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Controlled generation of cytotoxic reactive oxygen species (ROS) is essential in

cancer therapy. Ultrasound (US)-triggered sonodynamic therapy (SDT) has

shown considerable ability to trigger in situ ROS generation. Unfortunately, US

therapy alone is insufficient to trigger an efficient anticancer response, owing to

the induction of multiple immunosuppressive factors. It was identified that 7-

ethyl-10-hydroxycamptothecin (SN38) could notably inhibit DNA topoisomerase

I, induce DNA damage and boost robust anticancer immunity. However, limited

by the low metabolic stability, poor bioavailability, and dose-limiting toxicity, the

direct usage of SN38 is inadequate in immune motivation, which limits its clinical

application. Hence, new strategies are needed to improve drug delivery

efficiency to enhance DNA topoisomerase I inhibition and DNA damage and

elicit a vigorous anticancer cancer immunity response. Considering US irradiation

can efficiently generate large amounts of ROS under low-intensity irradiation, in

this study, we aimed to design a polymeric, ROS-responsive SN38

nanoformulation for in vivo drug delivery. Upon the in-situ generation of ROS

by US therapy, controlled on-demand release of SN38 occurred in tumor sites,

which enhanced DNA damage, induced DC cell maturation, and boosted

anticancer immunity. Our results demonstrated that a new strategy of

involving the combination of a SN38 nanoformulation and US therapy could be

used for cancer immunotherapy.
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1 Introduction

In recent years, modalities for physical therapy, such as

radiosurgery, photodynamic therapy, and sonodynamic therapy

(SDT), have shown impressive therapeutic effects in inhibiting

tumor growth (1). Owing to the advantages of non-invasive and

deep tissue-penetrating capability, ultrasound (US)-triggered SDT

has already become highly popular methodology used for cancer

treatment (2–5). The generation of cytotoxic reactive oxygen species

(ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2),

has been deemed as the main biological occurrence that kills cancer

cells (6). Several factors contribute to the biological effects

attributable to US irradiation, including free radical generation,

cell membrane rupture, sonoporation, and heat generation (7). US

not only triggers several antitumor immune responses, but also

recruits immunosuppressive factors and induces various forms of

immunosuppression (8). Thus, US therapy alone might be

insufficient to trigger effective anticancer immune responses, and

combination therapy strategies are urgently being pursued.

Over the past decade, cancer immunotherapy has enjoyed a

significant breakthrough in the field of cancer therapy (9, 10).

Representative immunotherapeutic modalities, especially

checkpoint proteins such as programmed cell death 1 (PD-1) and

cytotoxic T lymphocyte antigen 4 (CTLA-4) have achieved great

success in some type of cancers in clinical settings (11).

Unfortunately, most patients showed a poor response to immune

checkpoint blockade therapy (12). The lack of cancer antigenicity

and deficient cytotoxic T cells infiltration in tumors are two major

limitations in patients exhibiting a poor response to cancer

immunotherapy (13). A topoisomerase I inhibitor, 7-ethyl-10-

hydroxycamptothecin (SN38), was identified as the top drug

candidate for the stimulation of cytosol DNA transfer from

tumor cells to antigen-presenting cells and induction of a robust

anti-cancer immunotherapeutic response (14). However, the direct

usage of SN38 is limited by its low metabolic stability, poor

bioavailability, and dose-limiting toxicity, which renders its

inadequate for immune response induction and limits its clinical

application. Hence, new strategies are required to improve the SN38

delivery efficiency for enhance DNA damage and boosting

anticancer immunity. Because of their small size, large surface

area, and ideal in vivo kinetics (enhanced circulation times and

high stability in blood circulation), nanoparticles could

considerably increase the accumulation of drugs in certain regions

via the enhanced permeability and retention (EPR) effect (15–17).

Currently approved nano-delivery systems have greatly enhanced

the therapeutic index of clinically validated chemotherapeutics. In

addition, US-triggered SDT can generate ROS to induce cancer

cells. Hence, the combination strategy of sonodynamic therapy

triggered and ROS-triggered SN38 release may present a promising

strategy for anti-cancer immunotherapy.

