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Neutrophils isolated from
systemic lupus erythematosus
patients exhibit a distinct
functional phenotype
Neelakshi R. Jog1†, Catriona A. Wagner1, Teresa Aberle1,
Eliza F. Chakravarty1, Cristina Arriens1, Joel M. Guthridge1

and Judith A. James1,2*

1Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City,
OK, United States, 2Departments of Medicine and Pathology, University of Oklahoma Health Science
Center, Oklahoma City, OK, United States
Neutrophil dysregulation, particularly of a low-density subset, is associated with

systemic lupus erythematosus (SLE); however, the exact role of normal-density

neutrophils in SLE remains unknown. This study compares activation and

functional phenotypes of neutrophils from SLE patients and healthy controls to

determine potential contributions to SLE pathogenesis. Surface activation

markers and release of neutrophil extracellular traps (NETs), granule proteins,

and cytokines/chemokines were measured in resting and stimulated neutrophils

from SLE patients (n=19) and healthy controls (n=10). Select miRNA and mRNA

involved in neutrophil development and function were also measured. Resting

SLE neutrophils exhibited fewer activation markers compared to control

neutrophils, and activation markers were associated with different plasma

cytokines/chemokines in SLE patients compared to healthy controls. However,

activation markers increased similarly in SLE and control neutrophils following

stimulation with a TLR7/8 agonist, neutrophil growth factors, and bacterial

mimic. At the resting state, SLE neutrophils produced significantly more

CXCL10 (IP-10), with trends toward other increased cytokines/chemokines.

Following stimulation, SLE neutrophils produced fewer NETs and

proinflammatory cytokines compared to control neutrophils but more MMP-8.

In addition, SLE neutrophils expressed less miR130a, miR132, miR27a, and

miR223. In conclusion, SLE neutrophils exhibit distinct functional responses

compared to control neutrophils. These functional differences may result from

differential gene expression via miRNAs. Furthermore, the differences in

functional phenotype of SLE neutrophils suggest that they may contribute to

SLE differently dependent on the inflammatory milieu.
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1 Introduction

Neutrophils are rapid-acting, short-lived cells, forming the first line

of defense against invading microbes through various processes,

including producing cytokines, releasing granules containing

antimicrobial proteins (i.e., lactoferrin) and proteases (i.e., matrix

metalloproteinases [MMPs]), and generating neutrophil extracellular

traps (NETs). Neutrophil dysregulation, particularly increased

NETosis, is linked to autoimmune diseases like systemic lupus

erythematosus (SLE). In particular, a proinflammatory neutrophil

subset termed low-density granulocytes (LDGs) is elevated in SLE

patients (1). LDGs are transcriptionally distinct, producing more IFNg,
TNFa, type I IFNs, and NETs compared to autologous and healthy

control normal-density neutrophils (referred to here as traditional

neutrophils [TNs]) (2–4), suggesting possible mechanisms by which

LDGs influence SLE pathogenesis.

In contrast to LDGs, NET formation is similar between SLE and

healthy TNs (4), suggesting that TNs might exert different

functional responses or not contribute to SLE pathogenesis.

However, studies on the role of TNs in SLE pathogenesis are

limited and somewhat conflicting. For example, one study

suggested that TNs are pathogenic through the upregulation of

IFNa mRNA (2), while another found that neutrophils may be

regulatory by restricting CD4+ T cell proliferation (5). This study

compares the activation and functional responses of SLE and

healthy TNs to understand their contributions to SLE pathogenesis.
2 Methods

2.1 Patients

SLE patients and healthy controls were recruited at the Oklahoma

Medical Research Foundation (OMRF) through the Oklahoma

Rheumatic Disease Research Cores Center. All patients met the

American College of Rheumatology (ACR) and ACR/EULAR criteria

for SLE classification (6, 7), and all participants provided written

informed consent before inclusion in the study. All studies were

performed in accordance with the Helsinki Declaration and

approved by the OMRF Institutional Review Board.
2.2 Neutrophil isolation

Neutrophils were isolated from whole blood using dextran

sedimentation as previously described (8). Briefly, blood was

collected in vacutainers with citrate anti-coagulant, and peripheral

blood mononuclear cells were separated by density gradient

centrifugation. Red blood cells were sedimented using dextran.

