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Introduction: The development and migration of T cells in the thymus and

peripheral tissues are crucial for maintaining adaptive immunity in mammals.

However, the regulatory mechanisms underlying T cell development and

thymocyte identity formation in pigs remain largely underexplored.

Method: Here, by integrating bulk and single-cell RNA-sequencing data, we

investigated regulatory signatures of porcine thymus and lymph node T cells.

Results: The comparison of T cell subpopulations derived from porcine thymus

and lymph nodes revealed that their transcriptomic differences were influenced

more by tissue origin than by T cell phenotypes, and that lymph node cells

exhibited greater transcriptional diversity than thymocytes. Through weighted

gene co-expression network analysis (WGCNA), we identified the key modules

and candidate hub genes regulating the heterogeneity of T cell subpopulations.

Further, we integrated the porcine thymocyte dataset with peripheral blood

mononuclear cell (PBMC) dataset to systematically compare transcriptomic

differences between T cell types from different tissues. Based on single-cell

datasets, we further identified the key transcription factors (TFs) responsible for

maintaining porcine thymocyte identity and unveiled that these TFs coordinately

regulated the entire T cell development process. Finally, we performed GWAS of

cell type-specific differentially expressed genes (DEGs) and 30 complex traits,

and found that the DEGs in thymus-related and peripheral blood-related cell

types, especially CD4_SP cluster and CD8-related cluster, were significantly

associated with pig productive and reproductive traits.

Discussion: Our findings provide an insight into T cell development and lay a

foundation for further exploring the porcine immune system and genetic

mechanisms underlying complex traits in pigs.
KEYWORDS
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Introduction

T lymphocytes, as a major component of the adaptive immune

system, play an essential role in eliminating invading pathogens,

maintaining self-tolerance, and enhancing anti-tumor immunity

(1). The thymus provides a site for T cell differentiation,

development, and maturation, and these processes are co-

regulated by T cells and thymic epithelial cells. Specifically,

hematopoietic progenitor cells or thymus-seeding progenitor cells

are originated from the bone marrow or fetal liver, entering the

thymus via the blood circulation, where they further differentiate

into thymic progenitor cells (2). Early thymic progenitor cells,

initially lacking the expression of CD4 and CD8, are referred to

as double-negative (DN) thymocytes, and subsequently they

acquire CD4 and CD8 co-receptors, advancing to the double-

positive (DP) stage (3). DP thymocytes that successfully express

functional ab T cell receptor (TCR) undergo positive selection

mediated by cortical thymic epithelial cells (cTECs) and negative

selection mediated by medullary thymic epithelial cells (mTECs),

ultimately differentiating into either CD4 or CD8 single-positive

(SP) thymocytes (4–6). After acquiring self-MHC-restriction and

non-autoreactivity, naive T cells migrate to peripheral lymphoid

tissues through the blood circulation, where they wait for activation

and subsequent immune responses.

Mammalian T cell development is a complex and dynamic

process. Currently, our understanding of T cell differentiation and

migration is mainly based on the evidence from humans and mice,

but the related knowledge of T cell differentiation and migration in

pigs remains limited. Since pigs are the most important meat-

producing livestock breed globally, a profound understanding of

their immune system is crucial for improving their overall health

and production efficiency. The high similarity of pigs to humans in

anatomy, genetics, and physiology makes them an increasingly

popular large animal model in clinical research. As a biomedical

model, pigs own a human-like immune system, but they differ from

mice and human in several immune characteristics (7). For

instance, pig is recognized as a species with a large proportion of

gd T cells, while humans and mice have only a small proportion of

these cells (8). In addition, the existing comparative transcriptome

studies have focused on flow-sorted cell populations from porcine

peripheral blood, including DP, CD4+, and CD8+ T cells (9–11).

However, the information on immune tissues other than blood,

such as mesenteric lymph node, remains scarce. The transcriptomic

differences between thymic T cells and peripheral T cells in pigs

have not been investigated so far. Therefore, it is necessary to

investigate the phenotypic and functional characteristics of T cell

subpopulations in different immune tissues in pigs.

At present, bulk RNA-seq methods and microarray

technologies for revealing T cell development have advanced (11,

12). However, these technologies tend to examine only the average

transcriptional signature of preselected cell types since whole tissue

rather than individual cells are investigated. In contrast, single-cell

RNA-seq sequencing (scRNA-seq) technology can simultaneously

analyze the transcriptomes of hundreds to thousands of individual

cells, thus making it possible to dissect cellular heterogeneity,
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identify cell types, and characterize developmental dynamics. In

recent years, scRNA-seq has been used to map the cell atlas of

porcine organs and tissues, including the brain (13), lung (14),

ileum (15), testis (16) and peripheral blood (11). Using scRNA-seq,

Gu et al. (17) have uncovered the cellular heterogeneity and

developmental dynamics of porcine thymus. Thymus is a highly

specialized organ of the immune system. However, the mechanisms

underlying specific phenotype maintenance during thymic T cell

development remain unclear. Transcription factors (TFs)-mediated

gene regulatory networks are considered important for determining

cell type identify (18, 19). With the accumulation of massive single-

cell data, many efficient and feasible methods such as single-cell

regulatory network inference and clustering (SCENIC) have been

established to identify TFs maintaining cell identity (20).

In this study, we first performed a cross-tissue cross-cell type

transcriptome comparison of 7 T cell subpopulations classified

according to cell surface markers CD3, CD4, and CD8 from

porcine thymus and lymph nodes. We integrated bulk RNA-seq

data with recently released scRNA-seq data of thymic samples to

identify thymocyte heterogeneity and the TFs controlling lineage

differentiation. In addition, we integrated 8 peripheral blood

mononuclear cell (PBMC) datasets (including 7 previously

published datasets and 1 dataset generated in our laboratory) with

the porcine thymocyte dataset to compare the transcriptomic

differences of T cell types between peripheral blood and thymus.

Finally, trait-related cell types were identified by combining cell

type-specific differentially expressed genes (DEGs) with GWAS

signals of 30 complex traits in pigs. To our knowledge, this study

elucidated gene regulatory signatures of T cell lineage differentiation

in the porcine thymus for the first time, thereby extending our

understanding of cellular heterogeneity, transcriptional networks,

and immune system in pigs.
Materials and methods

Animals

All experimental procedures were approved by the Institutional

Animal Care and Use Committee of Huazhong Agricultural

University, China. The samples used for the comparative

transcriptome experiment were derived from three 3-day-old

healthy Large White pigs from the experimental farm of

Huazhong Agricultural University (Wuhan, China).
Cell suspension preparation

Fresh thymic and mesenteric lymph node tissues were obtained

from 3 pigs and were washed with cold phosphate-buffered saline

(PBS). Subsequently, the thymic and mesenteric lymph node tissues

were minced and digested with 1mg/mL and 2 mg/mL collagenase I

for 1 h at 37°C, respectively. Equal volumes of 5% fetal bovine

serum were added to terminate the digestion reaction. The

dissociated cells were filtered through a 100 µm cell strainer,
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centrifuged at 1000 rpm for 10 min at 4°C, and diluted to 1×106/mL.

The diluted cells were counted using trypan blue staining.
Fluorescence-activated cell sorting and
antibodies used for it

Fluorescence-activated cell sorting was performed at the School

of Life Science and Technology, Huazhong Agricultural University.

The antibodies used for flow cytometry included FITC-conjugated

mouse anti-pig CD3ϵ (clone BB23-8E6-8C8, isotype IgG2a, k; BD
Pharmingen), PE-conjugated mouse anti-pig CD4 monoclonal

antibody (clone 74-12-4, isotype IgG2b, k; BD Pharmingen), and

APC-conjugated mouse anti-pig CD8a monoclonal antibody

(clone 76-2-11, isotype IgG2a, k; BD Pharmingen). In the

experimental group, 1 mL of porcine thymocyte suspension was

transferred to a 1.5 mL RNAase-free EP tube and added with 3 mL of
CD3ϵ, 6 mL of CD4, and 6 mL of CD8a antibodies. The 0.5 mL

thymocyte suspension was transferred to 1.5 mL RNase-free EP

tubes, added with 1.5 mL of CD3ϵ, 3 mL of CD4, or 3 mL of CD8a
antibodies respectively, and used as the three control groups. The

thymocyte suspension without any addition was used as a blank

control. All the cells were incubated at 4°C for 30 min in the dark,

and added with 10 mL 7-amino-actinomycin D (7-AAD, Viaprobe,

BD Pharmingen) before flow sorting to remove dead cells. Porcine

thymocytes were initially divided into CD3-positive and CD3-

negative fractions using FACS. The CD3-positive fraction was

subjected to FACS gating based on forward scatter (FSC) and side

scatter (SSC) parameters, further divided into 3 distinct populations

according to CD4 and/or CD8 marker expression, namely, CD4-

CD8+ (Q1), CD4+CD8+ (Q2), and CD4+CD8- (Q4) T cells. The

CD4-CD8- (Q3) cell population was enriched through negative

sorting (Figure 1A). Using the above-mentioned sorting strategy,

we divided porcine mesenteric lymph node cells into 3 cell

populations including CD4-CD8- (Q3), CD4+CD8- (Q4), and

CD4-CD8+ (Q1) T cells (Figure 1B). The purity of each T cell

population exceeded 90%. All data were processed using the FlowJo

v7.6.1 software (TreeStar Inc., San Carlos, CA, USA).
Total RNA extraction, library construction,
and RNA-seq sequencing

A total of 1,000 cells with no less than 1 mg total RNA was

extracted from each T cell population using a RNeasy Mini kit

(Qiagen, Valencia, CA, USA) according to the manufacturer’s

protocol with three biological replicates. RNA purity and

concentration were determined using a NanoPhotometer®
spectrophotometer (IMPLEN, CA, USA). The cDNA library

construction and sequencing were carried out in accordance with

the Illumina standard protocol by Beijing Novogene Bioinformatics

Technology Company. The library quality was evaluated using an

Agilent Bioanalyzer 2100 system. The DNA library was sequenced

on an Illumina Hiseq platform, and 150bp paired-end reads were

generated. The experiments were conducted with three independent

biological replicates for each T cell population.
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Bulk RNA-seq data processing

Using in-house Perl script, quality control of the raw FASTQ

data was performed to remove adaptor sequences, reads with ploy-

N, low-quality reads, and clean reads were obtained for subsequent

analysis (21). The porcine reference genome (Sscrofa 11.1) and gene

annotation files (v11.1.98) were downloaded from the Ensemble

website, and gene annotation files were modified, as previously

described (22). An updated complete list of gene names was

provided in Supplementary Table 1. We utilized STAR (v2.7.5a)

to build reference genome index files and align paired-end clean

reads to the reference genome. Next, gene quantification was

performed using RSEM (v1.2.31). The raw counts, FPKM

(fragments per kilobase of transcripts per million mapped

fragments) values and TPM (transcripts per million) values of

each gene or isoform were contained in the output files.