In this study, we screened DNA-targeting agents in vitro and in

vivo and assessed if they resulted in enhanced DNA damage by

SN38. Considering US irradiation can efficiently generate large

amounts of ROS under low-intensity irradiation, we designed a

polymeric SN38 nanoformulation with ROS-responsive for in vivo
Frontiers in Immunology 02
drug delivery. Upon the generation of ROS by US therapy,

controlled on-demand release of SN38 occurred in tumor sites,

which in turn enhanced DNA damage, induced DC cells

maturation and activation, and boosted anticancer immunity

(Scheme 1). Our results demonstrated a new strategy for cancer

immunotherapy involving a combination of SN38 nanoformulation

and US therapy.
2 Materials and methods

2.1 Materials

7-Ethyl-10-hydroxycamptothecin (SN38) was obtained from

Chemical Industry (TCI) Co., Ltd (Tokyo, Japan). 3-(4,5-

Dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)

was purchased from Sigma-Aldrich (Shanghai, China). Linoleic

acid (LA), stearic acid (SA), trifluoroacetic acid (TFA) and

triethylamine (TEA) were bought from Shanghai Rhawn Co., Ltd.

(Shanghai, China). Poly (ethylene glycol) monomethyl ether

(mPEG, Mn = 5000) were bought from Sigma-Aldrich (Shanghai,

China). Phenyl boronic acid (PBA) was obtained from TCI Co., Ltd

(Tokyo, Japan). g-Benzyl-L-glutamate-N-carboxyanhydride (BLG-

NCA) was purchased from Chengdu Enlai Biological Technology

Co., Ltd. (Chengdu, China). Other reagents were purchased from

the Sinopharm Chemical Reagent Co. Ltd. and used as received.

RPMI 1640 and fetal bovine serum (FBS) were provided by Gibco

BRL Life Technology (NY, USA). Penicillin and streptomycin were

obtained from Huabei Pharmaceutical Co. Ltd. (Huabei, China).

Antibodies were obtained from BD Biosciences (CA, USA) and

BioLegend (CA, USA).
2.2 Synthesis of SN38 nanoparticles and
US-induced ROS-responsive
SN38 nanoparticles

Poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol)

copolymer (PLG-g-mPEG) were prepared as described previously,

with minor modification (18). PLG-NH(Boc)-g-mPEG was

obtained by esterification of PLG-g-mPEG with N-(Boc)

ethanolamine, and then the Boc protection groups were removed

by TFA, obtaining PLG-NH2-g-mPEG. The SN38-NPs and SN38-

URNPs were prepared using the thin film hydration method. First,

SA (28 mg) was dissolved in DMF (3 mL), and the solution was

dehydrated and deoxygenated. EDC (40 mg) and NHS (30 mg)

were dissolved in DMF (2 mL) and added into the SA solution for

activation. PLG-NH2-g-mPEG (68 mg) and TEA (40 mL) were

dissolved in DMF (6 mL) and added into the mixture. The reaction

was carried out at room temperature for 24 h. The product was

dialyzed in DMF and pure water and then lyophilized to generate

PSA-g-PEG. The PLA-g-PEG was synthesized under the same

experimental conditions except that the LA was replaced with SA.

The SN38 and polymer (PLG-g-mPEG) were co-dissolved in

CH2Cl2 at a Len-to-polymer mass ratio of 10%. The solvent was
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SCHEME 1

Schematic illustration of the generation of ultrasound-triggered with ROS-responsive nanoparticles for enhanced combination cancer
immunotherapy. When SN38-URNPs under ultrasound conditions, the ROS-producing component generates ROS upon ultrasound irradiation,
facilitating selectively release SN38 in tumor sites, eliciting robust antitumor immunity.
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dried using a rotary evaporator at 40°C. Deionized water was added

to the mixture to form micelles through self-assembly.

Unassembled drug aggregates were removed via filtration through

a 0.22 mm membrane and freeze-dried. SN-NPs and SN-URNPS

were obtained in this way. The drug loading content (DLC) values

of Len was determined using a high-performance liquid

chromatography (HPLC) system, which included a Waters 2414

Refractive Index Detector, a Waters 515 HPLC pump and a reverse-

phase C-18 column (Symmetry®).
2.3 Characterization

Transmission electron microscopy (TEM) images were

obtained using JEOL JEM-2010 (HR). Absorption spectra were

recorded using a UV-Vis spectrophotometer (Persee DU1900,

Beijing, China). The hydrodynamic particle size was characterized

via dynamic light scattering (DLS) using a ZetaSizer Nano-ZS90

instrument (Malvern Instrument).
2.4 In vitro drug release

The behavior of released nanoparticles was assessed under

different conditions at 37°C in a release buffer (0.1 M PB buffer
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containing 0.5% Tween 80). SN38-NPs or URSN38-NPs

