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Genetic association of the gut
microbiota with epigenetic
clocks mediated by inflammatory
cytokines: a Mendelian
randomization analysis
Siyu Tian1, Xingyu Liao1, Siqi Chen1, Yu Wu1 and Min Chen2*

1School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM),
Chengdu, China, 2Department of Colorectal Surgery, Hospital of Chengdu University of Traditional
Chinese Medicine, Chengdu, China
Background: A new aging biomarker epigenetic clock has been developed.

There exists a close link between aging and gut microbiota, which may be

mediated by inflammatory cytokines. However, the relationship between the

epigenetic clock, gut microbiota, and the mediating substances is unclear.

Methods: Two large genome-wide association meta-analyses were analyzed by

two-sample Mendelian randomization. The results between gut microbiota and

epigenetic clock were investigated using the four methods (Inverse variance

weighted, MR-Egger, weighted median, MR-PRESSO). Genetic correlation was

measured by Linked disequilibrium score regression (LDSC). The correctness of

the study direction was checked by the Steiger test. Cochran’s Q statistic and

MR-Egger intercept were used as sensitivity analyses of the study. The two-step

method was used to examine the mediating role of inflammatory cytokines. We

use the Benjamini-Hochberg correction method to correct the P value.

Results: After FDR correction, multiple bacterial genera were significantly or

suggestively associated with four epigenetic clocks (GrimAge, HannumAge, IEAA,

PhenoAge). And we detected several inflammatory factors acting as mediators of

gut microbiota and epigenetic clocks.

Conclusion: This study provides genetic evidence for a positive and negative link

between gut microbiota and aging risk. We hope that by elucidating the genetic

relationship and potential mechanisms between aging and gut microbiota, we

will provide new avenues for continuing aging-related research and treatment.
KEYWORDS

gut microbiota, epigenetic clocks, inflammatory cytokines, Mendelian randomization
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Introduction

Aging has been an area of particular concern to humans

throughout history. One of the characteristics of aging is epigenetic

aging (1). Because most clinical biomarkers are inadequate to represent

the underlying mechanisms of aging, it has been difficult to identify

molecular targets for interventions for human health longevity (2).

Recently, research has shown that the “epigenetic clock”, which is a

biomarker of aging found at specific cytosine-phospho-guanine (CpG)

sites, can provide accurate age estimates for any tissue or organ

throughout the human life course (3). The emergence of epigenetic

clocks may help solve many long-standing questions, such as the

central question of aging, “How do we get old?”.

The epigenetic clock acts as a heritable indicator of the DNA of

biological aging by capturing the unique characteristics of epigenetic

aging based on different CpG sites (4). HannumAge (5) and Horvath

(6) clocks constitute the inaugural generation of epigenetic clocks,

predicting chronological age utilizing DNA methylation data. These

methodologies have been extensively applied across blood samples and

51 distinct human tissue and cell types. HannumAge delineated 71 age-

associated CpG sites within blood samples (6), whereas HorvathAge

ascertained 353 age-related CpG sites across various human tissues and

cell types, with adjustments made for blood cell counts (6). Intrinsic

Epigenetic Age Acceleration (IEAA) as a derivative of Horvath was

developed after the removal of blood cell composition estimates (7). A

second representative epigenetic clock, PhenoAge (Levine et al., 2018)

and GrimAge (7), predicts associated morbidity and mortality by

combining some information about risk and age (e.g. smoking,

plasma protein levels, white blood cell counts). PhenoAge included

data on 9 clinical biomarkers associated with mortality and 513 CpGs

(8). GrimAge included data on seven plasma proteins and 1030 CpGs

associated with smoking (7). The second generation of representative

genetic clocks can measure the incidence of various diseases and is

better at predicting mortality than the first generation (8, 9). GrimAge

outperforms PhenoAge and first-generation epigenetic clocks in

predicting the time of death (10, 11).

At present, multiple studies has proved that gut microbiota

occupies an important position in the aging process (12–14).

Dysregulation of gut microbiota is implicated in the modulation of

immune and inflammatory responses during the aging process and is

associated with the onset of numerous age-related diseases, both

intestinal and systemic (13). Interestingly, from the perspective of

interactions between gut microbes, inflammatory mediators, and the

immune system, the regulation of gut microbiota may help promote

both physiological and non-pathological aging processes and may be a

potential target for aging interventions (12). However, the genetic

relationship and mechanisms of gut microbiota and aging are unclear,

and no researchers have explored the causal relationship between gut

microbiota and aging from the perspective of epigenetic clocks.

