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Background: Diabetes mellitus is a significant health problem worldwide, often

leading to diabetic kidney disease (DKD), which may also influence the

occurrence of hepatocellular carcinoma (HCC). However, the relationship and

diagnostic biomarkers between DKD and HCC are unclear.

Methods: Using public database data, we screened DKD secretory RNAs and

HCC essential genes by limma and WGCNA. Potential mechanisms, drugs, and

biomarkers for DKD-associated HCC were identified using PPI, functional

enrichment, cMAP, and machine learning algorithms, and a diagnostic

nomogram was constructed. Then, ROC, calibration, and decision curves were

used to evaluate the diagnostic performance of the nomograms. In addition,

immune cell infiltration in HCC was explored using CIBERSORT. Finally, the

detectability of critical genes in blood was verified by qPCR.

Results: 104 DEGs associated with HCC using WGCNA were identified. 101 DEGs

from DKD were predicated on secreting into the bloodstream with Exorbase

datasets. PPI analysis identified three critical modules considered causative genes

for DKD-associated HCC, primarily involved in inflammation and immune

regulation. Using lasso and RM, four hub genes associated with DKD-

associated HCC were identified, and a diagnostic nomogram confirmed by

DCA curves was established. The results of immune cell infiltration showed

immune dysregulation in HCC, which was associated with the expression of four

essential genes. PLVAP was validated by qPCR as a possible blood-based

diagnostic marker for DKD-related HCC.

Conclusion: We revealed the inflammatory immune pathways of DKD-related

HCC and developed a diagnostic nomogram for HCC based on PLVAP, C7,

COL15A1, and MS4A6A. We confirmed with qPCR that PLVAP can be used as a

blood marker to assess the risk of HCC in DKD patients.
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1 Introduction

Diabetes mellitus (DM) has become a significant health

problem worldwide, often leading to multiple complications

such as diabetic kidney disease (DKD). Multiple factors, such as

metabolic disorders due to hyperglycemia and insulin resistance

(IR), mitochondrial abnormalities, inflammation, and other

factors, play an essential role in the progression of DKD (1).

Although DKD is not considered a predominantly “immune-

mediated” renal disease, recent experiments in this area

suggested that many immune system components are involved

in the progression and even initiation of DKD (2). For example,

NF-kB is thought to be a major transcription factor in initiating

the inflammatory response in DKD, and its inhibition has been

shown to ameliorate renal inflammation, oxidative stress,

structural damage, and proteinuria (3). Moreover, many other

pro-inflammatory signaling pathways are involved in developing

DKD, such as inflammatory vesicle activation, mitochondrial

DNA (mtDNA) release, and Toll-like receptors (TLRs).

HCC is the fifth most common type of cancer worldwide and

the third leading cause of cancer-related deaths worldwide (4).

Unlike other malignancies, HCC accounts for approximately

90% of primary liver cancers and primarily develops in the

presence of chronic inflammation (5). DKD is a major long-

term complication of Type 2 diabetes mellitus (T2DM)

associated with chronic inflammation (6). It is unclear whether

these systemic chronic inflammations of DKD directly cause

HCC. However, Pro-inflammatory cytokines in the pathogenesis

of T2DM have been shown to contribute to the development and

progression of HCC (7). Moreover, about 50% of T2DM patients

develop chronic kidney disease (CKD) (8, 9). Patients with CKD

appear to have a higher risk of developing HCC compared to the

general population (10). Some studies show that the HCC patient

population overlaps highly with the CKD patient population

(11). Hence, it is essential to thoroughly examine the

communication of these inflammatory factors between DKD

and HCC.

Oncogenic signaling receptors associated with the

development of HCC appear to be related to DKD-producing

molecules. TLR4 and TLR2 play a crucial prognostic role in HCC,

associated with HCC occurrence, invasion, and metastasis (12).

