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Protozoa exert a serious global threat of growing concern to human, and animal,

and there is a need for the advancement of novel therapeutic strategies to

effectively treat or mitigate the impact of associated diseases. Omega

polyunsaturated fatty acids (w-PUFAs), including Omega-3 (w-3) and omega-6

(w-6), are constituents derived from various natural sources, have gained

significant attention for their therapeutic role in parasitic infections and a

variety of essential structural and regulatory functions in animals and humans.

Both w-3 and w-6 decrease the growth and survival rate of parasites through

metabolized anti-inflammatory mediators, such as lipoxins, resolvins, and

protectins, and have both in vivo and in vitro protective effects against various

protozoan infections. The w-PUFAs have been shown to modulate the host

immune response by a commonly known mechanism such as (inhibition of

arachidonic acid (AA) metabolic process, production of anti-inflammatory

mediators, modification of intracellular lipids, and activation of the nuclear

receptor), and promotion of a shift towards a more effective immune defense

against parasitic invaders by regulation the inflammation like prostaglandins,

leukotrienes, thromboxane, are involved in controlling the inflammatory

reaction. The immune modulation may involve reducing inflammation,

enhancing phagocytosis, and suppressing parasitic virulence factors. The

unique properties of w-PUFAs could prevent protozoan infections,

representing an important area of study. This review explores the clinical

impact of w-PUFAs against some protozoan infections, elucidating possible

mechanisms of action and supportive therapy for preventing various parasitic

infections in humans and animals, such as toxoplasmosis, malaria, coccidiosis,

and chagas disease. w-PUFAs show promise as a therapeutic approach for

parasitic infections due to their direct anti-parasitic effects and their ability to
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modulate the host immune response. Additionally, we discuss current treatment

options and suggest perspectives for future studies. This could potentially

provide an alternative or supplementary treatment option for these complex

global health problems.
KEYWORDS

omega polyunsaturated fatty acids, prevention, parasitic infections, mechanism of
action, supportive therapy
Introduction

Omega-3 and omega-6 polyunsaturated fatty acids are

synthesized from the essential fatty acids alpha-linolenic acid and

linoleic acid, respectively. They are fundamental components of

living cells and have been found to significantly contribute to the

prevention and treatment of a variety of health problems (1).

PUFAs can be divided into two primary groups: w-3 PUFAs

and w-6 PUFAs, with their main distinction lying in the

positioning of double bonds along the carbon chain. w-6 PUFAs

have their initial double bonds starting at the sixth carbon atom,

whereas w-3 PUFAs begin at the third carbon atom, measured

from the methyl end of the carbon chain, which is referred to as

the w-carbon (2). Linoleic acid (LA) (18:2 w-6) and arachidonic

acid (AA) (20:4 w-6) are the two most common w-6 PUFAs in

diets. Western diets are high in w-6 PUFAs and low in w-3
PUFAs, resulting in a high w-6/w-3 ratio of up to 20-30 (3).

The three primary w-3 PUFAs are a-linolenic acid (18:3 w-3),
eicosapentaenoic acid (20:5 w-3), and docosahexaenoic acid

(DHA, 22:6 w-3). It is important to distinguish between a-LA
(an w-3 precursor) and g-linolenic acid (GLA), which is 18:3 but

belongs to the w-6 fatty acid series. LA (precursor to w-6 fatty

acids) and a-LA (precursor to w-3 fatty acids) are essential fatty

acids, as mammals cannot synthesize them (2). Considering the

adverse effects of synthetic medications, there is a growing trend

in the utilization of natural therapies and supplements in the

contemporary medical landscape (1).

w-3 fatty acids such as Eicosapentaenoic acid (EPA), DHA, and

Alpha-linolenic acid (ALA), as well as w-6 fatty acids like LA and

AA as shown in Figure 1, are important structural components of

the cell membrane. They serve as precursors to bioactive lipid

mediators and provide a source of energy. These PUFAs are

components of the human and animal diet and are highly

regarded as dietary supplements. Numerous studies have

previously demonstrated the potential benefits of w-PUFAs in

increasing nutritional consumption, including cardiovascular (4),

neurodegenerative (5), inflammatory diseases (6), as well as for

some cancer types, mostly prostatic, colorectal, and mammary

cancer (7, 8). Concurrently, a considerable number of in vitro and

in vivo studies have consistently shown the importance of w-PUFAs
02
as protective and therapeutic agents against cardiac arrhythmias,

hypertriglyceridemia, and inflammation (9).