Therefore, we use Mendelian randomization (MR) as a novel

method that can be used to study genetic associations and causality

between the gut microbiota and the epigenetic clock.

MR is a statistical method to assess the causal relationship

between the genetic variation associated with exposure and the
Frontiers in Immunology 02
outcome (15). Compared with traditional observation methods, MR

is less affected by residual confounding and reverse causation (16).

In the MR Analysis, we are not only interested in the link between

epigenetic clocks and gut microbiota but also in the mechanism of

how exposure affects the outcome. Mediation MR Analyses can

attempt to determine the causal pathways by which exposure affects

outcomes and their relative importance. Mediating MR Analysis

can identify factors mediating between exposure and outcome, and

interventions on these mediating factors can mitigate or enhance

the impact of exposure on outcome (17).

Consequently, we conducted a two-sample MR Analysis to

investigate the association between gut microbiota and the

epigenetic clock. Additionally, a mediation MR Analysis was

employed to elucidate the mechanistic role of inflammatory

cytokines in the relationship between gut microbiota and the

epigenetic clock.
Methods

Research description

Figures 1, 2 illustrate the MR research description. Two-sample

Mendelian randomization analysis was performed to analyze the

link between gut microbiota and the epigenetic clock. Instrumental

variables independent of confounding factors such as sex and age

were used in the MR Analysis to simulate the random assignment of

progeny single nucleotide polymorphisms (SNPs) in randomized

controlled trials (RCTS). In addition, the MR design must satisfy

three assumptions: (i) genetic tools are correlated with exposure; (ii)

genetic tools are independent of potential confounding factors; (iii)

Genetic instrumental variables affect results only through exposure.

We then used a two-step method mediated MR Analysis to analyze

the mediating role of inflammatory cytokines between gut

microbiota and the epigenetic clock.
Exposure data source

Gut microbiota genetic variation data comes from the

MiBioGen Consortium (https://mibiogen.gcc.rug.nl/), which is by

far the largest gut microbiota genome-wide meta-analysis (18).

18340 individuals were included to analyze the composition of

microorganisms in the variable regions of 16S rRNA genes V4, V3-

V4, and V1-V2. By mapping microbiota quantitative trait loci

(mbQTL), the relationship between host genetic variation and

bacterial species abundance in gut microbiota was identified. 131

genera with an average abundance greater than 1% were identified

(of which 12 were unknown). Therefore, 119 genera were included

in this study for MR Analysis. The instrumental variables (IVs) of

gut microbiota were chosen as follows (1): Significant SNPs at the

genome-wide level (P < 1×10–5) (19); (2) SNP aggregation using

PLINK algorithm (r2 = 0.001, window size = 10mB); (3)

Palindromic SNPs will be removed (20).
frontiersin.org

https://mibiogen.gcc.rug.nl/
https://doi.org/10.3389/fimmu.2024.1339722
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2024.1339722
FIGURE 2

Study flow chart.
FIGURE 1

Research design. *Mediating effect =Beta(XZ) x Beta(ZY); Direct effect =Beta(XY)-Beta(XZ) x Beta(ZY).
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Outcome data source

Genetic associations of epigenetic clocks (HannumAge, IEAA,

PhenoAge, and GrimAge) in 34,710 European participants were

derived from a recent GWAS meta-analysis of biological aging (21).

Of the 28 subjects of European descent in the study, women

participated in 57.3% of the studies. Horvath epigenetic age

calculator software (https://dnamage.genetics.ucla.edu) was used

in the study or independent script age-adjusted estimate of DNA

methylation HannumAge, IEAA, PhenoAge, GrimAge. Abnormal

samples of clock methylation estimates that differ by +/-5 standard

deviations from the mean will be excluded. Quality control and

interpolation procedures were systematically applied across each

study. For each cohort, the GWAS summary statistics underwent

refinement through adjustments for sex and genetic principal

components employing an additive linear model. Then, the data

of different races were analyzed by METAL software using the

inverse variance fixed-effect scheme (22). Summary statistics were

processed and coordinated for each cohort study using the R

software package EasyQC (23).
Mediator data source

Data on the genetic variation of 91 cellular inflammatory

cytokines were obtained from the latest large GWAS data,

published in August 2023 (24). The investigation quantified 91

inflammatory cytokines across 14,824 subjects and conducted a

genome-wide protein quantitative Trait Locus (pQTL) analysis

utilizing the Olink Target platform. This was subsequently

followed by a meta-analysis of the collected data. These data were

combined with disease GWASs to represent the impact of disease-

associated variants. MR And mediation analyses are used to identify

proteins that are causally linked to the cause of immune-

mediated disease.
Statistical analysis

First, a two-sample MR Analysis was performed for 4 epigenetic

clocks and gut microbiota. The random effects inverse variance

weighting (IVW) was used as the main analysis result. The F-value

was used to measure the potency of instrumental variables (IVs) to

test whether this study might violate the first MR Hypothesis (25).