Residual red blood cells in supernatants were lysed and enriched

TNs were used for experiments. Neutrophil enrichment resulted in

>95% viability and >97% purity.
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2.3 Flow cytometry

Neutrophils were cultured with HBSS with calcium and

magnesium + 1% BSA (HBSS++) alone (unstimulated control) or

with 10µM R848 (InvivoGen), 0.1µg/ml G-CSF (Peprotech Inc), or

0.1µg/ml G-CSF + GM-CSF for 30 minutes or 300nM of the

bacterial mimic formyl methionine leucine phenyl-alanine (fMLF,

Sigma) for 3 minutes. Cells were stained with CD66b-PerCP-Cy5.5,

CD11b-FITC, CD62L-BV650, and CD35-PE antibodies (all from

Biolegend) for 20 minutes on ice. After washing, cells were fixed in

1% paraformaldehyde. Data were acquired with LSRII or

FACSCelesta (BD Biosciences) cytometers and analyzed using

FlowJo Software (Tree Star).
2.4 Neutrophil and plasma
soluble mediators

Neutrophils were cultured for 3h in HBSS++ alone (unstimulated)

or with R848 or a combination of G-CSF and GM-CSF (as above).

Supernatants were collected by centrifugation, aliquoted, and stored at

-20°C. Neutrophil granule proteins and cytokines, as well as plasma

cytokines, were measured using custom xMAP assays (R&D systems)

as previously described (9). Data were acquired on the BioPlex200

array system (Bio-Rad Technologies, Hercules, CA). Plates with >60%

of samples below the standard range were excluded from subsequent

analyses. Plasma levels of BLyS and APRIL were measured by ELISA

according to the manufacturer’s instructions (R&D Systems).
2.5 NETosis

Neutrophils were seeded on poly-L Lysine coated chambered

cover glass (Nunc/Labtek, 50,000 cells/chamber) with or without

10µM R848 or 0.1µg/ml G-CSF+GM-CSF for 4h, followed by

fixation with 4% paraformaldehyde for 30min. After

permeabilization with 0.25% triton X-100, cells were blocked with

blocking buffer (5% goat serum in 1x PBS), and incubated overnight

with polyclonal anti-MPO (Dako) and monoclonal anti-histone

(Millipore) in blocking buffer at 4°C. Cells were stained with

Rhodamine Red conjugated anti-rabbit and FITC conjugated

anti-mouse antibodies. DNA was visualized by DAPI. NETs were

visualized using a Zeiss LSM 710 confocal microscope, and data

were analyzed with ImageJ.
2.6 miRNA and mRNA quantitation

Total RNA was extracted from neutrophils using a Quick RNA

miniprep kit (Zymo Research). For miRNA quantitation, 10ng total

RNA was reverse transcribed and pre-amplified using Qiagen miScript

II RT and PreAmp kits. miRNA was quantitated using miScript SYBR
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Green PCR Kit and miScript Primer Assays on an ABI 7900HT

thermal cycler. Total RNA was also used to quantify select mRNA

expression using Fluidigm Biomark HD and delta gene assays per the

manufacturer’s instructions (Supplementary Table 1).
2.7 Statistical analyses

For all analyses with 2 groups, comparisons were made using a 2-

tailed Mann-Whitney test. A 2-way ANOVA with Sidak’s multiple

comparisons test was used for analyses with 2 independent groups.

Spearman’s rank correlation was used for correlation analyses.