Uncontrolled TLR-regulated tissue repair responses can drive

tumor growth and progression in a positive feedback of

uncontrolled tissue injury and repair that triggers a TLR-

dependent inflammatory response (13). Moreover, hepatic TLR2

and TLR4 can trigger an inflammatory response by responding to

endogenous host molecules known as damage-associated

molecular patterns (DAMP), which include oxidized LDL (14),

advanced glycosylation end products (AGE) (15), and HMGB1

(16), that are released and elevated during inflammatory

conditions like DKD. Therefore, further investigation of the

correlation between cytokine-mediated inflammation between

DKD and HCC will broaden our understanding of HCC

pathogenesis and treatment.
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2 Materials and methods

2.1 Microarray data collecting and parsing

The datasets related to DKD and HCC in the GEO database

(https://www.ncbi.nlm.nih.gov/geo) were screened by the following

criteria: Count value > 50; human, microarray, and gene count >

10,000. Among them, the GSE96804 dataset collected from DKD

glomeruli, and the GSE164760 and GSE102079 datasets from HCC

livers were used for subsequent analyses in this work. After

removing the irrelevant samples, the data was parsed with the

GEOquery R package (v2.66.0), and the ComBat method in the sva

R package (v3.46.0) was used to adjust for bias across batches (see

Figures 1A, B). R version 4.2.1 was used for this work.
2.2 Differentially expressed genes analysis

The DEGs in the DKD and HCC datasets were identified using

the “ Limma “ package (version 3.54.0) in R. The screening thresholds

for the DEGs in the DKD (Supplementary Table S1) and HCC

(Supplementary Table S2) datasets were |log2 (fold change) | ≥ 1 and

adjust p ≤ 0.05. The expression patterns of DEGs from HCC were

then visualized in the form of volcano plots and heatmaps using the

ggplot2 (version 3.4.0), EnhancedVolcano (version 1.16.0), and

Pheatmap (version 1.0.12) R packages, respective.
2.3 Weighted correlation network analysis
and key module gene isolation

WGCNA (version 1.70-3) was used to find cluster genes and

their relation to external traits. Briefly, the median absolute

deviation (MAD) was first calculated for each gene in the HCC

dataset, and only the top 75% of genes were retained since low-

expressed or non-varying genes usually represent noise. Next, scale-

free co-expressed gene networks were constructed using the one-

step network construction function of the “WGCNA” software

package, with a soft threshold power (b = 5) as the weighting

value. Then, after obtaining the module eigengenes (ME) for each

cluster, the degree of association between MEs and features was

calculated based on the association between MEs and clinical

features. Finally, after screening, the most relevant MEs for HCC,

GS, and MM measurements were used to identify genes highly

associated with HCC (kME_MM>0.8), as well as associated

members of the module (Supplementary Table S3). Genes

differentially expressed in HCC in ME were determined as

candidate genes associated with HCC (Supplementary Table S4).
2.4 Acquisition of possible secreted RNAs
from DKD

We downloaded 17,534 extracellular vesicles (EVs) long

RNAs from Exorbase (http://www.exorbase.org/, Supplementary
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Table S5). Considering the possibility of future non-invasive

detection of blood markers, secreted proteins appearing in blood

and urine were considered possible blood-based markers in clinical

trials. Genes up-regulated and predicted to be secreted in the DKD

dataset were then considered DKD secretory genes (Supplementary

Table S6).
2.5 The construction of protein-protein
interaction network

Since exosomal mRNAs are functional, recipient cells can take

them up and translate them (17). To identify potential connections

between DKD secretory RNAs and candidate genes associated with

HCC, we constructed a protein-protein interaction (PPI) network

us ing the STRING database (https : / / s tr ing-db.org/) .

Interrelationships between proteins were optimized with a

medium confidence score > 0.4 (Supplementary Table S7). Then,

the PPI network was loaded in Cytoscape (version 3.9.1) software

and was split into community sub-networks using the leading

eigenvector algorithm with the clusterMaker2. The top 3 large

clusters of genes are considered to be DKD-driven HCC causative

genes. The functional enrichment analysis was performed using

clusterProfiler (version 4.8.2). During Gene Ontology (GO) and
Frontiers in Immunology 03
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis, pvalueCutoff = 0.05 or qvalueCutoff = 0.05 were chosen as

filter parameters after pAdjustMethod was set to “BH,” respectively.