Besides their excellent functions in treating innate immune

disorders such as allergies or atopic dermatitis, type 1 diabetes

(T1D), rheumatoid arthritis (RA), systemic Lupus erythematosus

(SLE), and multiple sclerosis (10). w-PUFAs also showed good

potential to prevent various exogenous pathogens, including several

kinds of parasites. A recent study has shown that DHA, a

representative of w-3, strongly persuaded autophagy in murine bone

marrow-derived macrophages, which may prevent T. gondii infection

(11). These PUFAs enhanced recovery and decreased the risk of

infection (12). Bioactive derivatives of PUFAs regulate inflammation

by influencing the production of molecules such as prostaglandins,

leukotrienes, and thromboxane. In addition, specialized pro-resolving

mediators (SPMs) like resolvins, protectins, and maresins play an

important role in controlling inflammatory responses (13). These

SPMs promote anti-inflammatory and pro-resolution properties

while maintaining immune function, thereby restoring homeostasis.

They accomplish this by downregulating pro-inflammatory cytokines

and upregulating anti-inflammatory cytokines. SPMs also help

phagocytic cells clear cellular debris and lower oxylipin levels, which

promote inflammation. The synthesis of these bioactive mediators

from PUFAs such as DHA and EPA involve enzymes such as

phospholipases A2 (PLA2s), cyclooxygenases (COX), lipoxygenases

(LOX), and cytochrome P450 (CYP450). These mechanisms include

inhibiting the metabolism of AA, producing anti-inflammatory

mediators, modifying intracellular lipids, and activating nuclear

receptors (13, 14). Here, we summarize the sources of w-3 and w-6
PUFAs and the current understanding of the therapeutic role of w-
PUFAs in the prevention of various protozoan infections. Moreover,

we discuss the current treatment options and suggest future

research directions.
Challenges in parasitic diseases and
the need for therapeutic progress

Infectious diseases exert significant health impacts on both

humans and livestock. The parasite residing in the gut can change

the composition of the microbiome, and these changes can have
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significant effects on gut homeostasis and host immunity (15).

Many of these diseases are caused by different parasites. Amongst

others, these comprise the causative agents of malaria, coccidiosis,

trypanosomiasis, toxoplasmosis, schistosomiasis, etc. Every year,

these parasites cause a high rate of mortality and morbidity in

endemic countries (16, 17). Recent studies have reported alarming

figures, with parasitic infections contributing to a significant

percentage of health losses. For instance, in regions affected by

malaria, the World Health Organization (WHO) estimated 619,000

malaria deaths globally in 2021 compared to 625,000 in the first year

of the pandemic. In 2019, before the pandemic struck, the number

of deaths stood at 568,000. The global tally of malaria cases reached

247 million in 2021 compared to 245 million in 2020 and 232

million in 2019 (18).

Similarly, 54.3, 31.7, 70.9, and 52.9% mortality rates associated

with the Eimeria parasite have been reported in Turkey, India,

Ethiopia, and Nigeria, respectively (19). Meanwhile, Chagas disease

affects about 7 million people worldwide (20). These figures

underscore the severity of parasitic infections and highlight the

urgent need for novel therapeutic agents against these parasites.

Meanwhile, vaccines and successful and safe treatment are still
Frontiers in Immunology 03
deficient, and most of the drugs used were shown drug-resistant.

Therefore, novel therapeutic agents against these parasites are

urgently needed. Currently, the situation is very serious because

in low-income countries the pharmaceutical industries are unable

to develop new drugs against these infectious agents. Thus, natural

products signify some good opportunities to discover novel

therapeutic molecules (16, 17). On the other hand, the occurrence

of partial immunity after exposure suggests the potential for a

successful and effective vaccine, yet the identification of exact

markers for protection remains a complex task (21). The control

of parasitic infections needs great attention in the fields of public

health, parasitology research, medical science, and political will.

However, during the entire spectrum of parasitic diseases of animals

and humans, there is an urgent need for better treatment and the

search for the best and novel drugs. Recently, natural products have

become a beneficial source of treatments for clinical and preventive

use, and w-PUFAs are such kind of attractive components that have

gained great attention in clinical research (22).
Sources of omega PUFAs

The consumption of w-3 PUFAs is generally lacking because of
insufficient sources; however, western food is typically the high

source of w-6 PUFAs (23). Most vegetable oils and seeds such as

sunflower, corn, wheat, grape seed, rapeseed, poppy seed, palm,

hemp, cottonseed, and soybean are rich in w-6 PUFAs in the form

of LA, however, a low proportion of w-3 ALA. The ALA is

frequently found in green leafy vegetables, walnuts, flaxseed,

canola oils, and soybeans. However, DHA and EPA are found in

fish oils, such as mackerel, salmon, anchovies, trout, sardines, and

algae (24–26). AA is a nutritional w-6 supplement mostly found in

poultry, eggs, and meaty organs, while gamma-linolenic acid (GLA)

is frequently available in borage oil, evening primrose oil, and rich

amounts in human milk. In animal and plant-based diets, these

PUFAs originate in different forms such as phospholipids,

triacylglycerols, cholesterol esters, and diacylglycerols (27). The

animal and plant-based w-PUFAs sources and the obtained

proportion are listed in Table 1.
Parasitic diseases and their
available treatments