Cochran’s Q test was used to quantify the heterogeneity of IVs (26).

Horizontal pleiotropy may violate the third MR Hypothesis. We

used the MR-Egger regression (27), weighted median (28) method,

and MR Multiple effects and outlier test (MR-PRESSO) (29) to test

and attempt to correct possible violations of the second and third

MR Assumptions. In the weighted regression model, MR-Egger

realizes directional pleiotropy by intercept. A value where the

intercept term significantly deviates from zero suggests the

existence of horizontal pleiotropy (27). The weighted median

method sorts the MR Estimates obtained using each IV and then

weights the reciprocal of its variance. Individual MR Estimates are
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provided by median results (27). The weighted median assumes that

at least half of the tools are valid and do not require any pleiotropy

to affect the intermediate phenotype (30). The SNP results from

MR-PRESSO exposure were regressed and the square of the residual

was used to identify outlier SNPS that may have pleiotropic effects

(29). At the same time, we consider the reverse causality between

the gut microbiota and the epigenetic clock, so we use the Steiger

test to ensure that our directionality is accurate and that P < 0.05 is

significant (31). We employed linkage disequilibrium score

regression (LDSC) (available at https://github.com/bulik/ldsc) to

evaluate the genetic correlation between Mendelian Randomization

(MR) positive outcomes for gut microbiota and epigenetic clocks

(32). LDSC represents a robust methodology for the analysis of

genetic correlations across complex diseases or traits. It is capable of

differentiating between genuine polygenic signals and confounding

biases, such as population stratification, among others. If the genetic

association is statistically significant as well as by LDSC analysis, we

can be sure of a causal association between the two genetic

phenotypes (33). When negative genetic particles are present in

the sample, the LDSC will not be able to produce results (34).

Because LDSC only considers genetic correlations, causation cannot

be judged (35). Therefore, when the results of LDSC are

inconsistent with the analysis result of MR Analysis, we focus on

the analysis result of MR Analysis.

In order to explore the mechanism of positive gut microbiota

and epigenetic clock outcomes, we used two-step mediated MR To

explore the mediated association of 91 inflammatory cytokines

between positive gut microbiota and epigenetic clock. We then

screened for mediating inflammatory cytokines associated with

positive gut microbiota and epigenetic clocks based on the

following criteria (1): There is a genetic association between the

epigenetic clock and gut microbiota. (2) There is a genetic

association between the mediating inflammatory cytokines and

gut microbiota, and the effect of education on mediating should

be one-way, because if there is a bidirectional relationship between

the two, the effectiveness of mediation analysis may be affected (36).

(3) There is a genetic association between the epigenetic clock and

inflammatory cytokines and the epigenetic clock. The detailed

selection of mediators, as well as the calculation of mediators’

effect and mediators’ proportion are shown in Figure 1.

R (version 4.3.1), TwoSampleMR (0.5.5), Mendelian

Randomization (0.5.0), MR-PRESSO, and LDSC software packages

(37–39) were used for all analyses. The False Discovery Rate (FDR)

method was used to correct P values, according to the Benjamin and

Hochberg (BH) method. When q < 0.1, the results were significant.

While P < 0.05 but q > 0.1 was considered suggestive of causality.
Results

Detailed information regarding the selected instrumental

variables (IVs) is presented in Supplementary Table S1 of the

Supplementary Material. The F-statistic for each IV exceeds 10,

signifying the absence of weak instrumental variables within this

study. The positive MR Results are shown in Tables 1, 2 and
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TABLE 1 Genetic association of gut microbiota and epigenetic clock.