The enrichment results for GO are shown in bubble charts, and the

analysis results for KEGG are shown in circos plots.
2.6 Connectivity map analysis

In this study, we loaded the up-regulated genes from the PPI top

3 modules genes (Supplementary Table S8, 67 genes)into the CMAP

database (https://clue.io) to screen for possible small molecule

therapeutic agents. The top 10 compounds with the highest

normalized connectivity scores (NCS) were identified as possible

therapeutic agents (Supplementary Table S9). These molecules

might down-regulate our input genes.
2.7 Machine learning screens for possible
diagnostic genes

In order to identify candidate biomarkers and establish a DKD-

related diagnostic model for HCC, the genes shared by DKD

secretory genes, HCC DEGs, and the top 3 cluster genes are
B

C D

A

FIGURE 1

Differential expression analysis of the integrated HCC dataset. (A, B) display histograms of the batch effect corrected dataset. The x-axis represents
the samples, and the y-axis represents the gene expression levels. (C) shows a heatmap of all differentially expressed genes (DEGs) in HCC.
(D) features a volcano plot illustrating the DEGs in HCC.
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considered the possible Hub genes. Supplementary Tables S2, S6,

and S8 were used to screen the DKD-related HCC possible Hub

genes. We used the “binomial” algorithm from the “glmnet”

package (Version 4.1-4) to fit a LASSO regression model to

screen candidate biomarkers. Next, the “randomForest” package’s

non-linear nature (Version 4.6-14) was utilized to find candidate

biomarkers expressed in HCC. We used the Boruta feature in

machine learning to identify key categorical variables and

determine fundamental mtry values. The best-trained model was

used to screen the hub genes (Supplementary Table S10). The

intersection of Lasso and randomForest results was considered the

critical, pivotal genes for developing DKD-related HCC

(Supplementary Table S11).
2.8 Construction of nomograms and
ROC curves

ROC curves were plotted using the proc software package to

assess the value of the four pivotal genes in HCC diagnosis. Then,

nomograms for the four hub genes were constructed using the

“rms” software (Version 6.7-1) package. Calibration curves and

decision curve analysis (DCA) were further performed to assess the

diagnostic value of the nomograms.
2.9 Immune infiltration analysis

The type and amount of immune cell infiltration were assessed

from HCC expression profiles using the “CIBERSORT” software

package (18). The Wilcoxon test compared the proportions of 22

immune cell types in HCC to control. The correlation of the four

hub genes with these immune cell changes was further assessed.

Finally, the degree of correlation between the 22 invading immune

cells in HCC was shown using the “corrplot” software package

(Version 0.84).
2.10 Patients’ samples collection

Blood samples from patients with DKD and DKD-HCC were

obtained from the Fifth Hospital of Sun Yat-sen Hospital, China.

Whole blood samples with EDTA were obtained from healthy

controls (3), DKD patients (3), and DKD-HCC (3). The Ethics

Committee of the Fifth Hospital of Zhongshan Hospital approved

the protocol for collecting human samples.
2.11 qPCR

Human blood RNA was isolated using the MagJET

(ThermoScientific). Amplification of target genes using a one-step

RT-PCR system consisting of heat-stable SuperScript IV reverse

transcriptase (Invitrogen) with high-fidelity Platinum SuperFi DNA
Frontiers in Immunology 04
polymerase(Invitrogen). The final volume of the reaction was 50 mL.
For all experiments, refer to the instructions for generating

amplifications of different lengths using gene-specific primers

(Supplementary Table S12). The 2ˆ(-delta delta CT) method

assessed gene expression. GAPDH was selected as the internal

reference gene.
2.12 Statistical analysis

Experimental data are expressed as mean ± standard deviation.

Differences between the two groups were generally compared using

the unpaired Student ’s t-test. p < 0.05 was considered

statistically significant.
3 Results

3.1 Identification of DEGs in HCC

The combined HCC and control samples were analyzed for

differences. A total of 346 DEGs were found, of which 103 were up-

regulated and 243 down-regulated (Figure 1; Supplementary

Table S2).
3.2 WGCNA analysis

To discover key genes associated with HCC, we performed a

WGCNA analysis using a scale-free topological fit index 5 to control

for connected edges in the network (Figure 2A). Figure 2B shows

the clustering of the genes, and Figure 2C shows the correlations

between the modules. Figure 2D shows the correlations between

these modules and the HCC, with turquoise color having the

highest positive correlation with the HCC (r = 0.76) and pink

having the highest negative correlation with the HCC (r = -0.63).