Toxoplasmosis

Toxoplasmosis is caused by T. gondi, an intracellular pathogen

that affects roughly one-third of the global human population. It

occurs in nature in a variety of forms, including oocytes, bradyzoites

within latent tissue cysts, and actively replicating tachyzoites, which

indicate active infection (32). T. gondii can invade nearly all nucleated

cells of warm-blooded animals, existing within cells via the

development of parasitophorous vacuoles (PV). Alongside PV

formation, T. gondii employs various strategies to evade host

immune defenses (33). Human transmission occurs through
FIGURE 1

Chemical structure of omega-3 and omega-6 PUFAs. LA, Linoleic acid;
AA, Arachidonic acid, ALA, a-linolenic acid; EPA, eicosapentaenoic
acid; DHA, docosahexaenoic acid.
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ingestion of contaminated food or water containing sporulated

oocytes, consumption of undercooked meat containing latent cysts,

vertical transmission from mother to child, or infected allografts

during organ transplantation. On the other hand, acquisition

via blood products or accidental exposure in laboratory settings

is uncommon (34). Toxoplasmosis is a severe infection in

immunocompromised patients, resulting in frequent reactivation of

latent cysts in patients with chronic infection (35) (Figure 2). The

disease is highly prevalence in AIDS patients, but its range has been

changed and increased in other immunocompromised persons (36).

Toxoplasmosis is particularly life-threatening in hematopoietic stem

cell transplant or bone marrow patients (37).
Current treatment options
for toxoplasmosis

The preferred treatment for toxoplasmosis is a combination of

sulphadiazine and Pyrimethamine (SDZ-PYR), which target the

active stage of the infection (38). Additionally, alternative therapies

are accessible, such as Pyrimethamine combined with certain

antibiotics or the use of sulfamethoxazole-trimethoprim (ST) or

atovaquone as monotherapy (34). If the patients cannot accept

those molecules, an atovaquone 1500 mg combined with PYR can

also be used, and SDZ combined with azithromycin 900 to 1200

mg/j can be prescribed (38). Some studies did not show an anti-

parasitic relation between SDZ-PYR and PYR-clindamycin,
Frontiers in Immunology 04
therefore reinforcing the probability of selecting trimethoprim-

sulfamethoxazole (39, 40). Trimethoprim-sulfamethoxazole is also

the only successful combination for prophylaxis in patients who are

at risk for Toxoplasma recurrence. For systemic treatment in

immunocompromised patients, a combination of corticosteroids

with anti-parasitic drugs was suggested for ocular toxoplasmosis (8,

41). However, comparative studies on this subject are rare. Due to a

deficiency in clinical trials, SDZ-PYR is still the treatment choice

when combined with corticosteroids (42). Recently, the

pharmaceutical industries have been successfully manufacturing

medicines using natural products to treat parasitic infections and

discover their possible anti-parasitic properties (43).
Omega-PUFAs efficacy in toxoplasmosis

Lipoxin A4, an eicosanoid mediator resultant from 5-

lipoxygenase, has been shown to play a significant role in

toxoplasmosis. It has been demonstrated that lipoxin A4, along

with other arachidonic acid (AA) derivatives, promotes and

enhances cyst burdens in tissues while reducing lethality from

encephalitis. Previous studies have indicated a close association

between AA, particularly lipoxin A4, and the suppression of

cytokine generation such as interleukin 12 (IL-12) and IFN-g
(44). Notably, in a mouse model lacking lipoxin, a reduced

number of T. gondii brain cysts were observed, accompanied by

higher serum levels of IL-12 and IFN-g (45). These findings suggest
TABLE 1 The proportion of w-PUFAs (g/100g) in various animal and plant-derived sources.