Heatmaps were created using Complexheatmap v.4.2 in R. All other

analyses were performed using GraphPad Prism 9, and p-values less

than 0.05 were considered statistically significant.
3 Results

3.1 Traditional neutrophils from SLE
patients exhibit a reduced basal
activation phenotype

To determine whether TNs from SLE patients are more

activated due to the existing inflammatory milieu, we determined

the basal surface expression of neutrophil activation markers by

flow cytometry. Surprisingly, compared to healthy controls (n=10),

TNs from SLE patients (n=19) exhibited significantly lower

expression of CD66b (Figure 1A), specifically in patients with low

disease activity (Supplementary Figure 1). In addition, there was a

trend towards reduced CD35, particularly in those with high disease

activity, and increased CD62L expression compared to those from

controls (Figures 1A–C, Supplementary Figure 1). CD11b

expression was similar in TNs from SLE patients and healthy

controls (Figure 1D). These data suggest that TN from controls

and patients with high disease activity have similar baseline

activation; however, TNs from low disease activity patients may

have suppressed basal activation. The expression of activation

markers did not differ based on corticosteroid usage

(Supplementary Figure 2). Consistent with differing inflammatory

environments, activation markers were associated with different

plasma cytokines/chemokines in SLE patients compared to healthy

controls (Figure 1E). In particular, neutrophil activation positively

correlated with the expression of SCF in SLE patients but

not controls.

Excessive stimulation, as expected in SLE, may result in

neutrophil exhaustion, which could contribute to the reduced

activation phenotype observed in TNs from SLE patients. To test

this possibility, we stimulated TNs from SLE and healthy controls

with the TLR7/8 ligand R848, G-CSF with or without GM-CSF, and

the bacterial mimic fMLF. TNs from SLE patients upregulated

activation markers similarly to those from controls (Figures 1F–

I), suggesting that TNs are not exhausted and can respond to

external stimuli. Similar trends were observed in patients with low

and high disease activity, although differences were less pronounced

in those with high disease activity (Supplementary Figure 3).
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3.2 SLE traditional neutrophils exhibit a
distinct phenotype at rest and
following stimulation

We next determined if TN functional phenotype, specifically

NETosis, degranulation, and cytokine/chemokine production,

differed from control TNs (Supplementary Table 2). At resting

conditions, the percent of NET-forming neutrophils and release of

the granule proteins lactoferrin, MMP-2, MMP-8, and MMP-9 did

not differ between SLE and control TNs (Supplementary Figure 4).

However, resting SLE TNs produced significantly more IP-10, with

trends toward other increased cytokines/chemokines, such as IL-21,

TRAIL, APRIL, CCL3, and BLyS, compared to control TNs

(Figures 2A–G). In addition, TNs from patients with high disease

activity released significantly less lactoferrin at rest compared to

those with low disease activity and controls, while TNs from

patients with low disease activity released significantly more

lactoferrin compared to controls (Supplementary Table 3). TN

functional responses did not differ based on corticosteroid usage

(Supplementary Table 4).

Despite higher soluble mediator production at rest, SLE TNs

only released more MMP-8 following stimulation with R848

(Supplementary Figure 5) or G-CSF and GM-CSF (Figures 2H, I,

Supplementary Figure 6). Furthermore, TNs from patients with low

or high disease activity released significantly more lactoferrin

compared to those from controls following G-CSF and GM-CSF

stimulation (Supplementary Table 3). In contrast, following G-CSF

and GM-CSF stimulation, control TNs produced significantly more

NETs, IL-8, and IL-1b, with trends towards increased IL-1Ra and IL-
23, compared to SLE TNs (Figures 2J–N). TN functions were similar

in SLE patients on or off corticosteroids (Supplementary Table 4).
3.3 SLE traditional neutrophils show
differences in the expression of
select miRNA

As SLE and control TNs displayed different functional

responses, we hypothesized that gene expression may also differ.

Therefore, we performed a targeted gene expression analysis for

genes that differ in TNs isolated from patients with other immune-

mediated diseases and healthy controls (10, 11). In a subset of

patients and controls, CSFF3, ID2, KIT, NFKBIA, NFKBIE, PIM1,

TNFAIP3, TNFSF8, TRAF3, miR9, miR138, miR143, miR146a, and

miR155 expression did not differ between control (n=4) and SLE

(n=8) TNs (Supplementary Figures 7, 8). However, the expression

of miR130a, miR132, miR27a, and miR223 was significantly higher

in control TNs compared to SLE TNs (Figure 3).
4 Discussion

We found that despite reduced activation at resting, TNs

from SLE patients can respond to external stimulation; however,

SLE TNs exhibit different functional responses compared to
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control TNs. For example, resting SLE TNs produced more of the