Also, module membership and gene significance correlate highly

with turquoise and pink modules in Figures 2E, F. The critical genes

of DEGs and WGCNA in HCC samples were further intersected in

Figure 2G, and 104 differentially expressed HCC-related genes were

found (Supplementary Table S4).
3.3 Screening of DKD RNAs that may be
secreted into the bloodstream

We hypothesized that genes that have secretory properties and

are upregulated in DKD may have the ability to influence HCC. In

this work, we first isolated 661 DEGs from the DKD dataset

(Figure 3), of which 319 genes were upregulated. Considering that

these genes may contribute to the occurrence or development of

HCC by releasing secreted RNAs, it was predicted from public

databases that 101 of these RNAs may be secreted (Supplementary

Table S6).
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3.4 PPI analysis of DKD-associated HCC
causative genes

We constructed a PPI network using the STRING database to

recognize the possible causative genes of DKD-related HCC from

101 up-secreted and 104 HCC-related DEGs. The Cytoscape
Frontiers in Immunology 05
software identified three important protein interaction modules

with a leading eigenvector algorithm. These three modules

contained 132 genes, 67 from DKD and 68 from HCC

(Supplementary Table S8). Eight genes, COL15A1, ECM1,

CTHRC1, C7, LUM, MS4A6A, PLVAP, and LYVE1 belong to

DKD and HCC (Figure 4A). Their relationships with DKD and
B

C
D

E F G

A

FIGURE 2

Identify essential module genes for HCC. (A) Determines the optimal b value using a scale-free topological model and selects b = 5 as the soft
threshold based on average connectivity and scale independence. (B) Displays a hierarchical clustering dendrogram of the module identifiers.
The dendrogram of genes was obtained by average chained hierarchical clustering—color rows below the dendrogram show module assignments
determined by dynamic tree cuts. (C) Visually characterizes the correlation of the eigengenes. The branches (meta-modules) of the dendrogram
combine sets of eigengenes that are positively correlated. The heatmap shows the neighbors in the Eigengenes network. Each row and column in
the heatmap represent modular eigengenes (indicated by color). Blue indicates low adjacency with a negative correlation, and red indicates high
adjacency with a positive correlation. (D) Displays a graph of the relationship between the module genes and the HCC. Each row corresponds to a
module eigengenes and the column to a trait. Each cell was filled with the corresponding correlation and p-value. A redder color indicates a strong
positive correlation between the phenotypic trait and the module eigengene, while a greener color indicates a strong negative correlation.
(E) indicates the correlation between turquoise module members and the gene significance for HCC. Gene significance and module membership
have a very significant correlation (0.86), implying that hub genes of the turquoise module also tend to be highly correlated with HCC. (F) indicates
the correlation between the pink module members and the gene significance for HCC. Gene significance and module membership have a very
significant correlation (0.76), implying that the hub genes of the pink module also tend to be highly correlated with HCC. (G) shows the intersection
of crucial module genes with DEGs. The genes with R>0.5 from Module-trait relationships and kME_MM>0.8 in WGCNA analysis were considered
hub genes in modules highly associated with HCC (Supplementary Table S3).
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HCC gene interactions are displayed in Supplementary Figure S1.

To understand the function of the causative genes, we analyzed

them using GO and KEGG. In Figure 4B, chromosome

segregation and nuclear chromosome segregation from

Biological Process, spindle, and endoplasmic reticulum lumen

from Cellular Component, extracellular matrix structural

constituent, and glycosaminoglycan binding from Molecular

Function were enriched. The Oocyte meiosis and ECM-receptor

interaction were enriched in the KEGG enrichment analysis

(Figure 4C). Interestingly, some critical pathways associated

with inflammation were also enriched, such as the AGE-RAGE

signaling pathway in diabetic complications, PI3K-Akt signaling

pathway, TGF-beta signaling pathway, and viral protein

interaction with cytokine and cytokine receptor.
3.5 Identification of candidate small
molecule compounds that may
reverse HCC