Differentially expressed genes (DEGs) were identified using the

DESeq2 package (v1.34.0) with the thresholds of P-value < 0.05 and

|log2 fold change (FC)| > 1. The volcano plot and heatmap of DEGs

were drawn using the ggplot2 (v3.4.2) and pheatmap (v1.0.12)

packages, respectively. To further investigate the function of each

T cell subpopulation from the thymus and lymph nodes, we

performed GO enrichment analysis of up-regulated DEGs from

pairwise comparisons at the Metascape website (https://

metascape.org/) with default parameters (23).
Weighted co-expression
network construction

A weighted gene co-expression network was constructed based

on the TPM data matrix using the WGCNA package (v1.72.1) (24).

Before WGCNA, genes with low expression values were filtered.

Samples were clustered using the “hclust” function, and outlier

samples were removed. The “pickSoftThreshold” function was used

to select the optimal soft threshold to ensure the scale-free

distribution of network. Next, the “blockwiseModules” function

was applied to construct network and identify module. Each

module consisted of at least 30 genes, and gene modules with

similarity > 75% were merged automatically. The correlation

between gene modules and 7 cell subpopulations was investigated

through Pearson correlation analysis and visualized with the

“labeledHeatmap” function. We further screened key modules

most associated with specific subpopulations based on correlation

and P-value.
Screening of hub genes

The hub genes in key module were identified by calculating the

gene significance (GS) and module membership (MM). The GS

refers to the correlation between the gene and the trait, while the

MM represents the correlation between the module eigengene and

the gene expression profile. Hub genes were screened with the cut-

off criteria of GS > 0.5 and MM > 0.85. We defined the overlapping
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genes of DEGs obtained from bulk RNA-seq analysis and hub genes

in key modules most related to T cell subpopulation as hub DEGs.

We extracted the edges and nodes from the network with a

threshold of 0.15 based on the weighted topological overlap

matrix (TOM) using the “exportNetworkToCytoscape” function

of WGCNA. Finally, Cytoscape software (v3.9.1) was utilized for

network visualization, and the Maximal Clique Centrality (MCC)

topology algorithm in Cytoscape’s CytoHubba plugin was used to

identify important genes in a given network (25, 26).
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ScRNA−seq data processing

The raw gene expression matrix of porcine thymus (containing

2 samples) used in this study was downloaded from the GEO

database (GSE192520), and scRNA-seq data were processed using

the Seurat package (v4.3.0.1), as previously described (17). After

removing the genes with low detection rates (expressed in less than

3 cells) and the cells in which gene number was < 200 or > 5,000 and

mitochondrial ratio was > 11%, a total of 5,999 cells were obtained
A

B

D

C

FIGURE 1

Sorting and comparative transcriptome analysis of 7 T cell subpopulations in porcine thymus and lymph nodes. (A) Porcine thymus 4 T cell
subpopulations obtained by fluorescence-activated cell sorting (FACS). Lymphocytes obtained from porcine thymus samples based on flow
cytometry forward scatter (FSC) and side scatter (SSC) (left). Histogram of the percentage of viable CD3+ cells identified from porcine lymphocytes
using the flow cytometry gating strategy (middle). 7-AAD was used to label dead cells. CD3+ cells were further divided into 4 populations based on
CD4 and CD8 fluorescence intensity: CD4-CD8+ (Q1), CD4+CD8+ (Q2), CD4-CD8- (Q3), and CD4+CD8- (Q4) T cells (right). (B) 3 T cell
subpopulations obtained by fluorescence-activated cell sorting (FACS) in porcine lymph nodes. Lymphocytes obtained from porcine lymph node
samples based on flow cytometry forward scatter (FSC) and side scatter (SSC) (left). Histogram of the percentage of viable CD3+ cells identified from
porcine lymphocytes using the flow cytometry gating strategy (middle). 7-AAD was used to label dead cells. CD3+ cells were further divided into 3
populations based on CD4 and CD8 fluorescence intensity: CD4-CD8+ (Q1), CD4-CD8- (Q3), and CD4+CD8- (Q4) T cells (right). (C) Number of
differentially expressed genes (DEGs) in 7 T cell subpopulations from thymus and lymph nodes. The experiments were performed with 3 biological
replicates for each T cell population. Orange and blue denote up-regulated and down-regulated DEGs, respectively. (D) Volcano plot of the DEGs (|
log2FC| > 1 and P-value < 0.05) in pairwise comparisons of the indicated T cell subpopulations (n=3). Orange and blue dots denote up-regulated and
down-regulated DEGs, respectively.
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for subsequent analysis. After filtration, the gene counts in each cell

were normalized using the “NormalizedData” function in Seurat

package, and then cell cycle effects were regressed using the

“ScaleData” function in this package. Afterwards, principal

component analysis (PCA) was performed using the “RunPCA”

function, and top 19 PCs (dim = 1:19) were selected for

dimensionality reduction based on the “Elbowplot” function in

Seurat package. Next, the main cell clusters were identified by the

“FindClusters” function (resolution = 2.3) and visualized using

uniform manifold approximation and projection (UMAP). The

cell clusters were annotated using the conventional markers. We

further manually merged some clusters with similar overlapping

gene profiles. We also calculated the proportions of each cell type

and visualized these cell types using the ggplot2 package. DEGs

were identified in each cell type using the “FindAllMarkers”

function (only.pos = TRUE, min.pct = 0.25, logfc.threshold =

0.25) with Wilcoxon rank sum test. We utilized the biomaRt

package (v2.49.4) to convert porcine gene symbols into human

homologs due to the limited availability of pig resources. GO

enrichment analysis was performed at the Metascape website with

default parameters.
Gene set generation and gene set
enrichment analysis

To investigate the consistency of bulk RNA-seq and scRNA-seq

results, we conducted gene set enrichment analysis using previously

described method (11). The unqualified samples and genes with

extremely low expression levels (gene counts < 2 in one cell

subpopulation) were filtered. As a result, a total of 13,245

qualified genes were obtained from 19 samples, which were

subjected to differential gene expression analysis using DESeq2

package. A gene was defined as cell type-enriched gene if its

expression level (mean of replicates) in a certain cell type was at

least 2 folds as high as the mean gene expression level across all the

remaining cell types, and the “results” function in DESeq2 package

was used to identify cell type-enriched genes. Subsequently, we

extracted the top 5%, 10%, 15%, 20%, 25%, and 30% of cell type-

enriched genes from the porcine thymus bulk RNA-seq cell

populations based on log2FC values to generate a list containing

all highly enriched gene (HEG) sets.

Enrichment of gene set in porcine thymus scRNA-seq data was

performed using AUCell package (v1.16.0). We extracted raw gene

counts matrix from porcine thymus scRNA-seq data. The

“AUCell_buildRankings” function was used to calculate gene

rankings in each cell. Subsequently, the HEG set list file obtained

from porcine thymus bulk RNA-seq populations and gene rankings

were input to the “AUCell_calcAUC” function (with aucMaxRank

set as top 5% of expressed genes) to calculate the area under the

curve (AUC) score for each gene set in each cell. To map the AUC

scores onto the UMAP plot coordinates of the scRNA-seq data, we

manually set a threshold for each gene set based on the AUC score

distribution using the “AUCell_plotHist” function. Finally, we

calculated the average scaled AUC score for each cell cluster and

visualized it using a heatmap.
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scRNA-seq analysis of merged porcine
thymus and PBMC data

In this study, we integrated 7 previously published PBMC

datasets (PRJEB43826) and 1 PBMC dataset generated in our

laboratory (GSE247126). PBMC scRNA-seq data were pre-

processed, as described by Herrera-Uribe et al. (11). Low-quality

genes and cells were excluded from each dataset before

integration. The “merge” function in Seurat was utilized to

merge thymus and PBMC datasets . Subsequently, the

“SelectIntegrationFeatures” function was employed to identify

the genes with consistent expression pattern across the datasets.

The “FindIntegrationAnchors” function was used to determine a

set of anchors between the thymus and PBMC datasets. Next, an

integrated dataset was created using the “IntegrateData” function.

Then, the cluster analysis was performed using “RunPCA”,

“FindNeighbours”. Finally, the “FindClusters” function was used

to identify clusters (resolution = 1.4), and the “RunUMAP”

function was used for visualization (reduction = “pca”, dims

= 1:20).

Differential gene expression analysis was performed using the

Wilcoxon rank sum test with the FindMarkers function in Seurat, as

described by Ammons et al. (27). DEGs were identified with the

thresholds of adjusted P < 0.01 and a |log2FC| > 0.58. Further, we

performed GO enrichment analysis of up- and down-regulated

DEGs at the Metascape website with default parameters.
Pseudotime trajectory analysis of
porcine thymocytes

We inferred the developmental trajectory of porcine

thymocytes using Slingshot (v2.1.1) which was widely used in

single-cell transcriptomics, and mapped the inferred trajectories

onto UMAP for visualization (28). Additionally, we verified the

consistency between our inferred developmental trajectory of

porcine thymocytes and that constructed by Monocle3 package

based on published scRNA-seq data in previous study (17).
Single-cell regulatory network inference of
porcine thymus

We conducted single-cell regulatory network analysis for each

major cell type identified based on scRNA-seq data using SCENIC

(v1.3.1) package, as previously described (20). Briefly, GENIE3

(v1.16.0) was applied to infer gene regulatory networks.