Sources w-3 PUFAs w-6 PUFAs References

ALA DHA EPA LA ADA DPA

Salmon – 18.23 13.3 – – 2.99

(28)Herring – 4.21 6.28 – – 0.62

Sardine – 10.67 10.15 – – 1.98

Sunflower 0.33 – – 49.90 – –

(29)
Soybean 7.6 – – 51.36 – –

Corn 0.6 – – 49.83 – –

Wheat 5.3 – – 55 – –

Almond 0.3 – – 10.5 – –

(30, 31)Walnuts 6.6 – – 34 – –

Hazelnuts 0.11 – – 5.1 – –

Lettuce 0.15 – – 0.06 – –

(31)Green broccoli 0.11 – – 0.03 – –

Brussels sprouts 0.17 – – 0.08 – –

Beef 0.08 – – 0.13 – –

(31)Pork, lean meat – – – 1.63 0.03 –

Lamb 0.11 – – 0.11 – –
ALA, a-linolenic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid LA, Linoleic acid; ADA, Adrenic acid; AA, Arachidonic acid.
The above data were obtained from https://fdc.nal.usda.gov and http://www.bda-ieo.it/wordpress/en/?page_id=23.
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that the increased mortality in lipoxin-deficient mice resulted from

cytokine-mediated tissue injury, despite effective parasite control.

Antigen-presenting dendritic cells are crucial in controlling

intracellular pathogens like T. gondii and certain viruses by

producing IL-12. A study in mice revealed that lipoxin A4

analogs reduced IL-12 production by dendritic cells stimulated

with T. gondii extract (45). This suggests that lipoxin production

by pathogens may serve as a mechanism to modulate host

immunity, potentially facilitating chronic infection by minimizing

tissue damage. The differing roles of lipoxins in these infection

models may be attributed to the dynamics of specific pathogen-host

interactions. T. gondii replicates rapidly like Mycobacterium

tuberculosis, which can trigger inflammatory reactions and

subsequent immunopathology (46). Lipoxins demonstrate

beneficial effects on the host, increasing survival by mitigating

these inflammatory responses.

T. gondii has a considerable amount of unsaturated fatty acids,

which are the structural membrane components that play a

significant part in energy metabolism (47, 48). During replication,

T. gondii requires a substantial quantity of lipids for membrane

biogenesis, thus the propagation rates of tachyzoites depend on the

production levels of fatty acids and the synthesis of new

membranes. Additionally, the metabolism of fatty acids at the

interface between the host and the parasite also influences T.

gondii tachyzoites (49–51). Moreover, it has been demonstrated

that the interface of fatty acid metabolism induces inflammatory

cytokine production in the host and triggers calcium release from

neutrophils, thereby facilitating the egress of parasites from infected

host cells (52–54). However, Zhou et al. indicated that a-linolenic
acid metabolism was significantly disrupted in mice infected with

T. gondii (55). The administration of sulfadiazine sodium
Frontiers in Immunology 05
ameliorates the metabolomic perturbation in mice infected with

T. gondii. These alterations in fatty acid metabolism may play a

crucial role in facilitating T. gondii tachyzoites within cells. Hence,

some authors have recommended the use of suitable nutritional

supplementation, such as specific fatty acids (e.g., acyl-coenzyme A:

diacylglycerol acyltransferase), in immunocompromised

individuals to prevent chronic toxoplasmosis (56, 57).
Possible mechanism of w-PUFAs in
T. gondii infection

Numerous studies have elucidated the essential role of

autophagy in removing intracellular pathogens through

xenophagy. However, during T. gondii infection, two types of

autophagy, canonical and non-canonical, are involved (58, 59). It

has been suggested that w-3 PUFAs play a significant role in

regulating T. gondii infection both in vivo and in vitro (11). In

primary macrophages, DHA significantly induces autophagy and

mediates its activity, which is necessary to regulate and control

T. gondii growth intracellularly (11). Moreover, the AMP-activated

protein kinase (AMPK) activates the host-defense mechanism by

regulating inflammatory responses and innate immunity to control

infectious disease agents such as bacteria, viruses, and parasites (60).

A recent study demonstrated that the calcium/calmodulin-

dependent protein kinase kinase (CaMKK)/AMPK signaling

pathways are required to eliminate T. gondii via CD40-induced

autophagy (61). The two signaling pathways, CaMKKb/AMPK-

mediated autophagy, are essential for the host to control T. gondii

infection. The proposed mechanism for this protection is depicted

in Figure 3.
FIGURE 2

Toxoplasma gondii stage differentiation and its host (cell) microenvironment regulation. After infection, active tachyzoites convert to comparatively
latent bradyzoites. The development of bradyzoite comprising tissue cysts for a long time is critical for transmitting the parasite to a new host. In
immunocompromised such as AIDS or TPX patients, reconversion of bradyzoites to tachyzoites can occur and lead to serious disease. AIDS,
Acquired immunodeficiency syndrome; TPX, Transplant recipients.
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Studies have shown that nutrients play a crucial role in activating