To explore small molecule drugs that may reduce genes in

patients with DKD-related HCC. We used the up-regulated genes

in the top 3 clusters (Supplementary Table S3) to screen drug-

treated cells with similar expression patterns to predict potential

small-molecule drugs that may have a therapeutic effect on DKD-

associated HCC patients. After cMAP screening, there were ten

compounds with the highest negative scores, including KPT-330,

rociletinib, RG-7388, naproxol, ellagic-acid, mepacrine,

palbociclib, ZK-164015, ivermectin, and AMG-232 were

considered potential pharmacotherapeutic agents for the

treatment of DKD-related HCC. Figure 5 illustrates these ten

compounds’ targeted cellular pathways, target genes, and chemical

structures. The targets of some of these molecules, including

NFKB, P53, EGFR, and cytokine, are highly associated

with inflammation.
Frontiers in Immunology 06
3.6 Screening hub genes with diagnostic
value by machine learning

Considering that DKD secretory RNAs and HCC DEGs can

form 3 key PPI groups, coupled with the fact that these genes are

up-regulated in both DKD and HCC and have a high rate of

correct diagnosis of HCC, it can be assumed that these genes are

the pivotal genes for DKD-associated HCC. In this work, we

utilized a Lasso and random forest (RF) machine learning

algorithm to isolate the four hub genes from the candidate gene

(Figure 6). Plasmalemmal Vesicle-Associated Protein (PLVAP),

complement C7(C7), collagen type XV alpha 1 chain (COL15A1)

and membrane spanning 4-domains A6A (MS4A6A) were

recognized as the hub genes.
3.7 Construction and efficacy assessment
of diagnostic nomogram models

We first evaluated the efficacy of PLVAP, C7, COL15A1, and

MS4A6A as sample classifiers for better diagnosis and prediction.

The Area Under Curve (AUC) of the four genes in Figure 7 A was

more significant than 0.85. Based on this, we constructed a

diagnostic nomogram model with these four genes (Figure 7B)

and validated the predictive efficacy of the model using Bootstrap

self-sampling (Figure 7C). In addition, the Decision Curve Analysis

(DCA) curves (Figure 7D) showed that our fit curve was far from

the two extreme curves, implying that the model has

application value.
3.8 Correlation analysis of immune cell
infiltration and core genes in HCC

Our PPI results showed that the genes in the top 3 clusters

were associated with the AGE-RAGE signaling pathway in
BA

FIGURE 3

Identification of RNAs that may be secreted in DKD. (A) represents a volcano plot of DEGs in the DKD dataset. (B) represents a Venn plot of up-
regulated genes and RNAs that may be secreted into the bloodstream in DKD.
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diabetic complications, the TGF-beta signaling pathway, and

cytokines. These pathways are all related to inflammation.

Therefore, analyzing the immune cells of HCC with the

CIBERSORT algorithm is applicable further to understanding

the four hub genes involved in DKD-related HCC. Figure 8A

shows the proportion of 22 immune cells in each sample.

Figure 8B demonstrates the differentiation of these 22 cell types

in HCC. Compared with the control group, T cells regulatory

(Tregs), T cells CD8, Plasma cells, Macrophages M2, Mast cells

resting, Dendritic cells resting, Macrophages M0, Mast cells

activated have significant changes. MS4A6A (Figure 8C) shows

the highest correlation with Macrophages M2 (r=0.68) and the

highest negative correlation with Macrophages M0 (r=-0.66).

Figure 8D shows that Macrophage M0 and M2 are highly

negatively correlated (r=-0.68), while Plasma cells are negatively

correlated with Macrophage M0 (r=0.-53).
Frontiers in Immunology 07
3.9 Validation of core gene expression in
the blood of DKD patients

The high expression of PLVAP and COL15A1 genes in the

blood of DKD patients may be a critical activator for DKD leading

to HCC. To further confirm the accuracy of the comprehensive

bioinformatics analysis described above, we examined the

expression of PLVAP and COL15A1 in the blood of patients with

DKD and DKD-HCC using qPCR. Figure 9 shows that PLVAP was

highly expressed in DKD and DKD-HCC patients.
4 Discussion

We are the first to screen key genes for DKD that may cause

HCC by applying multiple bioinformatics and machine learning
B C

A

FIGURE 4

PPI analysis of DKD-related secreted genes and HCC-related genes. (A) Top 3 cluster genes were obtained based on the leading eigenvector
algorithm. Yellow markers indicate possible DKD secretory genes and red lines are their interrelationships with other proteins. Blue genes are
additional genes related to HCC in the PPI network, and the grey arrows represent their interrelationships. Red letters indicate genes belonging to
DKD and HCC. (B) GO analysis of Top 3 cluster genes, including biological process (BP), cellular component (CC), and molecular function (MF).
(C) indicates the circle plot of KEGG analysis results. Gene symbols with logarithmic values of logFC (blue-red scale) are located on the left side of
the circos. The colored links on the right side link genes to KEGG annotations.
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analysis methods. Our results showed that the AGE-RAGE