IFN-associated chemokine IP-10, which is increased right before

SLE classification and flare (9, 12–14), and contributes to T cell

chemoattraction and activation (15). In addition, resting SLE

TNs may produce more APRIL and IL-21. Although the

consequences of APRIL and IL-21 production by TNs remain
Frontiers in Immunology 04
unknown, previous studies have found that, in healthy

individuals and during infection, neutrophils provide B cell

help within the spleen through APRIL and IL-21, inducing

immunoglobulin class switching, somatic hypermutation, and

antibody production (10, 11). Therefore, TNs may also

contribute to autoantibody production in SLE.
B C D

E

F G

H I

A

FIGURE 1

SLE traditional neutrophils are less activated at the resting state, but maintain their ability to respond to external stimuli. (A) CD66b, (B) CD35, (C)
CD62L, and (D) CD11b expression was determined on traditional neutrophils isolated from controls or SLE patients using flow cytometry. Statistical
significance was determined using a Mann-Whitney test. (E) Heatmap of Spearman’s rank correlation coefficients for plasma soluble mediator
concentrations (MFI fold-change over control) that were significantly associated with CD66b or CD62L expression on traditional neutrophils isolated
from controls or SLE patients. (F) CD66b, (G) CD35, (H) CD11b, and (I) CD62L expression was determined on unstimulated or stimulated traditional
neutrophils isolated from controls or SLE patients using flow cytometry. Statistical significance was determined using a 2-way ANOVA with Sidak’s
multiple comparisons test. Lines indicate mean+SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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FIGURE 2

The functional phenotype of SLE traditional neutrophils differs under basal conditions and following stimulation compared to control traditional
neutrophils. (A) Volcano plot of the difference between unstimulated functions in traditional neutrophils isolated from SLE patients and controls. Red
dots indicate those significantly higher in neutrophils from SLE patients compared to those from controls. Levels of secreted (B) IP-10, (C) IL-21,
(D) TRAIL, (E) APRIL, (F) CCL3, and (G) BLyS from unstimulated control or SLE traditional neutrophils as measured by flow cytometry. (H) Volcano
plot of the difference between G-CSF+GM-CSF-stimulated functions in traditional neutrophils isolated from SLE patients and controls. Red dots
indicate those significantly higher and blue dots indicate those significant lower in neutrophils from SLE patients compared to those from controls.
Levels of secreted (I) MMP-8, (J) IL-8, (K) IL-1b, (L) IL-23, and (M) IL-1Ra from unstimulated control or SLE traditional neutrophils as measured by
flow cytometry. (N) Percent of neutrophils with NETs was determined by microscopy following DNA and myeloperoxidase staining in G-CSF+GM-
CSF-stimulated traditional neutrophils isolated from controls or SLE patients. Statistical significance was determined using a Mann-Whitney test.
Lines represent mean+SEM. *p<0.05.
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Interestingly, following stimulation, SLE TNs secreted less

proinflammatory cytokines and NETs but released more MMP-8,

while TNs from SLE patients with low or high disease activity

released more lactoferrin, compared to control TNs, suggestive of

increased degranulation. However, levels of the degranulation

marker MMP-9 did not significantly differ. Although the role of

MMP-8 in SLE is unknown, other MMPs, such as MMP-9, may

play a regulatory role in SLE, potentially by cleaving autoantigens,

reducing their immunogenicity and promoting immune complex

clearance (16). In addition, lactoferrin may inhibit NET formation

(17), consistent with the reduced NETosis we observed in SLE TNs

following stimulation. Thus, SLE TNs may play a more anti-

inflammatory role in the presence of G-CSF and GM-CSF,

suggesting that they contribute to SLE pathogenesis differently,

dependent on the inflammatory environment.
Frontiers in Immunology 06
A limited number of studies have investigated the functional