Outcome Exposure Methods P-value OR(95%CI) q-value LDSC rg_p

GrimAge Ruminococcusgnavus_group

MR Egger 0.1577 0.48 (0.18–1.23) 1.0000

0.04

Weighted
median

0.4655 0.91 (0.69–1.18) 1.0000

Inverse
variance
weighted

0.0002 0.78 (0.64–0.97) 0.0261

GrimAge Dorea

MR Egger 0.0842 2.79 (1.01–7.72) 1.0000

Weighted
median

0.0221 1.77 (1.09–2.89) 1.0000

Inverse
variance
weighted

0.0117 1.60 (1.11–2.32) 0.4635

GrimAge Eisenbergiella

MR Egger 0.6698 1.44 (0.28–7.31) 1.0000

0.28

Weighted
median

0.0285 1.39 (1.04–1.87) 0.8476

Inverse
variance
weighted

0.0286 1.26 (1.02–1.56) 0.8511

GrimAge Lactococcus

MR Egger 0.7944 1.16 (0.39–3.43) 1.0000

Weighted
median

0.0002 1.56 (1.17–2.08) 0.0269

Inverse
variance
weighted

0.0002 1.44 (1.14–1.83) 0.0137

GrimAge Prevotella7

MR Egger 0.7160 0.82 (0.29–2.33) 1.0000

0.53

Weighted
median

0.0588 0.80 (0.64–1.01) 0.9998

Inverse
variance
weighted

0.0432 0.84 (0.71–0.99) 1.0000

GrimAge Ruminococcaceae-UCG-010

MR Egger 0.5421 1.72 (0.35–8.50) 1.0000

Weighted
median

0.0640 1.69 (0.97–2.93) 0.9522

Inverse
variance
weighted

0.0486 1.54 (1.00–2.37) 0.8259

GrimAge Victivallis

MR Egger 0.3352 1.91 (0.55–6.59) 1.0000

Weighted
median

0.1126 1.19 (0.96–1.47) 1.0000

Inverse
variance
weighted

0.0456 1.19 (1.00–1.40) 0.9049

HannumAge Haemophilus

MR Egger 0.0756 1.83 (1.04–3.23) 1.0000

0.29

Weighted
median

0.0052 1.59 (1.15–2.20) 0.6187

Inverse
variance
weighted

0.0004 1.43 (1.12–1.83) 0.0462

HannumAge Ruminococcaceae-UCG-004 MR Egger 0.5565 0.60 (0.12–3.04) 1.0000 0.43

(Continued)
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TABLE 1 Continued

Outcome Exposure Methods P-value OR(95%CI) q-value LDSC rg_p

Weighted
median

0.1456 0.76 (0.52–1.10) 1.0000

Inverse
variance
weighted

0.0456 0.76 (0.57–0.99) 1.0000

HannumAge Sellimonas

MR Egger 0.6098 1.31 (0.49–3.51) 1.0000

0.92

Weighted
median

0.1749 1.18 (0.93–1.49) 1.0000

Inverse
variance
weighted

0.0478 1.19 (1.00–1.41) 1.0000

HannumAge Senegalimassilia

MR Egger 0.2463 2.28 (0.74–7.05) 1.0000

Weighted
median

0.1435 1.36 (0.90–2.06) 1.0000

Inverse
variance
weighted

0.0211 1.47 (1.06–2.05) 1.0000

IEEA Coprococcus1

MR Egger 0.2771 1.63 (0.71–3.76) 0.9992

0.72

Weighted
median

0.0346 1.60 (1.03–2.46) 1.0000

Inverse
variance
weighted

0.0320 1.42 (1.03–1.95) 0.7625

IEEA Howardella

MR Egger 0.2814 1.64 (0.71–3.79) 0.9848

Weighted
median

0.0313 1.33 (1.03–1.73) 1.0000

Inverse
variance
weighted

0.0240 1.23 (1.03–1.48) 0.9526

IEEA Peptococcus

MR Egger 0.6249 1.23 (0.55–2.76) 0.9785

0.04

Weighted
median

0.0315 1.35 (1.03–1.78) 1.0000

Inverse
variance
weighted

0.0320 1.24 (1.02–1.52) 0.6356

IEEA Subdoligranulum

MR Egger 0.0452 3.08 (1.19–7.94) 1.0000

0.10

Weighted
median

0.1246 1.48 (0.90–2.43) 1.0000

Inverse
variance
weighted

0.0253 1.56 (1.06–2.29) 0.7518

IEEA Veillonella

MR Egger 0.5832 2.81 (0.09–88.38) 0.9774

0.72

Weighted
median

0.1737 1.41 (0.86–2.33) 1.0000

Inverse
variance
weighted

0.0172 1.61 (1.09–2.39) 1.0000

PhenoAge Ruminococcustorques_group
MR Egger 0.4172 0.56 (0.15–2.09) 0.9547

0.0346 0.49 (0.26–0.95) 0.8229

(Continued)
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Figure 3. All MR Results are shown in Figure 4 and

Supplementary Materials.
The results of gut microbiota and GrimAge

G r i m A g e h a s a s i g n i fi c a n t c a u s a l i t y w i t h

Ruminococcusgnavus_group (P = 0.002, Odds Ratio(OR)= 0.78,

95% Confidence Interval(CI) = 0.64–0.97, q = 0.065, rg_pLDSC =

0.043), Lactococcus (P = 0.0002, OR = 1.44, 95%CI = 1.14–1.83, q

= 0.014).