signaling pathway in diabetic complications, PI3K-Akt signaling

pathway, TGF-beta signaling pathway, P53 signaling pathway, and

other signaling pathways might associated with DKD-related HCC.

Using machine learning, we isolated four genes, PLVAP, C7,

COL15A1, and MS4A6A, as the hub genes that DKD may affect

subsequent HCC. By confirming the ROC curves, we used these

four genes to build a diagnostic nomogram model for DKD-related

HCC. Finally, we confirmed that PLVAP can be used as a blood

RNA marker to diagnose DKD or DKD-HCC, and the role of this

gene may be used to assess the risk of HCC in DKD patients.

Chronic kidney disease (CKD) is a significant public health

problem worldwide, and patients with CKD appear to be at higher

risk of developing HCC compared to the general population (10).

DKD is the most common form of Chronic Kidney Disease (CKD)

and has the highest prevalence of End Stage Kidney Disease (ESKD)

worldwide (19, 20). Recent studies have shown that the

pathophysiology of DKD is multifaceted and that DKD has been

characterized as a metabolically driven immune disorder.

Numerous studies have shown that inflammation leads to

deterioration of kidney function. High-Sensitivity C-Reactive

Protein is a systemic marker of inflammation associated with the

progression of DKD in patients with T2DM (21). Not only that, the

Systemic immune-inflammation index (SII), an index calculated by

platelet count × neutrophil count/lymphocyte count, was used to

assess T2D-associated DKD (19). Interestingly, the SII index has

been initially used to assess the prognosis of patients with HCC by

Hu et al. (22). It is unclear why the immune indices in blood are

suitable for the diagnosis or prognosis of DKD and HCC. The
Frontiers in Immunology 08
potential inflammation factors and mechanisms participating in

DKD-related HCC are not fully understood.

HCC is the second leading cause of cancer deaths globally and

has multiple etiologic factors, most of which are related to

inflammation (23).

Telomere shortening and consequent chromosomal instability

are observed in 90% of HCC carcinogenesis and progression due to

increased hepatocyte proliferation (24). At the subcellular level,

there is a high frequent impairment of the spindle assembly

checkpoint in HCC (25), and the accumulation of misfolded and

unfolded proteins in the lumen of the endoplasmic reticulum (ER),

which induces ER stress and leads to activation of the unfolded

protein response (26). Recent research has reported that a 2–3 fold

increase in heparan sulfate N-sulfation/O-sulfation ratio was

observed in HCC compared to cirrhotic tissues (27), indicating

the expression of glycosaminoglycans in cirrhotic liver and HCC are

different. These reported impaired Biological Process, Cellular

Component, and Molecular Function pathways are entirely

consistent with our work’s GO enrichment analysis of DKD-

driven HCC causative genes (Figures 4A, B). It is worth noting

that there is justification for using DKD-secreted RNA as a seed for

PPI network analysis (Figure 4A). Exosomes can fuse with the

plasma membrane of target cells, delivering mRNA material to the

cytoplasm for post-translational interactions with proteins (28). In

this study, the hypothesis was that a portion of the exosomal RNA

could be intercepted by cells in the bloodstream (such as

inflammatory cells) and then migrate to the liver, becoming part

of the HCC immune infiltrate. Another portion of the RNA may

directly target liver tissues, where it can be translated and interact
BA

FIGURE 5

Screening potential small molecule compounds for DKD-related HCC by cMAP analysis. (A) The top 10 compounds with the highest negative
enrichment scores based on cMAP analysis, along with their targets and the cellular pathways that may be affected. (B) Chemical structures of the
ten compounds.
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with other proteins within hepatocytes. However, these