and maintaining immune homeostasis. Different nutrients, such as

fatty acids, mediate both the acquired and innate immune systems

through different pathways such as Toll-like receptor 4 (62). Similarly,

various lipid components act as immune-activating factors and energy

sources. During T. gondii infection, lipid biosynthesis occurs through

salvage pathways, which play an essential role in intracellular

pathogenesis and present promising chemotherapeutic targets in

lipid synthesis and salvage pathways (49, 63). Moreover, a study

recommended that the immunomodulatory functions of w-3 PUFAs

may be useful in inflammatory and infectious diseases (64).
Malaria

Malaria is a mosquito-borne infectious disease caused by a

protozoan parasite of the genus Plasmodium (65). The symptoms

include fever, vomiting, fatigue, and headaches. In critical cases,

malaria can cause seizures, yellow skin, coma, or even death (66).

According to the World Health Organization, 228 million malarial

cases occurred in 2018 (67).
Current antimalarial drugs

The treatment of malaria and the choice of drug depends on the

Plasmodium spp., drug resistance, geographical location, and disease

severity (68). The complicated cases of malaria are treated with
Frontiers in Immunology 06
chloroquine 1000 mg (600 mg base), and it is the best choice of

drug in most Plasmodium spp., except P. falciparum, which has

become highly resistant in most cases (69). A combination of

amodiaquine and artesunate, as well as atovaquone combined with

proguanil (250 mg/100 mg), or an artemether 20 mg-lumefantrine

120 mg (twice daily for 3 days), can be used to treat chloroquine-

resistant P. falciparum (69). During pregnancy, specified oral quinine

and parenteral quinine are beneficial for severe malaria treatment.

Doxycycline, mefloquine, primaquine, and atovaquone-proguanil are

the drugs chosen for chemoprophylaxis (69). The list of antimalarial

drugs and their mechanisms of action are shown in Table 2.
Omega-PUFAs efficacy in malaria

The effects of w-PUFAs on malarial causative agents such as P.

berghei or P. falciparum are the most reliable and easily understood.

Studies have shown that indomethacin did not affect cerebral malaria

or parasitemia development; however, w-3 and w-6 PUFAs acted

directly on the pathogen and constrained parasitemia both in vivo

and in vitro (82). This inhibition mechanism depends on the

concentration of fatty acids, their unsaturation, and chain length. A

mouse model infected with P. berghei and treated for 4 days with fish

oils rich in PUFAs showed suppressive effects against the parasite

(82, 83). In another study, the authors confirmed that human

phospholipids-derived PUFAs exert a strong in vitro anti-

plasmodium action mainly by hydrolyzing lipoproteins from plasma,

thus releasing PUFAs that are toxic to the parasite (84).
FIGURE 3

Mechanisms by which w-3 PUFAs inhibit T. gondii infection. The figure shows potential mechanisms of action of w-3 PUFAs in different pathways
and proposes that w-3 PUFAs are capable of producing a host-defensive response against T. gondii infection. Omega-3 induces CaMKKb/AMPK-
dependent autophagy signaling pathways activation (11) and decreases IL-12/IL-g cytokines, which can lead to a produced host-defensive response
against T. gondii infection. CaMKKb, calmodulin-dependent protein kinase kinase b; AMPK, Adenosine monophosphate-activated protein kinase; IL-
12, Interleukin 12; IL-g, Interleukin gamma.
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The addition of antioxidants or reactive oxygen species decreased

w-3 PUFA’s capability to kill P. falciparum, but the oxidized fatty acid’s

addition improved their capability to destroy the parasite (85). A study

conducted by Blok et al. showed that there was no requirement of

vitamin E deficiency for w-PUFAs to distress antimalarial resistance

(82, 86). Fish oil consumption significantly reduced hepatic and plasma

vitamin E. However, it did not alter the immune cell vitamin E status

(82). These results strongly proposed that w-PUFAs increased host

survival rate without showing any changes in the host immune system

and exerted direct cytotoxic action on Plasmodium spp.
Coccidiosis

Coccidia is a group of obligate intracellular protozoan parasites that

fall under the class Conoidasida within the phylum Apicomplexa. Two

notable genera within this group are Eimeria, characterized by

sporulated oocysts containing four sporocysts, and Isospora, which

has sporulated oocysts with two sporocysts. These genera include a

wide variety of species capable of infecting birds, mammals, and

reptiles, but it is essential to emphasize that most of these species

demonstrate a strong preference for specific host species. Infections

caused by these parasites are widespread across the globe (87).
Existing strategies to control coccidiosis

Although good animal husbandry can reduce coccidian parasite

transmission, some additional measures are important to lower the
Frontiers in Immunology 07
risk of infection (88). Currently, some coccidiocidal drugs are used

as regular prevention and therapies for the disease and inhibit the

growth and replication of coccidial populations. When anticoccidial

drugs are withdrawn, the infective oocysts contaminate the

environment again and continue their life cycle (89).