phenotypes of SLE compared to healthy TNs, and results have been

somewhat conflicting. These studies found that at rest and following

stimulation with PMA, SLE and healthy TNs exhibit similar

functional responses, including ROS production, NETosis, and

cytokine expression (2, 4). Consistent with these studies, we

found similar CD66b expression on SLE and healthy TNs, which

is a marker for granules required for ROS generation. However, in

contrast to other studies, following G-CSF/GM-CSF stimulation,

our data suggest that SLE TNs produce less NETs and

proinflammatory cytokines compared to healthy TNs. This may

be a result of different external stimulations used in our and other

studies, as we did not see these differences following R848

stimulation. Consistent with functional differences, SLE and

healthy TNs differ in gene expression and DNA methylation,
B

C D

A

FIGURE 3

miRNA expression differs between control and SLE traditional neutrophils. Levels of (A) miR130a, (B) miR132, (C) miR27a, and (D) miR223 were
measured by real-time PCR in traditional neutrophils isolated from controls or SLE patients. Statistical significance was determined using a Mann-
Whitney test. Lines represent mean+SEM. *p<0.05, **p<0.01.
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specifically of IFN-regulated genes (2, 3, 18). Thus, our study and

others demonstrate potential functional differences between SLE

and healthy TNs; however, studies encompassing a more

comprehensive analysis of neutrophil functional responses are

needed. Although an evaluation of autologous LDGs was not

included in this study, our data suggest that SLE TNs may have

different functional responses compared to SLE LDGs, which are

hyperresponsive and produce elevated proinflammatory cytokines

and NETs compared to autologous TNs (2–4). Based on the gene

expression profiles and morphology of LDGs, some studies

postulate that LDGs are immature cells that are prematurely

released from the bone marrow due to increased recruitment

during inflammation (19), which may explain these functional

differences. In addition, the increase in LDGs and excessive

inflammation observed in SLE may indicate an increase in

immature or exhausted SLE TNs; however, our data show that

TNs express markers of mature neutrophils and retain the ability to

respond to external stimuli, suggesting that SLE TNs are not

immature or exhausted. Instead, we found that following

stimulation, SLE TNs may be anti-inflammatory as they produce

less proinflammatory cytokines and NETs. Future studies will assess

whether TN functions differ based on the frequency of LDGs,

providing further insight into the relationship between LDGs and

TNs in SLE patients.

Our results suggest that TN responses are regulated differently

in SLE compared to healthy individuals. Although the exact nature

of differential regulation is unclear, we found that miRNAs

implicated in neutrophil development and function (20),

miR130a, miR132, miR27a, and miR223, are significantly lower in

SLE neutrophils. miR130a is highly expressed in early neutrophil

precursors and reduced significantly upon maturation (21);

therefore, a reduction of miR-130a in SLE TNs supports the

notion that SLE TNs are not more immature compared to control

TNs. In contrast, miR132, miR27a, and miR223 exhibit high

expression in more mature neutrophils, with a further increase of

miR132 in activated neutrophils (21), suggesting that these miRNAs

may instead influence the observed functional differences. For

example, although the role of miR223 in neutrophils in SLE is

unknown, miR223 inhibits neutrophil activation and neutrophil-

driven inflammation in tuberculosis and hepatic injury mouse

models (22). Thus, the reduced levels of miR223 may contribute

to the increased production of proinflammatory mediators in

unstimulated SLE TNs. However, future studies are needed to

determine how these miRNAs contribute to TN functions in SLE.

This study was limited by the small sample size, especially in the

miRNA and mRNA analyses. Furthermore, gene expression

analyses were determined using targeted qPCR and the use of

bulk RNA-sequencing may reveal additional differences. Finally,

the SLE patients included in this study were treated and had long-

standing disease, and additional differences may be revealed in

populations of treatment-naïve patients.

Together, our data suggest that TNs may contribute to SLE

pathogenesis; however, their contributions may differ compared to

LDGs and depend on the inflammatory environment. The
Frontiers in Immunology 07
increased production of IP-10, APRIL, and IL-21 by SLE TNs

suggest that resting SLE TNs may contribute to SLE pathogenesis

through the modulation of T cell and humoral responses. In

contrast, in the presence of G-CSF and GM-CSF, SLE TNs

produce less inflammatory cytokines and more MMP-8 and

lactoferrin, suggesting a potential regulatory role. However, future

mechanistic studies are needed to determine how these functional

differences impact SLE pathogenesis.
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