(containing 0.5 mg SN38) were dissolved in 5.0 mL release buffer

and transferred into a dialysis bag (MWCO 30 kDa), which was

immersed into 45.0 mL of release buffer while shaking (100 rpm)

the solution under the following conditions: without ultrasound

(US), with US for 1 min and with US for 3 min (US: 1.0 MHz, 2.0

W/cm2, 50% duty cycle, 2 min). At each designed time point, 5 mL

of release buffer was collected from the dialysis bag and replaced

with 5 mL of fresh release buffer. The total amount of released SN38

NPs was evaluated with fluorescent spectrophotometry using a

procedure consistent to that described above.
2.5 Cell lines and animals

Murine CT26 colon cancer cells were obtained from the BeNa

Culture Collection (Beijing, China). Healthy BALB/c mice (female,

8 weeks old, 18‒20 g) and Sprague-Dawley (SD) rats (female, 7

weeks old, 200g) were bought from Beijing Vital River Laboratory

Animal Technology Co., Ltd (Beijing, China). All the mice were

raised separately and used according to the guidelines on

Laboratory Animals of Jilin University (Jilin, China).

In order to establish a subcutaneous cancer model

establishment, CT26 cells were washed with normal phosphate-

buffered saline (PBS) twice, and diluted with normal PBS into a
frontiersin.org
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concentration of 2×107 cells/mL. CT26 cells (2×106 cells, 100mL)
were injected into the right flank of male BALB/c mice.
2.6 Cytotoxicity assay in vitro

The cytotoxicity of SN38-URNPs was determined using the

MTT assay. Typically, murine CT26 cells or 3T3 fibroblasts were

seeded into 96-well plates (8000 cells per well) and cultured

overnight with 200 mL RPMI 1640 or DMEM. Then, the culture

medium was replaced with drug-containing fresh media. After

incubation for another 48 h, 20 mL 5% MTT reagent was added

into each well, followed by incubation for another 4 h. Absorbance

values were determined using a microplate reader at 490 nm. The

cell viability (%) was calculated as the percentage of treated cells

versus untreated control cells.
2.7 Biodistribution study of SN38-URNPs

CT26 cells (2×106 cells) were subcutaneously injected into the

right flank of female BALB/c mice (8 weeks old, 18-20 g). Cy5-

labeled SN38-URNPs were intravenously injected into mice when

the tumor size became 300 mm3. At 4 h and 24 h post-injection,

major organs and tumors were resected and collected for

fluorescence imaging. The tissue fluorescence intensity was

visualized with the Davinch-Invivo HR imaging system (Davinch,

Korea) at excitation and emission wavelengths of 650 nm and 700

nm, respectively.
2.8 Murine CT26 subcutaneous
cancer therapy

After tumor cell inoculation, mice were randomly divided into

eight groups when the tumor volumes became approximately 100

mm3. Mice were treated with PBS, SN38 (10 mg/kg), US (1.0 MHz,

2.0 W/cm2, 50% duty cycle, 2 min), SN38 (10 mg/kg) +US, SN38-

NPs (10 mg/kg at SN38), SN-38URNPs (10 mg/kg at SN38), SN38-

NPs+US, and SN-38URNPs. Treatments were scheduled every two

days, and a total of three treatments were administered. Body

weights and tumor volumes were recorded every other day. The

tumor volume was measured with callipers and calculated as

follows: tumor volume (V) = a × b2/2, where a and b represent

the major and minor axes of the tumor, respectively. The tumor

suppression rate (TSR) was calculated as follows: TSR (%) = [(Vc -

Vx)/Vc] × 100%, where Vc and Vx represent the mean tumor

volumes of the PBS and treatment groups, respectively.
2.9 Serum biochemical parameters

Peripheral blood was collected from mice at the end of the

treatment process. The concentration of alanine transaminase

(ATL), aspartate transaminase (AST), and blood urea nitrogen
Frontiers in Immunology 04
(BUN) in the serum were determined with kits according to the

manufacturer’s instructions and compared.
2.10 Histological analysis

Mice were euthanatized at the end of the observation period.

Excised tumors were fixed in a 4% paraformaldehyde solution,

embedded in paraffin, and sliced into 5 mm-thick sections. Then,

slices were stained with hematoxylin and eosin (H&E) to examine

their pathology. Histological photos were observed via light

microscopy (IX71, Olympus, Japan).
2.11 Flow cytometry analysis

Tumors and spleens were harvested at the end of the experiment.