The combination of several drugs shows more efficiency in

controlling coccidiosis. In this regard, since the 1960s, sulfonamide

has been used as a potent drug for the control of Eimeria spp. infection,

many chemical synthetic drugs, and ionophores compounds were

developed or found using coccidiostatic or coccidiocidal agents.

However, new potent molecules urgently need to be found and used

to control the disease because of the increasing drug resistance (89). To

stop drug resistance, the rotation and shuttle systems are urgently

needed, and drug type is used to switch after one or several (90). The

attenuated and un-attenuated vaccines are also used aiming to control

coccidiosis; however, the effectiveness of vaccines is based on oocysts

and immunity (91). The practice of live un-attenuated vaccines, such as

Inovocox, Coccivac, etc., is inadequate because they induce the risk of

live parasites (92). However, live attenuated vaccines such as Paracox

and HatchPak CocciIII reduce disease risk, and the intestinal segments

of birds are less damaged (93). To fully combat the infection, there is

still a required fully effective anticoccidial drug or vaccine according to

the species-specific nature of immunity. Moreover, the anticoccidial

drug resistance detected in birds worldwide has shown that natural

products with efficient anti-coccidial activity will be more efficient (94).
Omega-PUFAs efficacy in coccidiosis

The combination of w-PUFAs in the diet of chicken challenged

with Eimeria tenella decreases the contrary effects on development

and gut lesion scores. The inclusion of w-3 PUFAs can help to

control E. tenella infection and improve the resistance of poultry to

the pathogen. These effects in broiler chickens were investigated

compared to the earlier findings, which showed w-3 PUFAs afford

some protective effects against malaria (95). The carotenoid level in

total plasma reduced the infection of coccidia (96), while free

radicals such as peroxynitrite levels increased (97). Researchers

assumed that DHA, EPA, and LA generate oxidative stress that

stops coccidia development by being incorporated into the

membranes of the parasite. There, they are extremely prone to

oxidation by leucocyte-free radical manufacturing, which affects the

coccidian (97). In another study, corn oil was compared with fish oil

in E. tenella-infected chickens, in which fish oil successfully reduced

lesion score, TNF-a, and inflammatory process (98).
Chagas disease

Chagas disease (CD), commonly known as American

trypanosomiasis, is a potentially fatal infection caused by the

protozoan parasite Trypanosoma cruzi. T. cruzi is a parasitic

protozoan spread to mammalian hosts by blood-sucking bugs

called triatomine, and in humans and animals, it leads to anemia,

parasitemia, and hepatosplenomegaly (99). The mortality rate

during acute T. cruzi infection is rare, but its occurrence results
TABLE 2 Currently used antimalarial drugs.

Drug
Name

Mechanisms of actions References

Artemisinin
and
its derivatives

Haem-generate free radicals, damage
parasite survival protein

(70, 71)

Amodiaquine Complexation with haem and stop
hemozoin development

(72)

Piperaquine Inhibiting haem detoxification, collecting
in the digestive vacuole

(73)

Lumefantrine Constrains protein and nucleic acid
synthesis inhibits the development of
b-haematin

(73, 74)

Proguanil Acts as a DHFR inhibitor and disrupts
the synthesis of deoxy thymidylate

(75)

Atovaquone Blocks mitochondrial electron transport
acts as cytochrome bc1 complex inhibitor

(76)

Pyrimethamine Target the parasite folate
biosynthesis pathway

(77, 78)

Sulfadoxine Target the parasite folate
biosynthesis pathway

(78)

Pyronaridine Inhibit b-haematin formation (79, 80)

Tafenoquine Prodrug metabolized to the
active quinone

(81)
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severe decline in leukocytes and circulating platelets (100, 101).