GrimAge shows a suggestive causality with Dorea (P = 0.012,

OR = 1.6, 95%CI = 1.11–2.32, q = 0.463), Eisenbergiella (P = 0.029,

OR = 1.26, 95%CI = 1.02–1.56, q = 0.851, rg_pLDSC = 0.278),
Frontiers in Immunology 07
Prevotella7 (P = 0.043, OR = 0.84, 95%CI = 0.71–0.99, q = 1,

rg_pLDSC = 0.526), Ruminococcaceae-UCG-010 (P = 0.049, OR =

1.54, 95%CI = 1.00–2.37, q = 0.826), and Victivallis (P = 0.046, OR =

1.19, 95%CI = 1.00–1.40, q = 0.905).
The results of gut microbiota
and HannumAge

HannumAge had a significant causality with Haemophilus (P =

0.0004, OR = 1.43, 95%CI = 1.12–1.83, q = 0.046, rg_pLDSC = 0.29).

HannumAge had a suggestive causality with Ruminococcaceae-

UCG-004 (P = 0.046, OR = 0.76, 95%CI = 0.57–0.99, q = 1, rg_pLDSC =

0.435), Sellimonas (P = 0.048, OR = 1.19, 95%CI = 1.00–1.41, q = 1,
TABLE 1 Continued

Outcome Exposure Methods P-value OR(95%CI) q-value LDSC rg_p

Weighted
median

Inverse
variance
weighted

0.0249 0.58 (0.36–0.93) 0.7419

PhenoAge Dorea

MR Egger 0.2490 2.27 (0.62–8.29) 1.0000

Weighted
median

0.1570 1.58 (0.84–3.00) 1.0000

Inverse
variance
weighted

0.0279 1.69 (1.06–2.69) 0.6647

PhenoAge Lachnospiraceae-UCG-001

MR Egger 0.2736 2.32 (0.55–9.72) 1.0000

Weighted
median

0.0641 1.46 (0.98–2.18) 1.0000

Inverse
variance
weighted

0.0370 1.41 (1.02–1.93) 0.6286

PhenoAge Lachnospiraceae-UCG-008

MR Egger 0.1223 3.62 (0.83–15.84) 1.0000

Weighted
median

0.0326 1.54 (1.04–2.30) 0.9684

Inverse
variance
weighted

0.0004 1.51 (1.14–2.00) 0.0512

PhenoAge Lactobacillus

MR Egger 0.0259 0.27 (0.11–0.69) 1.0000

Weighted
median

0.0715 0.69 (0.47–1.03) 1.0000

Inverse
variance
weighted

0.0379 0.71 (0.51–0.98) 0.5643

PhenoAge Tyzzerella3

MR Egger 0.4171 1.71 (0.49–5.95) 0.9732

Weighted
median

0.0571 1.36 (0.99–1.88) 1.0000

Inverse
variance
weighted

0.0005 1.39 (1.10–1.75) 0.0299
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rg_pLDSC = 0.917), Senegalimassilia (P = 0.021, OR = 1.47, 95%CI =

1.06–2.05, q = 1).

The results of gut microbiota and IEAA
IEEA had a suggestive causality with Coprococcus1 (P =

0.032, OR = 1.42, 95%CI = 1.03–1.95, q = 0.762, rg_pLDSC =
Frontiers in Immunology 08
0.72), Howardella (P = 0.024, OR = 1.54, 95%CI = 1.00–2.37, q =

0.953), Peptococcus (P = 0.03, OR = 1.24, 95%CI = 1.02–1.52, q =

0.636, rg_pLDSC = 0.041), Subdoligranulum (P = 0.025, OR =

1.56, 95%CI = 1.06–2.29, q = 0.752, rg_pLDSC = 0.099),

Veillonella (P = 0.017, OR = 1.61, 95%CI = 1.09–2.39, q = 1,

rg_pLDSC = 0.718).
TABLE 2 Sensitivity analysis of the results of Mendelian randomization of gut microbiota and epigenetic clock.