The tumors were cut into small pieces and homogenized with RPMI

1640 containing collagenase IV. Then the supernatant from the

digested tumor tissues were collected, filtered, centrifuged and

resuspended. The spleen was mechanically ground, filtered, and

resuspended in RPMI 1640. Red blood cell lysis buffer was used to

lyse erythrocytes. Finally, cell suspensions were stained with

fluorophore-conjugated antibodies, and flow cytometry analysis

was performed using a BD FACS Celesta flow cytometer.
2.12 Cytokine analysis

Peripheral blood was collected from mice at the end of the

treatment process. Concentrations of IL-6, IFN-g, and TNF-a in the

serum were determined with an ELISA kit according to the

manufacturer’s instructions. Cytokine concentrations in the

serum were presented in terms of pg/mL of protein.
2.13 Statistical analysis

Two-tailed unpaired Student’s t-tests were performed to

compare 2 treated groups. All results were presented as mean ±

S.D. values. Differences were considered significant when P< 0.05

(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
3 Results

3.1 Synthesis and characterization of
SN38-NPs and SN38-URNPs

The nano-delivery system was demonstrated to magnify the

immunogenic responses of chemotherapeutic drugs by reducing the

toxicity and inhibitory effects on the immune system (19). We

developed a polymeric nanoformulation of SN38 by conjugating

SN38 to poly(L-glutamic acid)-g-methoxy poly(ethylene glycol)

(PLG-g-mPEG) via Yamaguchi esterification for tumor-targeted
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therapy. PLG-g-mPEG was synthesized as described in a previous

work (18) (Figure 1A). The 1H NMR spectrum of SN38-NPs and

SN38-URNPs was shown in Supplementary Figures 1, 2. The peaks

at d of 0.90 ppm was assigned to the protons of the methyl (-CH3, a)

of 1-hexylamine. The peaks at d of 2.83 ppm and 3.01 ppm were

assigned to the protons of the methylene (-CH2-CH2-NH2, f) of the

PLG-NH2-g-mPEG (Supplementary Figure 1). According to the 1H

NMR spectrum of NPs, the peaks at d of 5.15 ppm indicated that SA

was successfully bonded to the PLG-NH2-g-mPEG, while no

corresponding characteristic peak is found for non-responsive

polymer materials (PLA-g-mPEG) (Supplementary Figure 2).

As shown in Figure 1C, DLS results showed that the prepared

SN38-URNPs had uniform size distribution with an average

diameter of approximately 120-140 nm. Typical TEM image

indicated that spherical emulsion droplets with an average size of

approximately 140 nm were formed under dehydrated conditions

(Figure 1D), which is in accordance with the results of DLS. SN38-

NPs had a uniform size distribution with an average diameter of

approximately 100-120 nm (Figures 1F, G). These results validated

the fact that SN38-NPs and SN38-URNPs with small droplet size,

uniform size distribution, and good stability had been

prepared effectively.
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3.2 In vitro cytotoxicity

The cytotoxicity of SN38-URNPs to CT26 cells was assessed in

mouse CT26 tumor cells. The MTT assay was applied to CT 26

tumor cells. As shown in Figure 2A, the MTT assay showed that the

cytotoxicity of SN38-URNPs to CT26 cells was dose- and time-

dependent. At a high dosage, SN38-URNPs and free SN38

significantly decreased the rate of tumor cell proliferation at a

high dosage. In addition, SN38-URNPs showed slightly lower

toxicity than free SN38 in CT26 tumor cells. The strong toxicity

of SN38 to tumor cells is similar to previous reports (14).
3.3 In vitro drug release of SN38-NPs and
SN38-URNPs