RcisTarget (v1.14.0) was used to identify potential regulons based

on DNA-motif analysis, and database hg19 was used to score motifs

in gene promoter regions (500 bp upstream of the transcription

start site (TSS) and 10 kb around the TSS). Finally, the AUCell

algorithm was used to quantify the activity of these regulons and

convert regulon activity into ON/OFF binary activity matrix with

default settings. A regulon heatmap was generated using pheatmap

package. We also calculated cell type specificity scores for each
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regulon across diverse cell types using the “calcRSS” function in the

SCENIC package.
Regulon module analysis of
porcine thymocytes

To explore potential coordination patterns among regulons, we

performed a regulon module analysis by the connection specificity

index (CSI) method (29). Specifically, the Pearson correlation

coefficient (PCC) between regulons was first calculated based on

the activity scoring matrix obtained from SCENIC, and then used as

an input for generating a CSI matrix according to the formula

provided by Fuxman et al. (30). Secondly, regulon modules were

identified based on the CSI matrix using the “ward.D” clustering

method. The average score of the cell type in each module was

visualized using UMAP.
GWAS signal enrichment analysis and
gene-set analysis

The pig dataset used in this study comprised 4,555 individuals

with 47,257 SNPs, and a total of 30 traits were used for GWAS

enrichment analysis, including 3 body shape traits, 15 reproduction

traits, and 12 production traits. The summary description of

phenotype data was shown in Supplementary Table 2. We added

a 20-kb window around the gene region to include potential cis-

regulatory variants. We then implemented a covariance association

test (CVAT) of marker genes using the QGG package (v1.1.1) to

determine the enrichment of GWAS signals in marker genes of

different cell types identified based on scRNA-seq data (31). The

detailed description of the method was provided at http://

psoerensen.github.io/QGG/articles/gsea.html (32). In addition, we

added multi-marker analysis of genome annotation (MAGMA) to

further detect genetic associations between cell type-specific DEG

sets and complex traits (33). Specifically, we first performed a

single-locus GWAS using the MLM model in rMVP (v1.0.8) to

obtain the P-value of each SNP, and subsequently converted the

SNP-level P-value identified from the GWAS into a gene-level P-

value (33, 34). We added a 20-kb window around the gene region to

include potential cis-regulatory variants. Finally, a gene set

association analysis was performed to test whether the genes in a

gene-set are associated with the phenotype of interest. The detailed

description of the method was provided at https://ctg.cncr.nl/

software/magma.
Results

T cell subpopulations derived from thymus
and lymph nodes exhibit distinct
transcriptional profiles

To investigate the transcriptomic differences of T lymphocyte

across different tissues, we conducted RNA-seq of a total of 7
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distinct T cell subpopulations isolated from porcine thymus and

lymph nodes (12). These 7 T cell subpopulations consisted of CD4-

CD8-_t (CD3+CD4-CD8-), CD4+CD8+_t (CD3+CD4+CD8+),

CD4_t (CD3+CD4+CD8-), CD8_t (CD3+CD4-CD8+) from

porcine thymus, and CD4-CD8-_l (CD3+CD4-CD8-), CD4_l

(CD3+CD4+CD8-), CD8_l (CD3+CD4-CD8+) from lymph nodes

(“t” indicates thymus, and “l” denotes lymph nodes) (Figures 1A,

B). We analyzed the expression patterns of 7 cell lineage-specific

marker genes and found that the genes encoding surface receptors

used for cell sorting were highly expressed in specific T cell

subpopulations such as 3 CD8+ T cell subpopulations (CD8_t,

CD8_l, and CD4+CD8+_t), of which CD8A and CD8B had the

highest expression levels in 3 CD8+ T cell subpopulations

(Supplementary Figure 1A). Previous research has shown that

DN cells differentiate into DP cells in the thymus where DP cells

in turn differentiate into CD4 or CD8 T cells through negative and

positive selection (4). Subsequently, these single-positive T cells

enter peripheral immune organs via the blood circulation. In this

study, we performed pairwise comparisons of 7 cell subpopulations

following pre-specified T cell lineage development route

(Supplementary Figure 1B). The results showed that the largest

number of DEGs were identified in the comparison of CD4_l vs.

CD4_t and CD8_l vs. CD8_t, but the smallest number of DEGs

were observed in CD4_t vs. CD8_t (Figure 1C). When comparing

CD4+CD8+ and CD4-CD8- subpopulations from the thymus, we

found that VDJ recombination-associated genes such as RAG1,

RORC, RORA, and RPA3 were upregulated in CD4+CD8+

subpopulation, but DN cell-specific marker genes including

BATF3, BLK, HES1, and YBX3 were downregulated in the CD4

+CD8+ subpopulation (Figure 1D and Supplementary Table 3).

The genes involved in cell migration and lineage commitment (such

as S1PR1, CH25H, and CRTAM) and the genes involved in defense

responses and cytotoxic functions (such as NKG7 and KLK7) were

unregulated in CD8 subpopulation, compared to those in CD4

+CD8+ subpopulation. The genes involved in T cell activation and

immune regulation such as IL7R, STST3, and CCR7 showed higher

expression levels in the CD4 subpopulation than in CD4+CD8+

subpopulation (Figure 1D and Supplementary Table 3). The

comparative analysis of the transcriptional profiles of CD4-CD8-,

CD4, and CD8 cell subpopulations revealed that cell activation- and

effector-related gene expression levels in peripheral lymphoid

tissues were increased (Figure 1D and Supplementary Figure 1C,

Supplementary Table 4).
Important modules associated with
specific T cell subpopulations

WGCNA is an effective systematic biological method for

constructing gene co-expression networks, and it can be used to

detect gene modules highly correlated with cell subpopulation

characteristics or phenotypes (24). After excluding outlier samples

and low-quality genes, a total of 13,245 genes and 19 samples were

obtained and used for WGCNA analysis in this study. The

“pickSoftThreshold” function determined the best soft threshold

as 7 and scale-free topology fit index (R2) as 0.85 (Figure 2A). A
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total of 41 co-expressed gene modules were identified and visualized

using the cluster dendrogram method, with each module labeled

with a unique color (Figure 2B). The genes in the gray modules did

not show significant co-expression patterns, and thus they were not

assigned to any other modules. Subsequently, we investigated

module-trait relationships for each cell subpopulation to identify

key modules significantly correlated with the 7 cell subpopulations

(Figure 2C and Supplementary Table 5). We found that each cell

subpopulation was correlated with one or more modules. For

example, the midnightblue module was highly correlated with

CD4-CD8-_t, while the darkgrey module showed the highest

positive correlation with CD4+CD8+_t. The paleturquoise and

darkgreen modules were highly correlated with the CD8_t, and

the yellowgreen and skyblue modules were highly correlated with

the CD4_t. The black module exhibited the strongest correlation

with the CD4-CD8-_l. Furthermore, the lightgreen module and the

cyan module displayed the most correlation with CD8_l and CD4_l,

respectively (Figure 2C). Based on these results, we selected the

modules of interest for further analysis.
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Candidate hub genes regulate
transcriptional heterogeneity in T cell
subpopulations across tissues

By intersecting hub genes in key modules with the DEGs

detected by comparative transcriptomes, we further identified

core genes playing a crucial role in T cell development. The list of

hub genes for each cell subpopulation was presented in

Supplementary Table 6. The top 10 hub genes in the

midnightblue module most related to CD4-CD8-_t included

CD93, ANXA4, ETV5, ZNF462, CCDC68, GJB6, SNX29, SULF2,

IL9R, and BCL7A, most of which were related to immune functions.

In addition, three overlapping hub genes SOX15, SOX3, and GATA3

were also present in this module, and they have been reported to

regulate T cell fate commitment (Figure 3A) (35). In the darkgrey

module most related to CD4+CD8+_t, the top 10 hub genes were

ZFP37, LVRN, APOE, WNT4 , RAG1 , WFDC3, MS4A4A,

MAP3K7CL, CXHXorf66, PDLIM1, of which WNT4, APOE, and

RAG1 genes are involved in T cell differentiation process
A

B

C

FIGURE 2

Visualization of weighted gene co-expression network of 7 T cell subpopulations. (A) Analysis of the scale-free fit index (left) and mean connectivity
(right) for various soft-thresholding powers (b). (B) Clustering dendrogram of co-expression modules identified by WGCNA. (C) Heatmap of module-
trait relationships of 7 T cell subpopulations. Each row represents a module (the same color code as in (B), and each column represents a T cell
subpopulation. *, p < 0.05; **, p < 0.01.
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( F i g u r e 3 B ) ( 3 6 ) . ENS S SCG0 0 0 0 0 0 4 8 4 1 9 , TPRN ,

ENSSSCG00000042710, CPZ, and ZC2HC1B were identified to be

present in yellowgreen module (Figure 3C), and PCDHAC2,

CCDC87, EPOP, FRMD7, GYPA, and TLR2 were identified to be

present in skyblue module, and these two modules were related to

CD4_t (Figure 3D). TLR2 and HYAL3 play a role in the

inflammatory response and innate immune response (37, 38).

Previous studies have shown that human naive CD4 T cells

express TLR2 upon TCR stimulation, and subsequently TLR2

functions as co-stimulatory receptor (39). In addition, TLR2 plays

a crucial role in the generation and maintenance of CD4 memory T

cell (40). The top 5 hub genes in the paleturquoise module included
Frontiers in Immunology 08
LMO1, ARHGEF4, UCP3, MYL2, and RASCGRP3, and the top 5

hub genes in the darkgreen module were IFN-DELTA-6, CPQ,

GRK3, MPP4, and CCDC148, repectively, and these two modules

were associated with CD8_t (Figures 3E, F). IFN-DELTA-6 and

IFN-DELTA-1 are two members of the interferon family, and they

play a central role in innate and adaptive immunity with various

biological effects such as antiviral and immune regulation (41). The

top 10 hub genes including CES1, DCHS2, MIA, GALNT8,

TUBB4A, HEPACAM2, ZNF565, CES3, HCRT, and RGS22 were

observed in the black module associated with CD4-CD8-_l

(Supplementary Figure 2A). The top 10 hub genes including

DEFB124, C3orf49, FGG, TMEM247, WIPE3, LCA5, SMPDL3A,
A B

D

E F

C

FIGURE 3

Hub genes in 4 T cell subpopulations from porcine thymus. (A) Network visualization of hub genes in the midnightblue module closely associated
with CD4-CD8-_t. (B) Network visualization of hub genes in the darkgrey module closely associated with CD4+CD8+_t. (C, D) Network visualization
of hub genes in the yellowgreen module (C) and the skyblue module (D) closely associated with CD4_t. (E, F) Network visualization of hub genes in
the paleturquoise module (E) and the darkgreen module (F) closely associated with CD8_t. Ovals represent hub genes, “V” indicates hub DEGs
overlapped with the DEGs identified by comparative transcriptome analysis. The color brightness is proportional to the maximal clique centrality
(MCC) value, and the redder the color, the larger the MCC value.
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CNJ16, BEX5, and SLC10A8 were present in the cyan module most

related to CD4_l (Supplementary Figure 2B). DEFB124, a member

of the beta defense protein family involved in innate immune

response, was identified as the highly connected hub gene in the

cyan module (42). Hub genes FGG, WIPE3, PP1R13L, PCSK5,

NPR1 negatively regulated cell migration and cell export process.

