functions of cells expressing its ligand CD155 (251).
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4.3 Application of Tim-3 and TIGIT
blockade in clinical settings

4.3.1 Clinical effects of Tim-3 blockade in
cancer treatment

Extensive evidence from studies utilizing preclinical cancer

models and in vitro cultures using patient samples has provided

substantial support for considering Tim-3 inhibition as a promising

avenue for enhancing antitumor immunity (214, 216, 220, 221). The

advancement of Tim-3 as an immunotherapeutic target has been

strengthened by results similar to those seen with PD-1 inhibitors

(221). Experimental evidence showcases that obstructing Tim-3

expression leads to enhanced T cell proliferation and increased

cytokine production, thereby stimulating immune activation (215).

Furthermore, it has been documented that heightened Tim-3 levels

are linked to the emergence of resistance against PD-1 blockade,

evident in both lung cancer patient samples and lung cancer

models, as well as samples taken from patients with head and

neck cancer (222, 223). This intriguing observation implies that

Tim-3 might serve as a viable alternative for patients exhibiting

resistance to PD-1 blocking antibodies (222). Moreover, in

preclinical settings, the combination treatment targeting Tim-3

and PD-1 has exhibited a synergistic effect, reinvigorating T cell

function and augmenting the overall anti-tumor immune response

(187, 195). Consequently, the concurrent blockade of PD-1 and

Tim-3 emerges as a promising and feasible therapeutic strategy

(214, 216, 221, 222, 224, 270–274). Currently, there are seven mAbs

targeting Tim-3 and one bispecific antibody targeting both PD-1

and Tim-3 (RO7121661) that are undergoing clinical trials (247).
4.3.2 Clinical effects of TIGIT blockade in
cancers treatment

The outcome of single TIGIT blockade has exhibited limited or

moderate antitumor effectiveness in experimental tumor models

and in enhancing the in vitro functionality of human tumor-

infiltrating CD8+ T cells (217, 218, 220, 225, 275). Nonetheless,

it’s noteworthy that the interaction between CD155 and TIGIT

plays a role in conferring resistance to PD-1 blockade within the

context of cancer (226, 276). Studies have indicated that in vitro PD-

1 blockade leads to an increase in TIGIT expression on NY-ESO-1-

reactive CD8+ T cells extracted from melanoma patients (219).

Additionally, TIGIT emerges as the most prominently upregulated

immune checkpoint on CD8+ TILs following anti-PD-1 treatment

in a PD-1 non-responsive HCC mouse model (275). This

observation suggests that inhibiting TIGIT might hold promise as

a strategy to enhance the efficacy of PD-1 blockade therapy,

particularly against tumors that have developed resistance to

PD-1 inhibitors (275). Furthermore, preclinical studies have both

demonstrated and mechanistically elucidated the synergy between

TIGIT blockade and PD-1 blockade in augmenting the antitumor

CD8+ T cell response (226, 227, 275). These findings underscore the

potential of combining PD-1 and TIGIT blockade as a promising

approach to overcome resistance observed with single PD-1/PD-L1

blockade (226, 227, 275). In the context of mice carrying HCC and

displaying resistance to PD-1 blockade, the dual inhibition of TIGIT
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and PD-1 has been shown to expand the population of effector

memory CD8+ T cells and elevate the ratio of CTLs to Tregs within

tumors (275). This, in turn, resulted in the suppression of tumor

growth and extended survival (275, 277). Moreover, in an MC38

colon tumor mouse model, animals treated with dual anti-TIGIT/

PD-1 antibodies exhibited heightened secretion of IFN-g by CD4+

TILs in comparison to those treated solely with anti-PD-1 therapy

(277). Presently, an array of nine human anti-TIGIT mAbs are

undergoing evaluation in a total of 43 Phase 1/2/3 clinical trials

(251). These trials include monotherapy usage, but more frequently

involve combinations with anti-PD-1/PD-L1 antibodies or

chemotherapies (251).
4.4 Cardiotoxic immune-related adverse
events from Tim-3/TIGIT blockade

4.4.1 Tim-3 pathway in cardiovascular immune-
related adverse events

As investigations into the safety of Tim-3 blockade continue,

there is a limited number of reported cases regarding cardiac toxic

adverse events associated with anti-Tim-3 treatment. Nevertheless,

a recent report has proposed that Tim-3 may function as a negative

regulator or atherosclerosis (278). This particular study has

demonstrated that anti-Tim-3 treatment enhances the

development of atherosclerotic lesions, leading to an increased

presence of monocytes, macrophages, and CD4+ T cells, while

simultaneously reducing Tregs and regulatory B cells (278).

Furthermore, an independent study has observed that co-

blockade of PD-1 and Tim-3 results in a decrease in the

production of anti-atherogenic cytokines by PD1+ Tim-3+ CD8+

T cells and an increase in the production of TNF and IFN-g, both of

which contribute to the development and progression of

atherosclerosis (279).