Everything that disturbs host immune responses, such as AIDS,

aging, chemotherapy, or antirejection treatment resulting in the

transplantation of an organ, can endorse a recurrence of this

dormant infection with successive morbidity (102, 103).
Trypanocidal agents

Different compounds, such as mercury chloride, arsenic, emetic

tartrate, fuchsine, and even the antiseptic gentian violet, were tried

to treat the disease. However, the results were unsatisfactory (102,

103). Later in the 1960s, numerous novel compounds, such as the

nitrofurans that act as an antimicrobial agent, were tested in which

nitrofurfurylidene, known as nifurtimox (RS)-3-methyl-N-[(1E)-

(5- nitro-2-furyl) methylene] thiomorpholin-4-amine 1, 1-dioxide)

(NF), showed satisfactory results (104).

Nevertheless, the first promising drug for CD treatment was

Nifurtimox (NFX), which was used by Packchanian (105), and its

clinical trials were started in South America in 1965. In adult,

chronically infected patients, the effectiveness of NFX was low, with

a rate of 7-8%, but in young children aged < 14 years, this drug

showed a higher cure rate of 85.7% (106). The most common adverse

effects of NFX are weight loss, anorexia, gastrointestinal symptoms,

vomiting, etc. Another drug, benznidazole (BZ), was shown to be

useful for the treatment of CD (104). BZ was shown to be less toxic

than NFX. However, their efficacy for treating CD is almost similar.

Age is a significant factor for BZ effectiveness as well. In children

around 6-12 years of age, BZ showed a higher cured efficacy of 56-

62% (104). The mechanisms of action of both BZ and NFX are still

unclear; however, it has been shown that BZ acts as a reductive stress

molecule that affects the trypanothione metabolism of T. cruzi (107).

This drug can also induce IFN-g, raise trypanosomal death, and
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improve phagocytosis via inhibiting T. cruzi NADH-fumarate

reductase (104). NFX produces extremely toxic oxygen metabolites

that render T. cruzi to limited reduction products of oxygen, typically

hydrogen peroxide (104). The complete list of drugs and their status

for the treatment of CD are shown in Table 3.
Omega-PUFAs and T. cruzi

Nutrient supplements and some dietary fats are known to have

influenced the function of the immune system (108). They can affect

both cellular (T cells, B cells, and natural killer (NK) cells that may

modulate the production and activity of cytokines) and innate

immunity, influencing survival during infections. These supplements

may contribute to the protection against parasitic infections including

T. cruzi. Previous studies demonstrated that w3 and w6 PUFAs

impacted cellular and innate immunity (109, 110). These PUFAs also

affected the survival of mice following an experimental T. cruzi

infection and showed fewer indications during the acute phase of

this parasitic infection (111). The mechanisms for this protection are

shown in Figure 4. Recently, many studies stated the trypanocidal

actions of some natural medicine or their extracts (107, 113). In some

Asian countries such as Vietnam and Uzbekistan, there was much use

of plant extracts and their constituents that showed trypanocidal

activities against T. cruzi (114).
Possible drawbacks related to the use of
w-PUFAs

While omega polyunsaturated fatty acid w-PUFAs offer

numerous health benefits, there are also potential drawbacks

associated with their uses. Due to the use of w-PUFAs, there is
TABLE 3 Drugs and their current status for the treatment of Chagas disease.

Drug In vitro assay In vivo assay Phase I Phase II Phase III Approval

BZ √ √ √ √ √ √

NFX √ √ √ √ √ √

Se √ √ √ √ In progress ×

ALBA √ √ √ - - ×

ALOPU √ √ √ × - ×

FENARI √ √ Planned - - ×

AMIO √ √ √ In progress - ×

SCYX-7158 √ √ In progress - - ×

POSA √ √ √ √ - ×

KETO √ √ √ × - ×

RAVU √ √ √ √ - ×

ILMOFO √ - - - - ×

VORI √ √ √ - - ×
BZ, Benznidazole; NFX, Nifurtimox; Se, Selenium; ALBA, Albaconazole; ALOPU, Allopurinol; FENARI, Fenarimol; AMIO, Amiodarone; SCYX-7158, Oxaborole; POSA, Posaconazole; KETO,
Ketoconazole; RAVU, Ravuconazole; ILMOFO, Imofosine; VORI, Voriconazole.
√ mean Done, ⨯ mean interrupted, - mean haven't pass to next phase.
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the possibility of digestive issues, allergic reactions, and bleeding

risk. The possibility that enhances these drawbacks is

discussed below.
Inadequate associated studies and
clinical trials

In China,w-3 andw-6 PUFAs have been widely studied in treating
several kinds of cardiovascular diseases, cancer, inflammations,

physical damage, etc., while research on the anti-parasitic functions

is seldom reported. Moreover, researchers have obtained information

onw-3 andw-6 PUFAs as described above, but the clinical studies trials
are still deficient. These studies are critical to validate the anti-parasitic