The top 10 hub genes NWD1, SLFN14, MLIP, RHBG, PTGES3,

TRMT5,MRPL18, FAM227A, SMR1, and TCEAL8 were found to be

present in the lightgreen module most related to CD8_l

(Supplementary Figure 2C), of which SLFN14 and TRMT5 were

overlapping hub genes, playing an important role in mediating

immune responses (43, 44).
Bulk RNA-seq and scRNA-seq data reveal
thymocyte heterogeneity in pigs

Previous research on gene expression during T cell development

primarily relies on bulk RNA-seq of cell populations. However, the

transcriptional heterogeneity in single cells remains elusive. To

reveal this heterogeneity, we downloaded the porcine thymus

scRNA-seq dataset from GSE192520 and performed Seurat

analysis (17). After quality control of genes and cells, cell cycle

effects were eliminated, and 23 cell clusters were identified using the

UMAP algorithm. Based on known specific marker gene

expression, these cell clusters were manually annotated into 16

major cell types, including DN_C (BATF3, HES1, CDK1), DN_Q

(RAG1, RAG2), DP_C1 (MXD3, E2F8, CDK1), DP_C2 (E2F2,

CDK1), and DP_Q (RAG1, RAG2), CD2+gd T cells (CCR9,

IKZF2), CD2-gd T cells (SOX13, BLK, ETV5), T_entry (CCR9,

CCR7, TOX2), Treg1 (CTLA4, TNFRSF9), Treg2 (FOXP3, IL2RA,

STAT5A), CD8_SP (CD8A, CD8B), CD4_SP (CD4, LEF1),

Cytotoxic_CD8 (GZMK, EOMES, NKG7), ISG_CD8 (ISG15,

MX1, STAT1), CD8aa (NKG7, ZNF683), and B (CD79A, CD19,

MEF2C) (Figures 4A-D and Supplementary Figures 3A, B,

Supplementary Table 7). Correlation heatmap showed high

pairwise correlation among cell types (Supplementary Figure 3C).

To investigate the gene expression patterns of different cell types

identified by Seurat above, we extracted the top 50 marker genes

(prioritized by fold change) in each cell type and drew a heatmap.

As expected, the heatmap exhibited distinct signatures for each cell

type (Figure 4E). Further, we performed GO enrichment analysis of

DEGs in each cell type using the Metascape website (Supplementary

Table 8). The genes enriched in DN_C and DP_C cell types were

mainly associated with cell cycle functions, including the regulation

of cell cycle process and mitotic cell cycle, and the genes in DN_P

and DP_P cell types were associated with chromatin organization

and VDJ recombination. GO analysis revealed that the two gd T cell

populations presented distinct biological processes. CD2-gd-
enriched genes were involved in the antigen receptor-mediated

signaling pathway and regulation of leukocyte activation, while

CD2+gd-enriched genes participated in the DNA metabolic process

and nucleotide metabolic process. Genes in four CD8 cell clusters

(CD8_SP, ISG_CD8, Cycytoxic_CD8, and ISG_CD8) and CD4_SP

were mainly involved in immune-related biological processes. The

genes enriched in B cell type were primarily involved in MHC
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protein complex assembly and regulation of B cell activation

(Figure 4E and Supplementary Table 8).

Based on annotated porcine single-cell cell types and gene sets

from our bulk RNA-seq data of sorted porcine thymus cell

populations, we determined the identity of porcine thymocytes by

previously reported method (11). We found that some gene sets

showed relatively high enrichment in their corresponding scRNA-

seq clusters. Specifically, CD4-CD8-_t gene sets corresponded to

DN clusters (ab) and CD2-gd T cluster; CD4+CD8+_t gene sets

corresponded to DP cluster; and CD8_t gene sets mainly

corresponded to CD8-related clusters. Interestingly, the top 5%

highly enriched genes (HEGs) in CD4_t subpopulation

corresponded to the B clusters (Supplementary Figures 4A, B). In

addition, we further investigated the relationship between hub

genes associated with T cell subpopulations from porcine thymus

and cell types identified by Seurat. We found that most of the hub

genes (such as GATA3, SOX13, ETV5, ZNF462, RASSF4, SHMT1,

CD163L1) in the midnightblue module most related to CD4-CD8-

_t were highly expressed in the DN (ab) cell type and gd T cell type.

Hub genes (including RORC, CD1E, RAG1, COL5A2) in the

darkgrey module most related to CD4+CD8+_t were specifically

highly expressed in the corresponding DP cell type. Furthermore,

we detected only a small number of hub genes in the modules most

related to CD4_t and CD8_t subpopulations. Due to the high

heterogeneity of CD4- and CD8-associated cell types identified by

scRNA-Seq data, we failed to find overlap between hub genes in

CD4_t and CD8_t subpopulations from bulk RNA-Seq and DEGs

in cell type from scRNA-Seq. In summary, although cell

subpopulations sorted by bulk RNA-Seq showed agreement with

cell types identified by scRNA-Seq to some degree, bulk RNA-Seq

had limitations in precisely describing transcriptional heterogeneity

of cell types.
Comparative analysis of T cell types reveals
transcriptomic differences between
porcine thymus and peripheral blood

The thymus serves as the primary site for T cell development

and maturation, while peripheral blood transports mature T cells to

participate in immune responses. Therefore, we integrated porcine

thymus dataset (5,999 cells) with 8 PBMC datasets (34,220 cells) to

investigate the transcriptomic differences of T cell types across

tissues. Based on the expression of classic marker genes, we

identified a total of 36 clusters, which were further classified to 19

major cell types, including monocytes, conventional dendritic cells

(cDCs), plasmacytoid dendritic cells (pDCs), B cells, Cycling_B,

antibody-secreting cells (ASC), CD2-gd T cells, CD2+gd T cells,

DN_C, DN_Q, DP_C, DP_Q, T_entry, CD4+ab T cells, CD8+ ab
T cells, NK cells, Cycling_NK cells, Cycling_CD8, and Erythrocytes

(Supplementary Figures 5A-C). We found that B cells and myeloid-

related cell types (including monocytes, cDCs, and pDCs) were

predominantly present in peripheral blood, whereas DN and DP T

cells were mainly present in porcine thymus. The gd T cell clusters

were much larger in peripheral blood than in porcine thymus. We

further investigated the transcriptomic differences among the 4 T
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cell clusters (CD4+ab T cells, CD8+ab T cells, CD2+gd T cells, and

CD2-gd T cells) in porcine thymus and peripheral blood

(Supplementary Figure 5D). The results showed that the genes

involved in CD4-positive, alpha-beta T cell proliferation and virus

response (such as IL2RA, FOXP3, TNFRSF4) were unregulated in

CD4+ab T cells from pig thymus, while the genes involved in MHC

class II protein complex binding and actin cytoskeleton regulation

(such as CD74, CYRIB, S1PR1, STMN1, and S100A10) were

unregulated in peripheral blood-derived CD4+ab T cells

(Supplementary Table 9). Compared with thymus-derived CD8

+ab T cells, peripheral blood-derived CD8+ab T cells highly

expressed many effect-related and cytotoxicity-related genes such
Frontiers in Immunology 10
as GZMB, GZMM, NKG7, and GNLY. GO enrichment analysis

showed that the DEGs in peripheral blood-derived CD8+ ab T cells

were significantly enriched in such pathways as the killing of cells of

another organism, leukocyte mediated immunity, positive

regulation of leukocyte migration, and regulation of myeloid

leukocyte mediated immunity; while the DEGs in porcine

thymus-derived CD8+ab T cells were significantly enriched in

such pathways as the regulation of antigen receptor-mediated

signaling pathway and negative regulation of lymphocyte

mediated immunity (Supplementary Table 9). Surprisingly, we

found that both peripheral blood-derived CD8 cells and lymph

node-derived CD8 subpopulation from bulk RNA-Seq highly
A B
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FIGURE 4

Single-cell RNA-seq analysis of porcine thymocyte populations. (A) UMAP analysis of 5,999 single cells from porcine thymus (left). Different colors
indicate different cell types. Bar graph shows the number of cells contained in each cell type (right). (B, C) UMAP plot of CD4, CD8A, and CD8B
genes (B) and CDK1 cell cycle gene and RAG1 recombination gene (C). (D) Violin plot of classic marker genes for defining each cell type.
(E) Heatmap of top 50 specifically expressed genes in each cell type (left) and a list of representative GO terms for each cell type (right).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1339787
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2024.1339787
expressed cytotoxicity-related genes. Furthermore, the largest

number of DEGs was observed in the comparison of CD2+gd T

cells in thymus vs. peripheral blood. The DEGs in peripheral blood-

derived CD2+gd T cells were mainly involved in immune-related

biological processes. In addition, we observed that peripheral blood

contained a high proportion of CD2-gd T cells, and this cell type

exhibited a high expression of cell migration genes S100A6 and

SI00A5 (Supplementary Figure 5D). CD2-gd T cells in the thymus

highly expressed JAML, a gene promoting T cell proliferation and

cytokine production (45). Taken together, our study reveals that

genes in thymus-derived T cells are mainly related to cell

proliferation, cytokine production, and early T cell development,

while genes in lymph node- and peripheral blood-derived T cells are

mainly related to immune responses.
Pseudotime trajectory of porcine
thymocytes is inferred