Outcome Exposure
MR PRESSO Global_test

P value
Cochran’s Q

P value
Egger-intercept

P value
Steiger

GrimAge Ruminococcusgnavus_group 0.78 0.75 0.32
2.48842E-

41

GrimAge Dorea 0.614 0.59 0.29
9.20712E-

26

GrimAge Eisenbergiella 0.672 0.64 0.88 3.432E-37

GrimAge Lactococcus 0.22 0.17 0.70
1.79718E-

31

GrimAge Prevotella7 0.537 0.50 0.96
7.74447E-

42

GrimAge Ruminococcaceae-UCG-010 0.384 0.36 0.89
3.73886E-

16

GrimAge Victivallis 0.863 0.85 0.47
3.51908E-

40

HannumAge Haemophilus 0.822 0.81 0.38
9.94033E-

36

HannumAge Ruminococcaceae-UCG-004 0.503 0.48 0.79
6.47868E-

29

HannumAge Sellimonas 0.741 0.74 0.85
5.16753E-

37

HannumAge Senegalimassilia 0.899 0.89 0.48 1.2944E-16

IEEA Coprococcus1 0.524 0.46 0.73
8.15555E-

34

IEEA Howardella 0.478 0.44 0.52
5.58563E-

38

IEEA Peptococcus 0.519 0.47 0.98
5.95127E-

43

IEEA Subdoligranulum 0.303 0.27 0.16
1.93328E-

29

IEEA Veillonella 0.281 0.23 0.76
3.23535E-

18

PhenoAge Ruminococcustorques_group 0.533 0.48 0.96
6.06165E-

28

PhenoAge Dorea 0.6 0.58 0.64
3.04292E-

26

PhenoAge Lachnospiraceae-UCG-001 0.936 0.92 0.50
4.76372E-

40

PhenoAge Lachnospiraceae-UCG-008 0.668 0.64 0.27
2.09483E-

37

PhenoAge Lactobacillus 0.363 0.31 0.07
2.37984E-

33

PhenoAge Tyzzerella3 0.648 0.62 0.75
4.61924E-

48
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The results of gut microbiota
and PhenoAge

PhenoAge had a significant causality with Lachnospiraceae-

UCG-008 (P = 0.0004, OR = 1.51, 95%CI = 1.14–2.00, q = 0.051),

Tyzzerella3 (P = 0.0005, OR = 1.39, 95%CI = 1.10–1.75, q = 0.03).

P h e n o A g e h a d a s u g g e s t i v e c a u s a l i t y w i t h

Ruminococcustorques_group (P = 0.025, OR = 0.58, 95%CI =

0.36–0.93, q = 0.742), Dorea (P = 0.028, OR = 1.69, 95%CI =

1.06–2.69, q = 0.665), Lachnospiraceae-UCG-001 (P = 0.037, OR =

1.41, 95%CI = 1.02–1.93, q = 0.629), Lactobacillus (P = 0.038, OR =

0.71, 95%CI = 0.51- 0.98, q = 0.564).
Sensitivity analysis

IVW, MR-Egger, and weighted median methods show the same

causal estimates of direction. There are no outliers in the MR-

PRESSO method, and the MR Egger intercept test (P < 0.05)

indicates that horizontal pleiotropy does not exist in MR research.

Cochran’s Q test (P < 0.05) found no heterogeneity among

instrumental variables. Steiger test (P < 0.05) indicated that the

direction of MR Analysis was correct and there was no

reverse causality.
Mediation MR Analysis

We used formulas to calculate the direct and mediated effects of

inflammatory factors between the gut microbiota and the epigenetic

clock (Mediating effect =Beta(XZ) x Beta(ZY); Direct effect = Beta

(XY) - Beta (XZ) x Beta (ZY). Among the 91 inflammatory factors,

our study found that 4 inflammatory factors met the screening

criteria, so mediation analysis was included and the mediation effect

and mediation ratio of inflammatory factors were calculated. Beta-

nerve growth factor plays a mediating role in Howardella and IEAA

(mediator effect: -4.08%, direct effect: 25.1%). Oncostatin-M plays a

mediating role in Ruminococcaceae-UCG-010 and GrimAge
Frontiers in Immunology 09
(mediator effect: -7.71%, direct effect: 59.92%). Interleukin-12

subunit B plays a mediating role in Prevotella7 and GrimAge

(mediator effect: -0.43%, direct effect: -16.96%). C-C motif

chemokine 25 plays a mediating role in Lachnospiraceae-UCG-

008 and PhenoAge (mediator effect: -0.35%, direct effect: 41.5%).
Discussion

In recent years, population aging has posed a global challenge,

resulting in increased burdens on national healthcare systems, so we

need to explore how to slow down aging and extend life (40). By MR

Analysis of four kinds of epigenetic clocks with aging

characteristics, genetic correlation with gut microbiota was found.

