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Head and neck squamous cell carcinoma (HNSCC) rank among the most

prevalent types of head and neck cancer globally. Unfortunately, a significant

number of patients receive their diagnoses at advanced stages, limiting the

effectiveness of available treatments. The tumor microenvironment (TME) is a

pivotal player in HNSCC development, with macrophages holding a central role.

Macrophages demonstrate diverse functions within the TME, both inhibiting and

facilitating cancer progression. M1 macrophages are characterized by their

phagocytic and immune activities, while M2 macrophages tend to promote

inflammation and immunosuppression. Striking a balance between these

different polarization states is essential for maintaining overall health, yet in the

context of tumors, M2 macrophages typically prevail. Recent efforts have been

directed at controlling the polarization states of macrophages, paving the way for

novel approaches to cancer treatment. Various drugs and immunotherapies,

including innovative treatments based on macrophages like engineering

macrophages and CAR-M cell therapy, have been developed. This article

provides an overview of the roles played by macrophages in HNSCC, explores

potential therapeutic targets and strategies, and presents fresh perspectives on

the future of HNSCC treatment.
KEYWORDS
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the most prevalent form of head

and neck cancer and ranks as the seventh most common cancer worldwide (1). Regrettably,

most instances are detected at advanced stages, often involving locally advanced (LA)

conditions or distant metastasis (DM). Despite the availability of various treatment options,
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such as surgery, radiation therapy (RT), chemotherapy (CT), and

immunotherapy (IT), a significant portion (40-60%) of LA tumors

eventually experience relapse or local progression. Palliative CT for

metastatic and recurrent (R/M) HNSCC tumors also presents a

grim prognosis (2). The tumor microenvironment (TME) refers to

the immediate surroundings of HNSCC tumors during their growth

or mutation, exhibiting complexity. On one hand, alterations such

as cytokine production and extracellular matrix changes occur

within the TME, alongside immune surveillance which identifies

and attacks tumor cells, thereby inhibiting tumor growth. On the

other hand, tumor cells can interact with surrounding tissues to

modify nutrient supply, generate cytokines, and suppress immune

responses within the TME, thus promoting their own survival and

development (3, 4).

Most patients diagnosed as HNSCC often present with locally

advanced disease, requiring multimodal treatments, including

immunotherapy (5, 6). Immunotherapy involves the specific

recognition and targeting of cancer cells by immune cells within

the TME. The TME contains various immune cells such as

macrophages, effector T cells, natural killer cells, and dendritic

cells (7). Among them, macrophages constitute the largest and most

critical group of innate immune cells in the TME (8) (Figure 1A).

Macrophages originate from bone marrow hematopoietic stem cells

and embryonic yolk sac tissue (9, 10). Under the influence of

different microenvironmental stimuli, macrophages exhibit

heterogeneity and plasticity, allowing them to adapt their

characteristics in highly specialized ways to perceive and respond

to their environment. While the specific phenotypes are hard to

categorize, they can be simplified into two extremes with entirely
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different molecular phenotypes and functional characteristics: IFN-

g/lipopolysaccharide (LPS)-induced M1 macrophages and IL-4/IL-

10/IL-13-induced M2 macrophages (7).

Furthermore, tumor-associated macrophages (TAMs) refer to a

type of macrophages that appear in the TME that exhibit

characteristics of both M1 and M2 macrophages under different

signals and stimuli (11, 12). Among these, in the TME, typical M1

activators include LPS, IL-1b, and IFN-g, which activate

macrophages to produce inflammatory factors. Conversely, M2

polarization factors such as IL-4, IL-13, IL-10, and TGF-b
promote macrophage polarization towards the M2 type,

exhibiting characteristics of anti-inflammatory and immune

suppression (13). In HNSCC, TAMs typically display M2

macrophage features, contributing to the establishment of an

immune-suppressive TME, thereby promoting tumor escape and

growth (12, 14). The balance between macrophage M1 and M2

subtypes is crucial for maintaining a stable state of health in the

human body. When this balance is disrupted, it can lead to disease

states (15). Metabolic adaptation supports the heterogeneity of

tumor-associated macrophage activities and functions,

maintaining their polarization in specific environments (16, 17).