We used Slingshot to infer the developmental trajectories of

porcine thymocytes by previously reported method (28). Consistent

with the trajectory inferred from human thymus data, the

development trajectory was as follows: porcine ab T cells started

with DN cells, gradually expressed CD4 and CD8, turned into DP

cells, and subsequently DP cells differentiated from the T_entry

(highly expressing CCR9) into CD4+ SP and CD8+ SP cells

(Supplementary Figures 6A, B) (46, 47). Consistent with the

trajectory inferred using Monocle3 based on published scRNA-

Seq data, we found that independent gd T cell lineages were

diverged from the DN-DP junction (17). Notably, T cells

underwent cell proliferation before each round of rearrangement,

in terms of the expression patterns of genes in the quiescent phase

and the proliferating phase. However, we found that the

differentiation trajectories of CD4 and CD8 single positive cells

inferred from porcine thymus data were not consistent with those

inferred from human data. Such inconsistency might be attributed

to the limited number of cells in porcine thymus.
Key transcription factors regulating porcine
thymocyte identity

TFs are important regulators of gene expression and play a

pivotal role in maintaining cell identity (48). Therefore, we

investigated key TFs involved in T cell fate decision-making by

SCENIC based on scRNA-Seq data (20). In this study, we identified

205 significant TF regulons comprising 9,588 genes, and the gene

number contained in each regulon ranged from 9 to 5,608 with a

median of 146. Further, we calculated the regulon specificity score

(RSS) for each regulon in each cell type, and we defined the regulons

with the high RSS as the critical regulons for each cell type

(Figure 5A). We detected several universal TFs in DN (DN_C

and DN_Q) and DP (DP_C1, DP_C2 and DP_Q) cell types, such as

SMARCA4, KLF13, TCF2, and BCL6. Additionally, we also

detected some cell type-specific TFs, such as ZEB1, RUNX1, PBX1

in DN_Q, and MXD4, MEF2D, MYF6, and MAG in DP_Q,
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of which MYF6 has been identified as a hub gene for the CD4

+CD8+_t subpopulation based on bulk RNA-Seq data. We found

that TFs EOMES, ETV7, TBX21, and NFE2L2 were present in

Cytotoxic_CD8 cell type, and TFs ZNF189, TGIF1, THRA,

ZFHX3, and HOXA10 were primarily present in ISG_CD8 cell

type. TFs including CREM, HIVEP3, PRNP, BACH2, and FOSL2

were found in Treg1 cell type, and TFs including ZNF831, CEBPG,

TP73, TBL1XR1, and ZNF333 were observed in Treg2 as specific

regulons. In addition, we also found several universal TFs in

CD4_SP and CD8_SP, such as ETS1, IKZF1, KLF2, ELK3, and

NFKB1. The classical TFs, GATA3 and SOX13, were found to be

specifically expressed in CD2-gd T cells, and they were identified as

hub genes of CD4-CD8-_t subpopulation based on bulk RNA-Seq

data (49, 50). B cell was a well-characterized cell type, and PAX5,

MEF2C, BHLHAI5, TCF4, and IRF4, were identified as the B cell-

specific regulons in this study (Figure 5A and Supplementary

Figure 7A, Supplementary Table 10). Notably, all these 5 TFs

have been reported as core regulators of B cell identify

maintenance (51). As UMAP plot shown, regulatory activities of

representative TFs were consistent with their gene expression levels

(Figures 5B, C and Supplementary Figures 7B, C).
Module analysis unveils coordinated
transcription factor expression patterns
during porcine thymus T cell
differentiation process

Multiple TFs often synergistically regulate gene expressions. To

investigate the combination patterns of the above-mentioned TFs

identified by SCENIC, we performed a module analysis by CSI

method (30). Through unsupervised hierarchical clustering, 205 TF

regulons were combined into 10 major modules (M1-M10)

(Figures 6A, B and Supplementary Table 11). We calculated the

average activity scores of each module and mapped them onto the

UMAP plots. The results showed that each module occupied

distinct regions, exhibiting complementary patterns among

distinct regions (Figure 6B). We found that most of the specific

regulators in DP_C1, DP_C2 and DN_C cell types were clustered

into M1 such as E2F7, E2F3, ETV5, TFDP1, CTCF, and these

regulators have been reported to be involved in cell proliferation.

M2 was primarily associated with B cells, and many B cell-related

regulators such as PAX5, BHLHA15, MEF2C, TCF4, and IRF4 were

found in this module. M3 and M10 modules were a mixture of

several cell types and these two modules presented complementary

characteristics. M4 contained regulators FOXP1 and ETV6, which

were important regulators for the DN_Q cell type. M5 contained

regulators specifically activated in DP_Q cell types, including BCL6,

MXD4, and ELF1. Similar regulator clustering patterns were also

observed in other cell types such as Cytotoxic_CD8 cells (M6),

ISG_CD8 cells (M8), and CD2-gd cells (M9). M10 contained a

mixture of cell types other than DN and DP cell types (Figure 6A).

Collectively, these results suggested that cell types with similar

functions might have similar TF activation patterns, and that TFs

synergistically drove the expression of their respective target genes,

thus regulating the overall T cell differentiation process.
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GWAS signal enrichment analysis reveals
role of immune cell types in regulating
complex traits of pigs

Complex traits are mostly controlled by multiple genes, and

recent research has indicated the differences in the impacts of

different tissues or cell types on complex traits (52). To determine

the relationship between thymic development-related cell types

identified by scRNA-Seq data and complex traits in pigs, we

performed a GWAS signal enrichment analysis of DEGs in each

cell type using QGG (Supplementary Tables 2, 7, 12). The results

showed that DEGs in 3 unconventional CD8+ T cell types (ISG-

CD8, Cytotoxic_CD8, and CD8aa) were significantly associated

with production and body shape traits (Figure 7). To validate this

result, we additionally used MAGMA, a gene and gene set analysis

of GWAS genotype data, to detect associations between cell type-

specific gene sets and complex traits. Gene set analysis using

MAGMA confirmed that DEGs in thymus development-related

cell types, especially Cytotoxic_CD8, and CD8aa, were significantly
associated with production traits such as backfat thickness, loin eye
Frontiers in Immunology 12
area, lean percentage corrected to 100kg and 115kg (Supplementary

Figure 8A). ISG-CD8 T cells have been reported to mediate the

antiviral activity of interferon (IFN)-a and type I IFN, and type I

IFN is involved in inducing interferon-stimulated genes during the

late stages of human and mouse thymocyte development (53–55).

Cytotoxic CD8 and CD8aa T cells highly express T cell memory

marker genes (CD44, CXCR3, and CCL5) and NK cell marker genes

(NKG7 and KLRK1) (17). The three types of T cells can rapidly

initiate immune responses to maintain body health in the case of re-

invasion by viruses or bacteria during the growth of pigs. DEGs in

multiple cell types were significantly associated with reproductive

traits, indicating the important role of immune cells in facilitating

embryo implantation, promoting placenta formation, and

supporting embryonic development (Figure 7) (56–58).

Furthermore, the results of QGG and MAGMA jointly showed

that the DEGs in CD4_SP were significantly associated with litter

weight at weaning and corrected litter weight at 21-day (Figure 7,

Supplementary Figure 8A). Additionally, we performed association

analysis between peripheral blood-derived cell types and complex

traits using the same method. The results of both QGG and
A B

C

FIGURE 5

Gene regulatory networks of porcine thymocytes from scRNA-Seq data. (A) Top 5 specific regulons of each cell type. (B) UMAP plot of regulatory
activities of representative TFs. (C) UMAP plot of the gene expression levels for representative TFs.
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MAGMA showed that the DEGs in blood-derived CD4 and CD8

cell types were significantly associated with multiple production

traits and body shape traits (Supplementary Figures 8B, C). We also

found that DEGs in blood-derived NK cells and B cells were

significantly associated with reproductive traits (Supplementary

Figures 8B, C).
Discussion

In this study, we first compared distinct T cell subpopulations

isolated from porcine thymus and lymph nodes using bulk RNA-

seq (Figure 1 and Supplementary Figure 1). Our finding revealed

that the transcriptome differences depended more on the tissue

origin than on T cell phenotype. Lymph node T cells had a larger

number of DEGs than thymus T cells, indicating greater

transcriptional diversity of lymph node T cells. Moreover, we

observed distinct differences in CD4 and CD8 T cell

transcriptome profiles between lymph nodes and the thymus,

potentially suggesting the differentiation and diversification of

thymus-derived naive T cells upon encountering their cognate

antigen in the peripheral tissues (59). Our functional enrichment
Frontiers in Immunology 13
analysis further demonstrated that 7 T cell subpopulations

exhibited specific and different functions among different tissues

(Supplementary Figure 1C). For instance, the genes in thymus-

derived T cells were primarily associated with the cell cycle, cell

proliferation, and early T cell development, whereas the genes in

lymph node-derived T cells were mainly related to immune

responses in peripheral blood.

Transcriptome-based differential gene expression analysis

allows the identification of DEGs of interest between groups, but

the genes in a module often exhibit co-expression relationships.

WGCNA is a systematic biology approach that modularizes large

datasets based on similar gene expression patterns to obtain co-

expression modules with great biological significance, thereby

facilitating the identification of hub genes associated with specific

phenotype (60). In this study, a total of 41 co-expression modules

were generated based onWGCNA, from which we identified one or

two key modules associated with each specific cell subpopulation

(Figure 2). For example, the midnightblue module exhibited a

positive correlation with the CD4-CD8-_t subpopulation, whereas

the darkgrey module displayed the highest positive correlation with

the CD4+CD8+_t subpopulation. These results suggested possible

differences in the composition of gene co-expression network at
A

B

FIGURE 6

Identification of combined regulon modules based on scRNA-Seq data. (A) Identification of regulon modules based on the connection specificity
index (CSI) matrix in porcine thymus. The representative TFs were presented in right panel. (B) UMAP plot of average activity of each module.
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different T cell differentiation stages. Based on the correlation

between genes and cell subpopulation, we screened a large

number of hub genes from specific cell subpopulations associated

with the key modules, and these hub genes potentially played

pivotal functions at different T cell development stages (Figure 3).