In addition, further mediated MR Analysis identified the

inflammatory cytokine pathways that contribute to aging in the

gut microbiota. Gut microbiota is associated with aging, providing

potential targets for new interventions to promote healthy aging
FIGURE 3

Forest map of gut microbiota and epigenetic clock positive results.
FIGURE 4

Heat map of the results of Mendelian randomized analysis of gut
microbiota and epigenetic clock. *Purple represents positive results,
and white and red represent negative results. The comparison table
of gut microbiota is in the Supplementary Material.
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(41). The results of LDSC regression analysis showed that there

were suggestive genetic correlations between some epigenetic clock

and gut microbiota.
Potential causal link between epigenetic
clock and gut microbiota

Studies have shown that the periodicity and activity of

epigenetic clock genes are significantly associated with changes in

age (42). Biological aging may be related to the richness and

diversity of gut microbiota (12, 13, 43). The results of previous

studies are consistent with our MR Analysis in which we found that

multiple gut bacteria genera have genetic associations with

epigenetic clocks. Higher biological age and lower physical fitness

were significantly associated with increased Dorea abundance (44).

Observational study results have shown a significant increase in

Salmonella and Haemophilus in older individuals (45, 46).

Coprococcus 1 and Ruminococcus were found to have the

strongest association with age-related phenotypes (47). The

relative abundance of Peptococcus increased with age (48).

Subdoligranulum is positively associated with lipopolysaccharide

(LPS) biosynthesis and short-chain fatty acid (SCFA) degradation

pathways that accelerate epigenetic clock aging (49). An MR

Analysis revealed a genetic link between Veillonella and longevity

(50). At the same time, studies have found that Lactobacillus can

reduce age-related diseases and regulate the imbalance of gut

microbiota (51). The results of MR are different from those of

previous studies, which show that the use of Lactococcus, and

Lachnospiraceae can delay aging (52, 53). Due to the few

literatures and the influence of confounding factors, this result

still needs to be discussed. Interestingly, we also found gut

microbiota associated with aging that had not been previously

reported, including Eisenbergiella, Prevotella7, Victivallis,

Howardella, Senegalimassilia, and Tyzzerella. The discovery of

these gut microbiota can provide thinking for future scientific

research work.

The reduced diversity and abundance of the gut microbiota may

be the main reason for the effect of the gut microbiota on the

epigenetic clock. It has been found in the literature that the diversity

of gut microbiota and the abundance of butyricogenes decreased in

the elderly (54–56). The lower bacterial diversity in the elderly

showed that Bacteroidetes and Firmicutes still dominated, but the

relative proportion of Firmicutes subgroups changed (57). Reducing

the pH value of the gut through propionate and butyrate can

effectively prevent the overgrowth of pathogens such as

Escherichia coli, stimulate the growth of beneficial bacteria, and

play a regulatory role in the intestinal microbiome (58). However, in

the intestinal microbial environment of the elderly, the number of

several butyrate-producing gut microbiota is relatively small (such

as Ruminococcus, etc.). This may lead to the reproduction of

intestinal pathogens and the inhibition of beneficial bacteria in

the intestine, becoming an important reason for the acceleration of

the epigenetic clock.
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Inflammatory cytokines act as mediators of
gut microbiota and epigenetic clock

The study found that specific epigenetic features in the DNA of

gut microbes in human feces, particularly those associated with

inflammation, are strongly associated with disease (59). In our

study, we found some possible inflammatory cytokine pathways in

the gut microbiota associated with the epigenetic clock. The

gastrointestinal tract (GI) and central nervous system (CNS) are

constantly confronted with complex human environments. As a

result, a complex network of cells, including immune cells and

neuronal cells, are able to coordinate local and systemic

inflammatory responses (60). Nerve Growth Factor (NGF)

modulates the survival, proliferation, and differentiation of

neuronal cells within both the peripheral and central nervous

systems (61). Some studies have shown that gut microbes can

influence levels of NGF in the brain, which in turn affects

neurodevelopment and cognitive function (62, 63). Recent studies

have shown that the gut-brain axis is able to regulate inflammation

and immune responses, thereby influencing the aging process (60,

64). We found that nerve growth factor plays a potential mediating

role between gut microbiota and epigenetic clock, and thus may

advance the study of the role of gut-brain axis theory in aging.