4.4.2 TIGIT pathway in cardiovascular immune-
related adverse events

While clinical trials have not reported any occurrences of

cardiac toxic irAEs linked to anti-TIGIT therapy so far, ongoing

investigations are actively exploring the potential emergence of

cardiac toxic irAEs resulting from TIGIT blockade treatment. This

exploration is particularly focused on conditions characterized by

elevated TIGIT expression, especially in cardiovascular diseases.

The heightened expression of TIGIT ligands raises the question of

whether it signifies a potential risk of cardiotoxic irAEs or suggests a

protective function of TIGIT against cardiovascular diseases. This

underscores the need for further research to elucidate the potential

association between anti-TIGIT treatment and cardiac toxic irAEs.
5 Conclusions and future directions

In cancer treatment, inhibitory targeting of CTLA-4 and PD-

1/PD-L1 has evolved into a fundamental approach (27). Despite
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the proven viability and effectiveness of these ICIs, significant

obstacles persist within the field of cancer immunotherapy (6).

These hurdles include a restricted response rate and the

occurrence of irAEs (6). Notably, among these challenges, the

impact on the heart is particularly concerning, with instances of

severe cardiac toxicity and a growing number of cases linking

CAD to ICIs (91, 218). These challenges underscore the pressing

requirement for innovative tactics to mitigate the adverse effects

associated with therapy. In response to these challenges, there has

been a gradual diversification in the array of co-inhibitory

receptor pathways, extending beyond the established CTLA-4

and PD-1 pathways (280). Particularly noteworthy is the

incorporation of LAG-3, Tim-3, and, more recently, TIGIT,

which has significantly enriched the existing repertoire of

approaches aimed at addressing these obstacles (280).

While the occurrence of cardiovascular adverse events related to

ICIs is relatively infrequent, their associated mortality rate is

notably high (281). Recently, several cardiovascular irAEs have

come to light, encompassing conditions such as myocarditis,

atherosclerosis, pericarditis, arrhythmias, and cardiomyopathy

(123). Among these, myocarditis has exhibited a significant

increase in its association with ICIs in recent years and is

particularly concerning due to its significantly elevated mortality

rate ranging from 25 to 50% (13, 15, 16, 18, 122, 131, 132, 140). Our

recent preclinical study has illuminated the crucial role of ICIs like

PD-1/PD-L1 and CTLA-4 in maintaining cardiac autoimmunity

under normal conditions, emphasizing their importance in this

context (138). Furthermore, emerging data suggest that ICIs may

expedite the progression of atherosclerosis, potentially leading to an

increased risk of atherosclerosis-related cardiovascular events such

as acute myocardial infarction, ischemic stroke, and peripheral

arterial disease (173–176). Notably, the blockade of the CTLA-4

and PD-1/PD-L1 pathways is significantly associated with the

occurrence and progression of both myocardit is and

atherosclerosis (42, 138, 146, 148, 151–155, 178–181, 191–193,

195–198, 282). While combining ICIs had significantly improved

therapeutic effectiveness, it also carries a considerably higher risk of

cardiac irAEs, resulting in increased incidence and mortality rates

compared to single-agent therapy (5, 15, 117, 121, 122).

While ongoing clinical trials are actively evaluating the

therapeutic efficacy and safety of next-generation ICIs like LAG-3,

Tim-3, and TIGIT, Anderson and colleagues have put forth a

hierarchical model illustrating the role of co-inhibitory receptors

(280). This model proposes that LAG-3, Tim-3, or TIGIT could

potentially serve as safer alternatives to existing ICIs based on their

roles in regulating self-tolerance and autoimmune toxicity, with

CTLA-4 and PD-1 being the primary regulators of self-tolerance

and LAG-3, Tim-3, and TIGIT forming a second tier of co-

inhibitory molecules with distinct roles in immune response

regulation. Furthermore, the latest generation of ICIs offers the

potential for targeted regulation of immune responses within

specific tissue environments, leveraging the expression of their

corresponding ligands to uphold tissue tolerance and prevent

immune-related damage (280). This concept underscores the
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proposed tissue-specific immunoregulatory roles of LAG-3, Tim-3,

and TIGIT.

However, it is important to note that increased levels of these

ligands must not be exclusively construed as a conclusive sign that

blocking these ICIs or their ligands would inherently lead to

significant therapeutic advantages. Heightened ligand expression

might stem from an inflammatory response triggered by the disease,

or it could play a role in a defensive mechanism against the disease.

Consequently, pursuing this strategy might potentially trigger

serious irAEs that carry the potential for life-threatening

outcomes. Moreover, as previously mentioned, the majority of

clinical trials have underscored that the use of standalone therapy

involving the new generation ICI does not exhibit notable

therapeutic effectiveness when contrasted with the outcomes of

anti-CTLA-4 or PD-1 treatments—except when combined with

anti-CTLA-4 or PD-1 agents (101, 214, 216, 221, 222, 224, 226, 227,

270, 271, 273–275). As a result, further investigation is necessary to

unveil the precise therapeutic efficacy and safety profile of these

next-generation ICIs. This pursuit could potentially establish them

as secure alternatives for ICI-based cancer treatments.
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