activities of w-3 and w-6 PUFAs.
Dosage

Until now, the recommended dosage of PUFAs has also been an

issue in clinical trials. Previously, in cancer studies the researchers

used a higher dose level of EPA + DHA ranging from 2.0 to 8.0 g/kg

body weight/day in mice (115). Subsequently, the interspecies

alteration lower dosage for animals also seemed higher for

humans (about 10–20 g/day in 70 kg per person) (116). In

human interventional experimental trials, the protective effects of

w-3 PUFAs were observed with a 2.0 g/day dosage (consistent with

0.03 g/kg body weight in a 70 kg person) (117, 118). The best
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preventive effects of these PUFAs were accompanied by increasing

the dosage of tissue lipids or plasma in both humans and animals

(115). Excessive PUFAs could lead to unintentional health

problems in certain conditions and nutritional standards based

on the best available evidence still need to be established.
Administration route

Different routes, such as oral, inhalational, intravenous, and

topical, are used to administer substances into the body. The

administration route for an active component to the targeted

place is significantly important. Experimental trials have shown

the effects of ALA on numerous conditions in humans, such as lipid

metabolism ailments and cardiovascular diseases, but many of them

work on the oral direction as the entry route. For w-PUFAs, strong
solubility and good delivery routes are important because poor

solubility and delivery may have influenced the bioavailability of

PUFAs (119, 120). Thus, additional human and animal studies are

particularly needed to precisely display the administration route of

w-PUFAs with the best delivery ability.
Conclusion and future perspectives

The treatment options for parasitic infections are not

sufficiently effective due to significant side effects, necessitating

the urgent development of novel therapeutic choices. We propose

that w-3 and w-6 PUFAs may be potentially effective in

ameliorating some parasitic infections and associated abnormal

conditions. These PUFAs have been proven to play a key role in

modulating immune responses and activating certain signaling

pathways in various parasitic infections. The evidence elucidated

in the current review suggests that further experiments would be

essential to combine these PUFAs with other drug candidates to

assess the clinical impact of w-3 and w-6 in parasitic infections.

Finally, we recommend that future studies focus on:
1.Understanding of the main pathway/s responsible for the

activities of w-3 and w-6 PUFAs in parasitic infections.

2.Determining the most effective doses for the beneficial role of

w-PUFAs in various parasitic diseases.

3.Exploring the possible effects of w-3 and w-6 on emerging

treatments, such as microRNAs by targeting signaling

pathways and or expression profiles.

4.Examining the possible interactions of w-3 or w-6
with well-known anti-parasitic drugs, as well as

nutritional supplements.
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20. Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs
for Chagas disease, leishmaniasis and schistosomiasis: a review. Int J Antimicrob
Agents. (2020) 55:105906. doi: 10.1016/j.ijantimicag.2020.105906

21. Rahman SU,Mi R, Zhou S, GongH, UllahM,Huang Y, et al. Advances in therapeutic
and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta
Trop. (2022) 226:106273. doi: 10.1016/j.actatropica.2021.106273
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Corrêa-Oliveira R, et al. Experimental and clinical treatment of chagas disease: A
review. Am J Trop Med Hyg. (2017) 97:1289–303. doi: 10.4269/ajtmh.16-0761
Frontiers in Immunology 12
105. Packchanian A. Chemotherapy of experimental Chagas' disease with nitrofuran
compounds. Antibiot Chemother (Northfield). (1957) 7:13–23.

106. Bermudez J, Davies C, Simonazzi A, Real JP, Palma S. Current drug therapy and
pharmaceutical challenges for Chagas disease. Acta Trop. (2016) 156:1–16.
doi: 10.1016/j.actatropica.2015.12.017

107. Maya JD, Cassels BK, Iturriaga-Vásquez P, Ferreira J, Faúndez M, Galanti N,
et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and
their interaction with the mammalian host. Biochem Physiol. (2007) 146:601–20.
doi: 10.1016/j.cbpa.2006.03.004

108. Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to
infection. J Leukoc Biol. (2002) 71:16–32. doi: 10.1189/jlb.71.1.16

109. Fritsche K. Fatty acids as modulators of the immune response. Annu Rev Nutr.
(2006) 26:45–73. doi: 10.1146/annurev.nutr.25.050304.092610

110. Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes:
nutrition or pharmacology? Br J Clin Pharmacol. (2013) 75:645–62. doi: 10.1111/
j.1365-2125.2012.04374.x

111. Lovo-Martins MI, Malvezi AD, da Silva RV, Zanluqui NG, Tatakihara VLH,
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