For instance, hub genes SOX15, SOX3, GATA3, ETV5, and

CD163L1 identified from CD4-CD8-_t were highly expressed in

the corresponding cell types DN and CD2-gd T cells. Hub genes

RORC, CD1E, RAG1 and COL5A2 identified from CD4+CD8+_t

were highly expressed in the corresponding DP cells from scRNA-

seq data. These hub genes have been reported to be involved in

regulating T cell fate commitment and differentiation processes (35,

36). Additionally, the classical TFs GATA3, SOX13, andMYF6 were

identified based on bulk RNA-Seq and single-cell data, further

highlighting their important roles in thymocyte development.

Our analysis of public porcine thymus scRNA-seq data revealed

cell heterogeneity during T cell development (Figure 4 and

Supplementary Figure 3). Based on the expression of

proliferation-related genes and cell type-specific marker genes

reported in literature, we identified a total of 16 cell types, which

was consistent with previous studies (17). We further investigated

the biological function of 16 cell types using Metascape (Figure 4E).

As expected, the results of the GO enrichment analysis confirmed

the unique identities of these cell types. We also conducted cross-

tissue comparisons of cell types based on scRNA-seq data of porcine

thymus and PBMC (Supplementary Figure 5). Our analysis revealed

that DN cells were thymus-specific, while myeloid-related cell types

were predominantly present in blood tissue. One previous study has

shown that other immune cells were also present in the human

thymus, including B cells, NK cells, macrophages, monocytes, and
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DCs (47). Given the limited current porcine thymus data, the

inclusion of more thymus sample data will facilitate future

comprehensive cross-tissue study. Furthermore, we investigated

the genetic relationships between porcine thymus and peripheral

blood cell types and complex traits (Figure 7 and Supplementary

Figure 8). We found that GWAS signals of multiple cell types,

especially thymus-derived CD8 cell types (including CD8_SP, ISG-

CD8, Cytotoxic_CD8, and CD8aa) and peripheral blood-derived

CD4_SP and CD8_SP, were significantly associated with

production and body shape traits. These results were consistent

with previous research findings, suggesting that the immune system

was involved in the growth processes of pigs (61). In addition, we

also observed that DEGs in multiple cell types were significantly

associated with reproductive traits, indicating the important role of

immune cells in facilitating embryo implantation and pregnancy

establishment (57, 58). Notably, DEGs in blood-derived NK cells

and B cells were significantly associated with reproductive traits

(Supplementary Figures 8B, C). As the most abundant leukocyte

type in the decidua, NK cell deficiency impaired spiral arterial

remodeling during pregnancy and reduced trophoblast invasion

(62–64). B cells provided immune protection for mothers and

newborns by producing antibodies during pregnancy and

lactation (65, 66). In summary, our results emphasized the critical

role of immune-related cell types in porcine growth and

reproduction, contributing to a better understanding of the

genetic and biological basis of these complex traits.

To investigate the consistency in gene expression profiles

between the scRNA-seq data and the bulk RNA-seq data, we next

extracted the top 5%, 10%, 15%, 20%, 25%, 30%, and enriched gene

sets from bulk RNA-seq populations based on log2FC value,
FIGURE 7

Association between 30 complex traits and 16 cell types. The color indicates the enrichment degree, which was calculated by a CVAT-based GWAS
signal enrichment analysis of differentially expressed genes (DEGs) among cell types. *, p ≤ 0.05; **, p ≤ 0.01.
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followed by gene set enrichment analysis of porcine scRNA-seq data

using AUCell (v1.10.0) (11) (see Methods section). We found that

gene sets in CD4+CD8+_t exhibited high relative enrichment in the

expected corresponding scRNA-seq cell clusters (DP_C1, DP_C2,

DP_Q) (Supplementary Figure 4). Additionally, we noticed that

gene sets in CD8_t were enriched in multiple different CD8-related

clusters, such as CD8_SP, ISG_CD8, Cytotoxic_CD8, and CD8aa
cell clusters (Supplementary Figure 4). This phenomenon might be

because these CD8 T cell clusters (CD8_SP, ISG_CD8,

Cytotoxic_CD8, and CD8aa) shared many same gene, thus

resulting in less cell type-enriched or cell type-specific genes

detected, or because the lack of specific antibodies led to

difficulties in distinguishing different cell types during the sorting

process. We also observed that CD4-CD8-_t gene sets were highly

enriched in DN (ab) and CD2-gd T cell types. The possible reason

might be that the lack of specific antibodies targeting gd T cells in

the cell sorting strategy prevented CD2-gd T cells from being

separated from ab cell populations. Notably, the top 5%-10% of

CD4_SP HEGs exhibited relatively high enrichment in B cells

(Supplementary Figure 4). B cells provide additional and

indispensable antigen-presenting capacity to facilitate clonal

expansion, and differentiation of CD4 T cells, as reported (67).

The Slingshot analysis in this study and the Monocle3 analysis

in previous study jointly indicated that ab T cell development in the

porcine thymus closely resemble that in human thymus. Namely,

the DN cells differentiate into the DP cells, and the latter further

differentiates into CD4+CD8- SP or CD4-CD8+ SP T cells after

negative and positive selection (Supplementary Figure 6) (3, 47).

CD2+gd T cells differentiate from DN thymocytes into CD2- gd T

cells. In addition, we constructed a gene regulatory network of

porcine thymocytes using SCENIC. We identified multiple cell

type-specific TFs and several universal TFs shared by some cell

types, some of which were consistent with those reported in

previous study of human thymocyte types (Figure 5,

Supplementary Figure 7) (47). Given that these TFs showed

distinct but complementary expression patterns across different

cell clusters, we performed a module analysis and revealed

enrichment status of the TF regulons in modules (Figure 6). For

instance, key regulons responsible for the cell cycle and cell

differentiation including E2F2, E2F7, and TFDP2, were enriched

in M1 (47). B cell differentiation-related TFs such as IRF8, MEF2C,

PAX5, and SPI1 were enriched in M2 (51). Additionally, some well-

reported TFs (SOX13, GATA3, MAF, and ETV5) involved in CD2-

gd T differentiation were found to be enriched in M9 (35, 68). Taken

together, the above results suggested that cell types with similar

functions might have similar TF activation patterns, and that

coordinated TF expression governed the entire process of T

cell differentiation.

However, our study also has some limitations. First, we

analyzed porcine thymus T cell developmental regulatory

programs, such as key TFs, but our findings lacked experiment

validation. Moreover, only bulk RNA-seq data of lymph node tissue

was analyzed in this study, and future work is suggested to include

scRNA-seq data across porcine tissues and ages in the exploration
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of T cell lineage decisions so as to better understand the role of T

lymphocytes in adaptive immune systems in mammals.

In summary, we first investigated the transcriptome profile

differences among different T cell populations in the porcine

thymus and peripheral lymph nodes, and identified several hub

genes in T cell subpopulations. Based on single-cell datasets, we

established gene regulatory networks of porcine thymocytes and

identified key TFs driving thymocyte differentiation. The

integration of GWAS with single-cell transcriptome analysis

provides novel insights into the genetic and biological basis of

complex traits in pigs.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ncbi.nlm.nih.gov/

, GSE247127.
Ethics statement

The animal study was approved by The Institutional Animal

Care and Use Committee of Huazhong Agricultural University. The

study was conducted in accordance with the local legislation and

institutional requirements.
Author contributions

PH: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Visualization, Writing – original draft.

WZ: Data curation, Investigation, Resources, Writing – review &

editing. DW: Data curation, Investigation, Resources, Writing –

review & editing. YW: Data curation, Investigation, Resources,

Writing – review & editing. XL: Conceptualization, Funding

acquisition, Project administration, Supervision, Writing – review

& editing. SZ: Conceptualization, Funding acquisition, Project

administration, Supervision, Writing – review & editing. MZ:

Conceptualization, Funding acquisition, Project administration,

Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by the National Key Research and

Development Program of China (2021YFD1301201), Natural

Science Foundation of China (31961143020), Major Project of

Hubei Hongshan Laboratory (2021hszd019), and Earmarked

Fund for China Agriculture Research System (CARS-35).
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fimmu.2024.1339787
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2024.1339787
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1339787/

full#supplementary-material

SUPPLEMENTARY TABLE 1

Updated complete list of gene names.

SUPPLEMENTARY TABLE 2

Summary description of the phenotype data used for GWAS signature

enrichment analysis.
Frontiers in Immunology 16
SUPPLEMENTARY TABLE 3

Di fferent ia l l y expressed genes for pa i rw ise compar i sons of
indicated subpopulations.

SUPPLEMENTARY TABLE 4

Significantly upregulated biological processes in pairwise comparisons of

indicated subpopulations.

SUPPLEMENTARY TABLE 5

Module results associated with 7 T cell subpopulations detected by WGCNA.

SUPPLEMENTARY TABLE 6

Hub genes of 7 T cell subpopulations.

SUPPLEMENTARY TABLE 7

Differentially expressed genes of porcine thymus cell types identified
by Seurat.

SUPPLEMENTARY TABLE 8

Gene Ontology enrichment analysis for 16 cell types in porcine thymus.

SUPPLEMENTARY TABLE 9

Differentially expressed genes (DEGs) and biological processes in which DEGs
were enriched in T cells from porcine thymus and peripheral blood.

SUPPLEMENTARY TABLE 10

Cell type specific scores for each regulon in each identified cell type.

SUPPLEMENTARY TABLE 11

The results of regulons module analysis.