The release of SN38 from SN38-NPs and SN38-URNPs in vitro

was studied under different conditions (without US, with US for 1

min, with US for 2 min, with US for 5 min). As shown in Figure 2B,

the rate of release of SN38 from SN38-URNPs increased with the

increase in the time for which US was performed. In contrast, the

drug release rates of SN38 from SN38-NPs showed negligible
A

B D

E F G

C

FIGURE 1

Synthesis and characterization of SN38-URNPs and SN38-NPs. (A) Schematic illustration of the synthesis route for SN38-URNPs.
(B–D) Representative photo and TEM image and hydrodynamic diameter distribution as measured by DLS of SN38-URNPs. scale bar is 200 nm.
(E–G) Representative photo and TEM image and hydrodynamic diameter distribution as measured by DLS of SN38-NPs. scale bar is 200 nm.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1339380
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1339380
differences irrespective of US application (Figure 2C). The

cumulative release rate of SN38 from SN38-URNPs within 48 h

was 70.6%. In contrast, the cumulative release rate of SN38 from

SN38-NPs or SN38-URNPs (without US) within 48 h was below

30%. The improved release rate of SN38 may be attributed to US-

induced ROS generation.
3.4 Biodistribution study of SN38-URNPs

Cy5 labelling is widely applied in nanoparticle biodistribution

studies. In this study, Cy5 was used to assess the in vivo

biodistribution of the applied SN38-URNPs. First, CT26 cells

(2×106 cells) were injected subcutaneously into the right flank of

female BALB/c mice (8 weeks old, 18‒20 g). Then, Cy5-labeled

SN38-URNPs were intravenously injected into the mice when the

tumor size became 300 mm3. At 4 h and 24 h post-injection, major

organs and the tumor were resected and collected for fluorescence

imaging. A quantitative analysis of Cy5 fluorescence intensity was

also conducted to determine Cy5 distribution in different organs. As

shown in Figures 2D, E, the liver and tumor were the major sites of

SN38-URNP accumulation, and strong signals were observed in the

tumor at 24 h after injection.
3.5 Antitumor efficacy and survival time
in vivo

Antitumor effects were evaluated using a mouse CT26

subcutaneous tumor model where mice were administered the
Frontiers in Immunology 06
following different treatments: 1) PBS: without any treatment; 2)

SN38 (0.1 mg/ml); 3) US (808 nm, 0.48 W/cm2) for 5 min; 4) SN38

+US; 5) SN38-NPs (non-ROS-responsive); 6) SN38-URNPs (ROS-

responsive); 7) SN38-NPs+US; 8) SN38-URNPs+US (Figure 3A).

Tumour volumes were monitored each day during treatment to

assess the antitumor efficacy of each approach. As shown in

Figures 3B–E, SN38 and US treatment slightly suppressed tumor

growth and failed to improve the post-surgery survival rate.

Tumour growth was significantly delayed in mice treated with

SN38+US, SN38-NPs, SN38-URNPs, and SN38-NPs+US.

Unfortunately, the therapeutic effects were not long-lasting

(Figure 3C). As a result, the median survival time of the mice

treated with SN38-NPs, SN38-URNPs, and SN38-NPs+US was not

prolonged, compared to the free SN38 and US group (Figure 3E).

Notably, sustained and thorough tumor eradication was achieved in

the SN38-URNPs+US group (Figure 3C). At day 14 post tumor

inoculation, the TSR% was 96.6% in mice treated with SN38-

URNPs+US and resulted in a remarkable survival advantage, as

compared to other groups (60 days). All these data confirmed that

the use of SN38-URNPs plus US resulted in considerable

therapeutic effects and could improve the survival time of CT26-

bearing mice.

Changes in mouse body weight were monitored to assess the

adverse effects of drugs. As depicted in Figure 3D, all treatment

groups except the PBS group showed an ˜10% loss in body weight in

the initial treatment stage, indicating the acute toxicity of SN38. The

mice quickly regained their weight subsequently. Histological

analysis was performed to evaluate the antitumor activity further.

Large areas of necrosis were observed in the SN38-URNPs and US

treated group, as compared to the other groups (Figure 3F). AST,
A B

D E

C

FIGURE 2

In vitro cell cytotoxicity and release study and in vivo biodistribution study of SN38-URNPs. (A) In vitro cell viability of mouse CT26 cells incubated
with free SN38 and SN38-URNPs for 48 h (n = 3). (B, C) In vitro release profiles of SN38 from SN38-URNPs or SN38-NPs in pH 7.4 saline solutions
at various simulated conditions: without ultrasound (US: 1.0 MHz, 2.0 W/cm2, 50% duty cycle, 2 min), with US 1min, with US 2 min and with US 5
min. (n = 3). (D) Representative fluorescence images of major organs and tumors captured at 4 h and 24 h post i.v. injection of Cy5-labeled URNPs.
(E) Fluorescence intensity of major organs and tumors at 4 and 24 h (n = 3). Data are presented as means ± S.D.
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ALT, and BUN levels were measured to assess liver and kidney

functions in treated mice. As depicted in Supplementary Figure 3,

there was no statistically significant difference in serum AST, ALT,

and BUN levels compared to those in healthy BALB/c mice. The

liver and kidney function analyses validated the fact that treatment

with both SN38-URNPs and US did not affect liver and kidney

conditions in CT26 tumor-bearing mice. These results

demonstrated that the administration of SN38-URNPs or US or

both was associated with a safe and tolerable side effect profile.