Nerve growth factors regulated by gut microbiota may have

potential benefits against neurodegenerative diseases during aging,

as these factors are able to protect neurons and slow cognitive

decline (65). As a member of the interleukin-6 cytokine family,

Oncostatin M (OSM) plays a significant role in inflammation,

autoimmune and cancer (66). Specific gut microbes may prompt

host cells to restrain Oncostatin-M, which in turn affects

inflammatory pathways and immune regulation, mechanisms that

may be associated with the aging process, influencing the epigenetic

clock by regulating the inflammatory response (67). Interleukin-12

(IL-12) is indispensable in cellular immunity and is considered an

effective drug to enhance the anti-tumor immune response. Gut

microbiota can influence IL-12B expression through its metabolites

or by activating immune cells in the intestinal mucosa. Newly

discovered evidence suggests that IL-12B is a key cytokine that

enables T helper cells (Th1 and Th17) to differentiate and function

(68). Most Th17 and Th1 are present in the gastrointestinal tract

and play an important homeostasis role, while positive responses to

the flora are thought to be related to inflammation and pathogenesis

(69). This effect may indirectly affect the aging process and

epigenetic clock by affecting inflammatory states. We found that

gut microbiota may control the development of cancer through

OSM and IL-12, thus slowing down the effects of aging. C-C motif

chemokine 25 (CCL25) is a chemokine that is mainly expressed in

the small intestine and plays an important role in attracting

immune cells such as T cells to the intestine (70). The

composition and function of gut microbiota can influence the

intestinal immune environment, including CCL25 expression

(71). By regulating the activity of immune cells in the gut, the gut

microbiota may indirectly influence the levels of immune regulation

and inflammation associated with aging, thereby affecting the
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epigenetic clock. CCL25 is also involved in the expression of liver

inflammatory genes (72). Our findings may be able to control liver

inflammation by regulating gut microbiota, thereby delaying aging.

The gut microbiota plays a crucial role in the inflammatory process

in the human body (12). In older mice, Lactobacillus has been shown to

enhance the tight junction of the intestinal barrier, reduce the

expression of pro-inflammatory cytokines, and inhibit the activation

of NF-kB (73). SCFAs are seen as a central point of connection between

the host and the gut microbiota (74). SCFAs can reduce the production

of inflammatory factors to achieve immune regulation (75). SCFAs can

regulate intestinal transport time, play a role in insulin response, and

are closely associated with metabolic diseases (76). SCFAs are an

important regulator of microglia integrity in the central system,

which is particularly important in older adults and may lead to

cognitive decline (77). In addition, there is research evidence that

compounds from the gut microbiota can activatemacrophages through

the blood, putting them into a pro-inflammatory state that leads to

atherosclerosis. This may lead to the development of cardiovascular

disease (78). The diseases listed above are closely related to human

aging, which speeds up the epigenetic clock.

Our study has several advantages: The use of MR Analysis

excludes other factors and assesses the genetic association between

the epigenetic clock and gut microbiota from a genetic perspective.

At the same time, we used LDSC to evaluate the causal link, making

the results more reliable. We also used the Steiger test to prove the

correctness of the directionality of our study. In addition, in the MR

Analysis, we use the F-number to guarantee the strength of the IVs.

The MR-PRESSO and MR-Egger regression intercepts can test the

horizontal pleiotropy of the study to avoid result bias. European

populations were used for exposure and results, avoiding

population stratification of results. We used a two-step mediation

to determine the role of relevant inflammatory cytokines between

gut microbiota and the epigenetic clock.

However, there are limitations to the study. Genus is the lowest

classification level in the gut microbiota data, so we were unable to

further explore the relationship between exposure and outcome at

the species level. Due to the need for the number of SNPs in the

sensitivity analysis and horizontal pleiotropy test of this study, our

investigation did not achieve the conventional GWAS significance

threshold, which is typically set at P < 5 × 10^-8. So we use FDR

correction to limit the possibility of positive errors. We only

investigated the effect of inflammatory factors as mediators on the

epigenetic clock, in fact, the mediators that affect the epigenetic

clock may be diverse, such as BMI. Due to the interference of

demographic stratification, we analyzed GWAS data from

European populations, so the findings may not be applicable to

other ethnic groups or populations (79).
Conclusion

In summary, this two-sample MR Study found a causal

relationship between the gut microbiota and the epigenetic clock.

Further experimental studies are needed to elucidate the mechanisms

by which gut microbiota contribute to the epigenetic clock.
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