mechanisms were not confirmed in this study. Additionally, HCC

is a classic example of inflammation-associated cancer, as more

than 90% of HCCs arise in the context of liver injury and

inflammation (29). Several signaling pathways, including TGF-b,
ECM, AGE-RAGE, PI3K-AKT, P53 and cytokines, are dis-

regulated in HCC and lead to uncontrolled cell division and

metastasis (30–33). Consistent with the reported impaired KEGG

pathway, our KEGG enrichment analysis showed that most of the

causative genes of DKD-associated HCC were enriched in

inflammatory and immune-related pathways, suggesting that the

inflammatory-immune pathway may be a potential mechanism of

DKD-associated HCC (Figure 4C).

Even though HCC is one of the deadliest health burdens

worldwide, few drugs are available for clinical treatment (34).

First-line therapeutic agents include sorafenib and levatinib. The

former is a multikinase inhibitor that blocks the activity of RAF-1,
Frontiers in Immunology 09
BRAF, VEGFR, PDGFR, and KIT receptors involved in cell

proliferation and angiogenesis (35). The latter targets VEGFR 1-3,

FGFR 1-4, PDGFR a, RET and KIT, and is a first-line systemic

treatment for advanced HCC (36). Both of them can contribute to

antitumor activity with Immunomodulatory activity (37, 38). There

have been no more in-depth explorations to distinguish the

differences in clinical benefit of these agents for HCC and DKD-

related HCC. Our study provides a new perspective by linking

pathogenic genes associated with DKD through cMAP analysis to

identify potential compounds targeting HCC. This work applied

possible DKD-related pathogenic genes up-regulated by HCC to the

cMAP analysis. Ten small molecule compounds were identified

(Figure 5). Among them, mepacrine, originally used as an

antimalarial for nearly a century, has recently been rediscovered

as an anticancer drug (39), based on its function in inhibiting the

NFkB pathway and inducing p53 expression. Interestingly, like

Mepacrine, the ellagic-acid, which has antiviral effects, has also been
B

C
D

E F

A

FIGURE 6

Machine learning methods were used to identify hub genes for DKD-related HCC. (A, B) The LASSO logistic regression algorithm was used to
identify seven possible markers of HCC. (C, D) indicate the genes characterized by RF to determine the importance genes of HCC, of which four
genes had MeanDecreaseGini greater than 10. (E) Based on the selected optimal threshold, the model’s prediction accuracy was evaluated by a
confusion matrix. (F) The Venn diagram shows four genes in common with the LASSO and RF algorithms.
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shown to have applications in the treatment of HCC (40), shows

high against inflammation activities with a prolonged onset and

duration through interaction with known cyclooxygenase inhibitors

(41). Based on these findings, Mepacrine and ellagic-acid may be

consistent with first-line drugs for treating HCC but are more

applicable to DKD-associated HCC for their lower norm_cs score

(Supplementary Table S10). It can be hypothesized that the early

use of anti-inflammatory interventions in patients with DKD may

improve renal function, inhibit the onset and progression of HCC,

and ultimately significantly prolong the life span of patients.

AFP is a biomarker widely used for HCC detection and disease

surveillance, and most experts believe that AFP does not have

sufficient performance characteristics to serve as a standalone

screening test (42). Even the AFP-L3, a fucosylated glycoform of

AFP, is insufficient as a standalone test for screening. In an

independent phase III cohort of 534 patients in the United States,

the cutoff value for AFP-L3 was 8.3%, the sensitivity for early HCC

was 40%, and the FPR was fixed at 10% (43). There is a lack of

effective biomarkers that can be used for early HCC detection. In

our work, we identified four signature genes using machine learning

from eight causative genes that may be associated with DKD-related

HCC. These four genes, PLVAP, C7, COL15A1, and MS4A6A were
Frontiers in Immunology 10
then used to construct a diagnostic nomogram model that could