SUPPLEMENTARY TABLE 12

The significant GWAS signal enrichment of 30 complex traits across cell types.
References
1. Miller J. The function of the thymus and its impact on modern medicine. Science
(2020) 369(6503):eaba2429. doi: 10.1126/science.aba2429

2. Love PE, Bhandoola A. Signal integration and crosstalk during thymocyte
migration and emigration. Nat Rev Immunol (2011) 11(7):469–77. doi: 10.1038/
nri2989

3. Labrecque N, Baldwin T, Lesage S. Molecular and genetic parameters defining T-
cell clonal selection. Immunol Cell Biol (2011) 89(1):16–26. doi: 10.1038/icb.2010.119

4. Sinkora M, Butler JE. The ontogeny of the porcine immune system. Dev Comp
Immunol (2009) 33(3):273–83. doi: 10.1016/j.dci.2008.07.011

5. Gerner W, Talker SC, Koinig HC, Sedlak C, Mair KH, Saalmuller A. Phenotypic
and functional differentiation of porcine alphabeta T cells: Current knowledge and
available tools. Mol Immunol (2015) 66(1):3–13. doi: 10.1016/j.molimm.2014.10.025

6. Halkias J, Melichar HJ, Taylor KT, Robey EA. Tracking migration during human T
cell development. Cell Mol Life Sci (2014) 71(16):3101–17. doi: 10.1007/s00018-014-1607-2

7. Starbaek SMR, Brogaard L, Dawson HD, Smith AD, Heegaard PMH, Larsen LE,
et al. Animal models for influenza a virus infection incorporating the involvement of
innate host defenses: Enhanced translational value of the porcine model. ILAR J (2018)
59(3):323–37. doi: 10.1093/ilar/ily009

8. Holderness J, Hedges JF, Ramstead A, Jutila MA. Comparative biology of
gammadelta T cell function in humans, mice, and domestic animals. Annu Rev
Anim Biosci (2013) 1:99–124. doi: 10.1146/annurev-animal-031412-103639

9. Lagumdzic E, Pernold C, Viano M, Olgiati S, Schmitt MW, Mair KH, et al.
Transcriptome profiling of porcine naive, intermediate and terminally differentiated
CD8(+) t cells. Front Immunol (2022) 13:849922. doi: 10.3389/fimmu.2022.849922

10. Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, et al. Multi-
species annotation of transcriptome and chromatin structure in domesticated animals.
BMC Biol (2019) 17(1):108. doi: 10.1186/s12915-019-0726-5

11. Herrera-Uribe J, Wiarda JE, Sivasankaran SK, Daharsh L, Liu H, Byrne KA, et al.
Reference transcriptomes of porcine peripheral immune cells created through bulk and
single-cell RNA sequencing. Front Genet (2021) 12:689406. doi: 10.3389/
fgene.2021.689406

12. Okutani M, Tsukahara T, Kato Y, Fukuta K, Inoue R. Gene expression profiles of
CD4/CD8 double-positive T cells in porcine peripheral blood. Anim Sci J (2018) 89
(7):979–87. doi: 10.1111/asj.13021
13. Zhu J, Chen F, Luo L, Wu W, Dai J, Zhong J, et al. Single-cell atlas of domestic
pig cerebral cortex and hypothalamus. Sci Bull (Beijing) (2021) 66(14):1448–61.
doi: 10.1016/j.scib.2021.04.002

14. Zhang L, Zhu J, Wang H, Xia J, Liu P, Chen F, et al. A high-resolution cell atlas of
the domestic pig lung and an online platform for exploring lung single-cell data. J Genet
Genomics (2021) 48(5):411–25. doi: 10.1016/j.jgg.2021.03.012

15. Wiarda JE, Trachsel JM, Sivasankaran SK, Tuggle CK, Loving CL. Intestinal
single-cell atlas reveals novel lymphocytes in pigs with similarities to human cells. Life
Sci Alliance (2022) 5(10):e202201442. doi: 10.26508/lsa.202201442

16. Zhang L, Li F, Lei P, Guo M, Liu R, Wang L, et al. Single-cell RNA-sequencing
reveals the dynamic process and novel markers in porcine spermatogenesis. J Anim Sci
Biotechnol (2021) 12(1):122. doi: 10.1186/s40104-021-00638-3

17. Gu W, Madrid DMC, Joyce S, Driver JP. A single-cell analysis of thymopoiesis
and thymic iNKT cell development in pigs. Cell Rep (2022) 40(1):111050. doi: 10.1016/
j.celrep.2022.111050

18. Wang J, Sun H, Jiang M, Li J, Zhang P, Chen H, et al. Tracing cell-type evolution
by cross-species comparison of cell atlases. Cell Rep (2021) 34(9):108803. doi: 10.1016/
j.celrep.2021.108803

19. Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T
cell fate. Nat Rev Immunol (2021) 21(3):162–76. doi: 10.1038/s41577-020-00426-6

20. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: Single-cell regulatory network inference and
clustering. Nat Methods (2017) 14(11):1083–6. doi: 10.1038/nmeth.4463

21. Zhang X, Zhou Q, Zou W, Hu X. Molecular mechanisms of developmental
toxicity induced by graphene oxide at predicted environmental concentrations. Environ
Sci Technol (2017) 51(14):7861–71. doi: 10.1021/acs.est.7b01922

22. Herrera-Uribe J, Lim KS, Byrne KA, Daharsh L, Liu H, Corbett RJ, et al.
Integrative profiling of gene expression and chromatin accessibility elucidates specific
transcriptional networks in porcine neutrophils. Front Genet (2023) 14:1107462.
doi: 10.3389/fgene.2023.1107462

23. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O,
et al. Metascape provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun (2019) 10(1):1523. doi: 10.1038/s41467-
019-09234-6
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1339787/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1339787/full#supplementary-material
https://doi.org/10.1126/science.aba2429
https://doi.org/10.1038/nri2989
https://doi.org/10.1038/nri2989
https://doi.org/10.1038/icb.2010.119
https://doi.org/10.1016/j.dci.2008.07.011
https://doi.org/10.1016/j.molimm.2014.10.025
https://doi.org/10.1007/s00018-014-1607-2
https://doi.org/10.1093/ilar/ily009
https://doi.org/10.1146/annurev-animal-031412-103639
https://doi.org/10.3389/fimmu.2022.849922
https://doi.org/10.1186/s12915-019-0726-5
https://doi.org/10.3389/fgene.2021.689406
https://doi.org/10.3389/fgene.2021.689406
https://doi.org/10.1111/asj.13021
https://doi.org/10.1016/j.scib.2021.04.002
https://doi.org/10.1016/j.jgg.2021.03.012
https://doi.org/10.26508/lsa.202201442
https://doi.org/10.1186/s40104-021-00638-3
https://doi.org/10.1016/j.celrep.2022.111050
https://doi.org/10.1016/j.celrep.2022.111050
https://doi.org/10.1016/j.celrep.2021.108803
https://doi.org/10.1016/j.celrep.2021.108803
https://doi.org/10.1038/s41577-020-00426-6
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1021/acs.est.7b01922
https://doi.org/10.3389/fgene.2023.1107462
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.3389/fimmu.2024.1339787
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2024.1339787
24. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol (2005) 4:Article17. doi: 10.2202/1544-
6115.1128

25. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. Cytohubba: Identifying
hub objects and sub-networks from complex interactome. BMC Syst Biol (2014) 8
Suppl 4(Suppl 4):S11. doi: 10.1186/1752-0509-8-S4-S11

26. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
A software environment for integrated models of biomolecular interaction networks.
Genome Res (2003) 13(11):2498–504. doi: 10.1101/gr.1239303

27. Ammons DT, Harris RA, Hopkins LS, Kurihara J, Weishaar K, Dow S. A single-
cell RNA sequencing atlas of circulating leukocytes from healthy and osteosarcoma
affected dogs. Front Immunol (2023) 14:1162700. doi: 10.3389/fimmu.2023.1162700

28. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: Cell
lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics
(2018) 19(1):477. doi: 10.1186/s12864-018-4772-0

29. Suo S, Zhu Q, Saadatpour A, Fei L, Guo G, Yuan GC. Revealing the critical
regulators of cell identity in the mouse cell atlas. Cell Rep (2018) 25(6):1436–1445
e1433. doi: 10.1016/j.celrep.2018.10.045

30. Fuxman Bass JI, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJ. Using
networks to measure similarity between genes: Association index selection. Nat
Methods (2013) 10(12):1169–76. doi: 10.1038/nmeth.2728

31. Rohde PD, Demontis D, Cuyabano BCGenomic Medicine for Schizophrenia G, ,
Borglum AD, Sorensen P. Covariance association test (CVAT) identifies genetic
markers associated with schizophrenia in functionally associated biological processes.
Genetics (2016) 203(4):1901–13. doi: 10.1534/genetics.116.189498

32. Rohde PD, Fourie Sorensen I, Sorensen P. Qgg: An R package for large-scale
quantitative genetic analyses. Bioinformatics (2020) 36(8):2614–5. doi: 10.1093/
bioinformatics/btz955

33. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. Magma: Generalized gene-set
analysis of gwas data. PloS Comput Biol (2015) 11(4):e1004219. doi: 10.1371/
journal.pcbi.1004219

34. Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, et al. Rmvp: A memory-efficient,
visualization-enhanced, and parallel-accelerated tool for genome-wide association
study. Genomics Proteomics Bioinf (2021) 19(4):619–28. doi: 10.1016/j.gpb.2020.10.007

35. Sagar, Pokrovskii M, Herman JS, Naik S, Sock E, Zeis P, et al. Deciphering the
regulatory landscape of fetal and adult gammadelta T-cell development at single-cell
resolution. EMBO J (2020) 39(13):e104159. doi: 10.15252/embj.2019104159

36. Kalman L, Lindegren ML, Kobrynski L, Vogt R, Hannon H, Howard JT, et al.
Mutations in genes required for T-cell development: IL7R, CD45, IL2RG, JAK3, RAG1,
RAG2, ARTEMIS, and ADA and severe combined immunodeficiency: Huge review.
Genet Med (2004) 6(1):16–26. doi: 10.1097/01.GIM.0000105752.80592.A3

37. Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection
and immunity. Front Immunol (2012) 3:79. doi: 10.3389/fimmu.2012.00079

38. Jin Z, Zhang G, Liu Y, He Y, Yang C, Du Y, et al. The suppressive role of HYAL1
and HYAL2 in the metastasis of colorectal cancer. J Gastroenterol Hepatol (2019) 34
(10):1766–76. doi: 10.1111/jgh.14660

39. Lee SM, Joo YD, Seo SK. Expression and function of TLR2 on CD4 versus CD8 t
cells. Immune Netw (2009) 9(4):127–32. doi: 10.4110/in.2009.9.4.127

40. Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY. TLR2 is expressed on
activated T cells as a costimulatory receptor. Proc Natl Acad Sci U.S.A. (2004) 101
(9):3029–34. doi: 10.1073/pnas.0400171101

41. Sang Y, Rowland RR, Hesse RA, Blecha F. Differential expression and activity of
the porcine type i interferon family. Physiol Genomics (2010) 42(2):248–58.
doi: 10.1152/physiolgenomics.00198.2009

42. Kim KH, Lee J, Han JH, Myung SC. Beta-defensin 124 is required for efficient
innate immune responses in prostate epithelial RWPE-1 cells. Korean J Urol (2014) 55
(6):417–25. doi: 10.4111/kju.2014.55.6.417