We analyzed the immune microenvironment of the tumor

tissues at 14 days after various treatments. Tumors were collected

from mice for flow cytometry analysis. As reported previously,

SN38 could activate the STING pathway to promote DC cell

maturation and activation, enhance antigen presentation ability,

and finally elicit a robust T cell immune response at the tumor site

(20). First, we analyzed the maturation and activation of DC cells in

tumors. As expected, the proportion of matured and activated DC

cells in tumor cells of mice treated with SN38-NPs or SN38-URNPs

was increased significantly, and this was accompanied by elevated

levels of IFN-g, IL-6, and TNF-a in the serum (Figures 4A, C, and

Supplementary Figure 4). In addition, increased numbers of
Frontiers in Immunology 07
infiltrating T cells were also detected, especially in the SN38-

URNPs plus US treatment group, in which the highest

proportions of NK cells, CD4+ T, and CD8+ T cells were detected

among all the treated groups (Figure 4A and Supplementary

Figures 5–7), suggesting that both innate and adaptive immune

responses were generated. Numerous studies have demonstrated

that tumor-associated macrophages exhibit a series of functions that

promote tumor development, which include the support of the

proliferation, invasion, and metastasis of tumor cells, and were

highly correlated with a poor prognosis in tumor patients (21).

Macrophages can switch between two main phenotypes, i.e., the

anti-tumorigenic M1 phenotype and pro-tumorigenic M2

phenotype. A reduction in the M2 macrophage number or

increment in the M1 macrophage number is critical for

enhancing T cell antitumor immunity and inhibiting tumor

growth (22). As depicted in Figure 4A, a considerably increased

proportion of M1 macrophages and decreased proportion of M2

macrophages was detected within the tumor after treatment with

SN38-URNPs plus US, indicating that the tumor immune

microenvironment was reprogrammed, and immune stimulation

occurred instead of immune suppression. Systemic immune
A

B

D E

F

C

FIGURE 3

Tumor inhibition study in subcutaneous CT26 tumor model. (A) The therapeutic schedule of the in vivo study. (B–E) Tumor volume, body weight
changes and survival curves of CT26 tumor-bearing mice after receiving various treatments (n = 5). (F) H&E staining of tumor sections after different
treatments. Data are presented as means ± S.D. (***P < 0.001).
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response is required for effective cancer immunotherapy (22). We

checked the immune cell status in spleens at the end of treatment.

Increased proportions of CD4+ T and CD8+ T cells were detected in

mice treated with SN38-URNPs plus US, suggesting that systemic

immune had been triggered.
4 Discussion

Despite improvements in new drugs and therapeutic modalities,

curative effect remains unsatisfactory in patients suffering from

cancer, and the prognosis remains poor. Hence, novel cancer

treatment strategies are still to be explored. Modalities for

physical therapy, including radiotherapy, PDT, and SDT, have

shown impressive therapeutic effects in inhibiting tumor growth

(1). Radiation therapy involves the use of high-energy particles or

waves, such as x-rays, gamma rays, electron beams, or protons, to

induce cancer cell death and tumor shrinkage shrink tumors (23).

However, non-contained radiation can lead to harmful effects and

damages nearby healthy cells. Photodynamic therapy (PDT) can

damage cancer cells by producing ROS and causing DNA damage

(24). However, poor tissue penetration of PDT has limited its use to

superficial lesions. SDT, which is based on PDT, has a stronger

penetration ability in biological tissues compared to photons.
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in killing tumor cells (25). However, the anticancer activity of SDT

is limited to tumor eradication instead of tumor shrinkage, which

may be ascribed to induces various forms of immunosuppression.

Thus, US therapy alone might be insufficient to trigger effective

anticancer immune responses, and combination therapy strategies

are urgently being pursued.