effectively diagnose DKD-associated HCC (Figure 7). Furthermore,

we chose the genes PLVAP and COL15A1, which are highly

expressed in both DKD and HCC, to facilitate the detection as

blood-based biomarkers for HCC. Although the human samples

from GSE96804 were ethnically different from our blood samples,

PLVAP expression was up-regulated in blood with both DKD and

DKD-HCC comorbidities, consistent with the results of the

bioinformatics analysis. The PLVAP protein is the main

component of endothelial diaphragms in fenestrae, caveolae, and

transendothelial channels, shown in previous studies to be

associated with DKD and HCC. On the one hand, PLVAP can be

used as an early marker of glomerular endothelial injury with DKD

in mice (44), and do increase in glomeruli of human diabetic

patients (45). On the other hand, PLVAP was identified as a gene

expressed explicitly in HCC vascular endothelial cells (46), and has

been investigated as a therapeutic target in HCC (46), perhaps based

on its ability to alter the immunosuppressive microenvironment

(47). Indeed, during inflammation, PLVAP is required for leukocyte

exudation into the site of inflammation and is essential for

transcellular migration (48, 49), and has also been described as a

leukocyte transport molecule that plays a crucial role in immune
B

C D

A

FIGURE 7

Diagnostic nomogram model construction and efficacy assessment. (A) Expression and ROC profiles of candidate biomarkers, PLVAP, C7, COL15A1,
and MS4A6A, between control and pathogenic groups. (B) The nomogram model. (C) The calibration curve of nomogram model. (D) denotes DCA
for the nomogram model. The black line labeled “none” represents the net benefit of assuming no patients had HCC. The gray line labeled “all”
means the net gain assuming all patients have HCC, and the red line labeled genes represents the net profit bearing DKD-related HCC is identified
based on the HCC diagnosis values predicted by the nomogram model.
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surveillance and inflammation as it is redistributed in cells after

pro-inflammatory stimuli (50). The conclusion can be drawn that

PLVAP may provide a potential immune-related diagnostic

indicator for patients with DKD-related HCC.

Studies have highlighted that immune cell infiltration is

essential in the study of HCC development and immunotherapy

(51–54). Macrophages, thought to be an evolutionarily ancient cell

type involved in tissue homeostasis and immune defense against
Frontiers in Immunology 11
pathogens, are now being rediscovered to act as modulators of

various diseases, including cancer (55). Alternately activated (M2)

macrophages promote tumor growth and invasiveness in HCC (56),

and stimulate HCC cell migration and epithelial-mesenchymal

transition through the TLR4/STAT3 signaling pathway (57). In

this work, we found significant differences in immune cell

infiltration between the HCC and control groups, including T

cells regulatory (Tregs), T cells CD8, Plasma cells, Macrophages
B C

D

A

FIGURE 8

Analysis of immune cell infiltration in HCC. (A) Superimposed histogram shows the proportion of immune cells in the HCC and control groups.
(B) Bar graph compares the 22 immune cells in the HCC and control groups. (C) Heatmap shows the correlation of the genes PLVAP, C7, COL15A1,
and MS4A6A with the infiltration of the 22 immune cells. (D) Heatmap showing the correlation of 22 immune cell infiltrations. *p < 0.05; **p < 0.01;
****p < 0.0001; ns, not significant.
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M2, Mast cells resting, Dendritic cells resting, Macrophages M0,

Mast cells activated. The Macrophages M2, M0, and Plasma cells

were associated with PLVAP, C7, COL15A1, and MS4A6A. Since

MS4A6A has been reported as a biomarker for macrophage M2

(58), it gives the highest correlation with macrophage M2. The other

three hub genes (Figure 8C) also showed significance in correlation

with macrophage M2 and M0, suggesting that these four genes used

to construct nomograms may influence the development of DKD-

associated HCC through interactions with immune cell infiltration.
5 Conclusion

Through the combined analysis of RNAs that may be secreted

by DKD and gene clusters associated with HCC, we revealed the

inflammatory immune pathways of DKD that may affect HCC.

Based on these pathways, we screened small molecule drugs that

can be used to treat DKD-related HCC. Then, utilizing

bioinformatic and machine-based approaches such as ROC, lasso,

and RM, we screened PLVAP, C7, COL15A1, and MS4A6A to

construct HCC diagnostic nomograms. After thoroughly evaluating

the diagnostic efficacy of the four genes, we assessed the potential of

PLVAP as a blood-based biomarker for disease diagnosis in blood

samples of DKD and DKD-HCC. Our work provides new insights
Frontiers in Immunology 12
into using immune pathway molecules to diagnose and treat DKD-

related HCC.
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