43. Zhao Q, Chang H, Zheng J, Li P, Ye L, Pan R, et al. A novel trmt5-deficient
zebrafish model with spontaneous inflammatory bowel disease-like phenotype. Signal
Transduct Target Ther (2023) 8(1):86. doi: 10.1038/s41392-023-01318-6

44. Seong RK, Seo SW, Kim JA, Fletcher SJ, Morgan NV, Kumar M, et al. Schlafen 14
(SLFN14) is a novel antiviral factor involved in the control of viral replication.
Immunobiology (2017) 222(11):979–88. doi: 10.1016/j.imbio.2017.07.002

45. Verdino P, Wilson IA. Jaml and car: Two more players in T-cell activation. Cell
Cycle (2011) 10(9):1341–2. doi: 10.4161/cc.10.9.15294

46. Cordes M, Cante-Barrett K, van den Akker EB, Moretti FA, Kielbasa SM,
Vloemans SA, et al. Single-cell immune profiling reveals thymus-seeding populations,
Frontiers in Immunology 17
T cell commitment, and multilineage development in the human thymus. Sci Immunol
(2022) 7(77):eade0182. doi: 10.1126/sciimmunol.ade0182

47. Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz DJ,
et al. A cell atlas of human thymic development defines T cell repertoire formation.
Science (2020) 367(6480):eaay3224. doi: 10.1126/science.aay3224

48. Rothenberg EV. The chromatin landscape and transcription factors in T cell
programming. Trends Immunol (2014) 35(5):195–204. doi: 10.1016/j.it.2014.03.001

49. Rodriguez-Gomez IM, Talker SC, Kaser T, Stadler M, Reiter L, Ladinig A, et al.
Expression of t-bet, eomesodermin, and GATA-3 correlates with distinct phenotypes
and functional properties in porcine gammadelta t cells. Front Immunol (2019) 10:396.
doi: 10.3389/fimmu.2019.00396

50. Melichar HJ, Narayan K, Der SD, Hiraoka Y, Gardiol N, Jeannet G, et al.
Regulation of gammadelta versus alphabeta t lymphocyte differentiation by the
transcription factor SOX13. Science (2007) 315(5809):230–3. doi: 10.1126/
science.1135344

51. Jin W, Yang Q, Peng Y, Yan C, Li Y, Luo Z, et al. Single-cell RNA-seq reveals
transcriptional heterogeneity and immune subtypes associated with disease activity in
human myasthenia gravis. Cell Discovery (2021) 7(1):85. doi: 10.1038/s41421-021-
00314-w

52. Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al.
Heritability enrichment of specifically expressed genes identifies disease-relevant
tissues and cell types. Nat Genet (2018) 50(4):621–9. doi: 10.1038/s41588-018-0081-4

53. Perng YC, Lenschow DJ. ISG15 in antiviral immunity and beyond. Nat Rev
Microbiol (2018) 16(7):423–39. doi: 10.1038/s41579-018-0020-5

54. Colantonio AD, Epeldegui M, Jesiak M, Jachimowski L, Blom B, Uittenbogaart
CH. IFN-alpha is constitutively expressed in the human thymus, but not in peripheral
lymphoid organs. PloS One (2011) 6(8):e24252. doi: 10.1371/journal.pone.0024252

55. Xing Y, Wang X, Jameson SC, Hogquist KA. Late stages of T cell maturation in
the thymus involve nf-kappab and tonic type i interferon signaling. Nat Immunol
(2016) 17(5):565–73. doi: 10.1038/ni.3419

56. Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, et al.
The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol (2023) 19
(4):257–70. doi: 10.1038/s41581-022-00670-0

57. Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo
implantation and the immune response to pregnancy. J Clin Invest (2018) 128
(10):4224–35. doi: 10.1172/JCI122182

58. Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune cells at the
fetomaternal interface: How the microenvironment modulates immune cells to foster
fetal development. J Immunol (2018) 201(2):325–34. doi: 10.4049/jimmunol.1800058

59. Helgeland H, Gabrielsen I, Akselsen H, Sundaram AYM, Flam ST, Lie BA.
Transcriptome profiling of human thymic CD4+ and CD8+ T cells compared to
primary peripheral T cells. BMC Genomics (2020) 21(1):350. doi: 10.1186/s12864-020-
6755-1

60. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation
network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

61. Zhang Z, Wang Z, Yang Y, Zhao J, Chen Q, Liao R, et al. Identification of
pleiotropic genes and gene sets underlying growth and immunity traits: A case study on
Meishan pigs. Animal (2016) 10(4):550–7. doi: 10.1017/S1751731115002761

62. Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue
Antigens (2004) 63(1):1–12. doi: 10.1111/j.1399-0039.2004.00170.x

63. Albrecht ED, Pepe GJ. Regulation of uterine spiral artery remodeling: A review.
Reprod Sci (2020) 27(10):1932–42. doi: 10.1007/s43032-020-00212-8

64. Chakraborty D, Rumi MA, Soares MJ. Nk cells, hypoxia and trophoblast cell
differentiation. Cell Cycle (2012) 11(13):2427–30. doi: 10.4161/cc.20542

65. Tuaillon E, Valea D, Becquart P, Al Tabaa Y, Meda N, Bollore K, et al. Human
milk-derived b cells: A highly activated switched memory cell population primed to
secrete antibodies. J Immunol (2009) 182(11):7155–62. doi: 10.4049/
jimmunol.0803107

66. Nguyen TG, Ward CM, Morris JM. To b or not to b cells-mediate a healthy start
to life. Clin Exp Immunol (2013) 171(2):124–34. doi: 10.1111/cei.12001

67. Crawford A, Macleod M, Schumacher T, Corlett L, Gray D. Primary T cell
expansion and differentiation in vivo requires antigen presentation by b cells. J
Immunol (2006) 176(6):3498–506. doi: 10.4049/jimmunol.176.6.3498

68. Spidale NA, Sylvia K, Narayan K, Miu B, Frascoli M, Melichar HJ, et al.
Interleukin-17-producing gammadelta t cells originate from SOX13(+) progenitors
that are independent of gammadeltatcr signaling. Immunity (2018) 49(5):857–872
e855. doi: 10.1016/j.immuni.2018.09.010
frontiersin.org

https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1101/gr.1239303
https://doi.org/10.3389/fimmu.2023.1162700
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1016/j.celrep.2018.10.045
https://doi.org/10.1038/nmeth.2728
https://doi.org/10.1534/genetics.116.189498
https://doi.org/10.1093/bioinformatics/btz955
https://doi.org/10.1093/bioinformatics/btz955
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1016/j.gpb.2020.10.007
https://doi.org/10.15252/embj.2019104159
https://doi.org/10.1097/01.GIM.0000105752.80592.A3
https://doi.org/10.3389/fimmu.2012.00079
https://doi.org/10.1111/jgh.14660
https://doi.org/10.4110/in.2009.9.4.127
https://doi.org/10.1073/pnas.0400171101
https://doi.org/10.1152/physiolgenomics.00198.2009
https://doi.org/10.4111/kju.2014.55.6.417
https://doi.org/10.1038/s41392-023-01318-6
https://doi.org/10.1016/j.imbio.2017.07.002
https://doi.org/10.4161/cc.10.9.15294
https://doi.org/10.1126/sciimmunol.ade0182
https://doi.org/10.1126/science.aay3224
https://doi.org/10.1016/j.it.2014.03.001
https://doi.org/10.3389/fimmu.2019.00396
https://doi.org/10.1126/science.1135344
https://doi.org/10.1126/science.1135344
https://doi.org/10.1038/s41421-021-00314-w
https://doi.org/10.1038/s41421-021-00314-w
https://doi.org/10.1038/s41588-018-0081-4
https://doi.org/10.1038/s41579-018-0020-5
https://doi.org/10.1371/journal.pone.0024252
https://doi.org/10.1038/ni.3419
https://doi.org/10.1038/s41581-022-00670-0
https://doi.org/10.1172/JCI122182
https://doi.org/10.4049/jimmunol.1800058
https://doi.org/10.1186/s12864-020-6755-1
https://doi.org/10.1186/s12864-020-6755-1
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1017/S1751731115002761
https://doi.org/10.1111/j.1399-0039.2004.00170.x
https://doi.org/10.1007/s43032-020-00212-8
https://doi.org/10.4161/cc.20542
https://doi.org/10.4049/jimmunol.0803107
https://doi.org/10.4049/jimmunol.0803107
https://doi.org/10.1111/cei.12001
https://doi.org/10.4049/jimmunol.176.6.3498
https://doi.org/10.1016/j.immuni.2018.09.010
https://doi.org/10.3389/fimmu.2024.1339787
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Comparative transcriptome analysis of T lymphocyte subpopulations and identification of critical regulators defining porcine thymocyte identity
	Introduction
	Materials and methods
	Animals
	Cell suspension preparation
	Fluorescence-activated cell sorting and antibodies used for it
	Total RNA extraction, library construction, and RNA-seq sequencing
	Bulk RNA-seq data processing
	Weighted co-expression network construction
	Screening of hub genes
	ScRNA&minus;seq data processing
	Gene set generation and gene set enrichment analysis
	scRNA-seq analysis of merged porcine thymus and PBMC data
	Pseudotime trajectory analysis of porcine thymocytes
	Single-cell regulatory network inference of porcine thymus
	Regulon module analysis of porcine thymocytes
	GWAS signal enrichment analysis and gene-set analysis

	Results
	T cell subpopulations derived from thymus and lymph nodes exhibit distinct transcriptional profiles
	Important modules associated with specific T cell subpopulations
	Candidate hub genes regulate transcriptional heterogeneity in T cell subpopulations across tissues
	Bulk RNA-seq and scRNA-seq data reveal thymocyte heterogeneity in pigs
	Comparative analysis of T cell types reveals transcriptomic differences between porcine thymus and peripheral blood
	Pseudotime trajectory of porcine thymocytes is inferred
	Key transcription factors regulating porcine thymocyte identity
	Module analysis unveils coordinated transcription factor expression patterns during porcine thymus T cell differentiation process
	GWAS signal enrichment analysis reveals role of immune cell types in regulating complex traits of pigs

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