SN38 was identified as the top drug candidate for the

stimulation of cytosol DNA transfer from tumor cells to antigen-

presenting cells and induction of a robust anti-cancer

immunotherapeutic response, which may overcome the deficiency

of US-triggered SDT. However, the direct usage of SN38 is limited

by its low metabolic stability, poor bioavailability, and dose-limiting

toxicity and side effects. Nanomedicines exert great promise for

drug delivery to address the drawbacks of systemic administration

through passive and active tumor targeting. In addition, US-

triggered SDT can generate ROS to induce cancer cells. Hence,

we designed a polymeric, ROS-responsive SN38 nanoformulation

for in vivo drug delivery, based on the fact that US therapy could

efficiently generate ROS.

We developed a polymeric nanoformulation of SN38 by

conjugating SN38 to poly(L-glutamic acid)-g-methoxy poly

(ethylene glycol) (PLG-g-mPEG) via Yamaguchi esterification for

tumor-targeted therapy. PLG-g-mPEG was synthesized as
A

B

C

FIGURE 4

Flow cytometry analysis results of tumors and spleens after various treatments. (A) Tumoral CD4+ T cells, CD8+ T cells, NK cells, mDCs, aDCs, M1
and M2 macrophages (n = 4). (B) Spleenal CD4+ and CD8+ T cells. (C) Serum concentrations of IL-6, IFN-a, and TNF-a. (n = 4). Data are presented
as means ± S.D. (*P < 0.05, **P < 0.01, and ***P < 0.001).
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described in a previous work (18). DLS results showed that the

prepared SN38-URNPs had uniform size distribution with an

average diameter of approximately 120-140 nm. Typical TEM

image indicated that spherical emulsion droplets with an average

size of approximately 140 nm were formed under dehydrated

conditions. In this study, Cy5 was used to assess the in vivo

biodistribution of the applied SN38-URNPs. The liver and tumor

were the major sites of SN38-URNP accumulation, and strong

signals were observed in the tumor at 24 h after injection.

Antitumor effects were evaluated using a mouse CT26

subcutaneous tumor model. SN38 and US treatment slightly

suppressed tumor growth and failed to improve the post-surgery

survival rate. Tumour growth was significantly delayed in mice

treated with SN38+US, SN38-NPs, SN38-URNPs, and SN38-NPs

+US. Unfortunately, the therapeutic effects were not long-lasting. As

a result, the median survival time of the mice treated with SN38-NPs,

SN38-URNPs, and SN38-NPs+US was not prolonged, compared to

the free SN38 and US group. Notably, sustained and thorough tumor

eradication was achieved in the SN38-URNPs+US group, and the

TSR%was 96.6% inmice treated with SN38-URNPs+US and resulted

in a remarkable survival advantage, as compared to other groups (60

days). The antitumor study confirmed that the use of SN38-URNPs

plus US resulted in considerable therapeutic effects and could

improve the survival time of CT26-bearing mice.

We further analyzed the immune microenvironment of the

tumor tissues at 14 days after various treatments. SN38 could

activate the STING pathway to promote DC cell maturation and

activation, enhance antigen presentation ability, and finally elicit a

robust T cell immune response at the tumor site (20). As expected,

the proportion of matured and activated DC cells in tumor cells of

mice treated with SN38-NPs or SN38-URNPs was increased

significantly, and this was accompanied by elevated levels of IFN-g,
IL-6, and TNF-a in the serum. In addition, increased numbers of

infiltrating T cells were also detected, especially in the SN38-URNPs

plus US treatment group, in which the highest proportions of NK

cells, CD4+ T, and CD8+ T cells were detected among all the treated

groups, suggesting that both innate and adaptive immune responses

were generated. In addition, a considerably increased proportion of

M1 macrophages and decreased proportion of M2 macrophages was

detected within the tumor after treatment with SN38-URNPs plus

US, indicating that the tumor immune microenvironment was

reprogrammed, and immune stimulation occurred instead of

immune suppression. We also checked the immune cell status in

spleens at the end of treatment. Increased proportions of CD4+ T and

CD8+ T cells were detected in mice treated with SN38-URNPs plus

US, suggesting that systemic immune had been triggered.

In summary, we designed a polymeric, ROS-responsive SN38

nanoformulation for in vivo drug delivery, since US therapy could

efficiently generate ROS. Upon the generation of ROS by US

therapy, controlled on-demand release of SN38 occurred in

tumor sites, which in turn enhanced DNA damage, induced DC

cell maturation and activation, and boosted anticancer immunity.

Our results demonstrated a new anticancer immunotherapy

strategy involving the combination of SN38 nanoformulation and

US therapy.
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