In particular, in terms of energy supply, M1 TAMs primarily rely on

glycolysis. The two interruptions in their TCA cycle lead to the

accumulation of itaconate and succinate, resulting in the

stabilization of HIF1a. This further activates the transcription of

glycolytic genes, thereby maintaining the glycolytic metabolism of

M1 cells (18). Conversely, M2 cells are more dependent on

oxidative phosphorylation, with their TCA cycle intact and

providing substrates for the electron transport chain complexes
A
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FIGURE 1

Macrophages and applications in HNSCC microenvironment (A) Significant crosstalk between macrophages and tumor cells in HNSCC TME;
(B) The plasticity of macrophage polarization states; (C) Targeting and harnessing macrophages in disease treatment and immunotherapy.
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(18). Additionally, both subtypes have specific metabolic pathways

that regulate lipid and amino acid metabolism, influencing their

responses (19, 20).

Due to the high plasticity of macrophages, they play a

significant role in various pathological processes, further

exploring macrophages is considered as an alternative approach

for cancer therapy (21). Recent studies have indicated that

promoting M1 macrophage polarization and inhibiting M2

macrophage polarization can exert anti-tumor effects, while

promoting M2 macrophage polarization and inhibiting M1

macrophage polarization can have anti-inflammatory activity (22)

(Figure 1B). Several drugs have been discovered that can modulate

the polarization state of macrophages for disease treatment (23, 24),

and many immunotherapeutic approaches have been developed

using macrophages as carriers or tools (25, 26) (Figure 1C).

This review commences by examining the roles fulfilled by

macrophages within the microenvironment of HNSCC.

Additionally, explain the diverse roles and conditions they play

during the development of head and neck tumors. Furthermore, we

elaborate on essential therapeutic targets and the most recent

related treatment methodologies, with the intent of presenting

novel perspectives for forthcoming research and therapeutic

strategies targeting macrophages in HNSCC.
2 Macrophage involvement in the
HNSCC microenvironment

2.1 Phagocytosis and secretory regulation

In the tumor microenvironment, macrophages exhibit a dual

role in HNSCC. On one hand, they can suppress cancer progression

through immune actions, while on the other hand, they play a pro-

cancer role by affecting several features of HNSCC, such as immune

evasion, promoting invasion and metastasis, participating in

angiogenesis, and influencing cancer cell proliferation (27–30).

Phagocytosis is one of the most innate capabilities of

macrophages. They can actively engulf abnormal cells within the

body, including cancer cells. During this process, macrophages

extend pseudopodia to envelop cancer cells in vesicles formed by

the cell membrane, creating a structure called a phagosome.

Subsequently, this phagosome is internalized within the

macrophage (31). This process helps reduce the number of tumor

cells, alleviate the tumor burden, and contribute to controlling

tumor growth. Currently, in cancer therapy research and

development, a new generation of anti-cancer therapies has

emerged based on harnessing and enhancing the phagocytic

ability of macrophages, such as CAR-engineered cell therapies

known as CAR-macrophages (32), which may potentially reshape

the landscape of HNSCC treatment in the future.

Macrophages also regulate immune responses and tumor

progression by modulating their polarization states through

secretory regulation, wherein they secrete cytokines (33).

For example, the secretion of certain cytokines may induce

macrophages to polarize towards the M1 phenotype, exhibiting

characteristics that promote immune responses and anti-tumor
Frontiers in Immunology 03
effects, such as TNF-a, IL-6, and IL-12 (34). Conversely, other

factors may lead to macrophage polarization towards the M2

phenotype, showing features of immune suppression and

promoting tumor growth, such as TGF-b and IL-10 (34).

Additionally, chemokines such as CXCL9, CXCL10, and

CXCL11 can attract T cells and other immune cells, thereby

promoting macrophage polarization towards the M1 phenotype

(35). The expression levels and activities of these factors are

crucial for regulating the polarization status of macrophages,

thereby influencing their functions and roles within the

tumor microenvironment.

In HNSCC, TAMs typically exhibit an M2-polarized state,

promoting immune evasion and growth of the tumor (12). In the

early stages of tumors, TAMs release nitric oxide (NO) and reactive

oxygen intermediates (ROI), causing DNA damage and genetic

instability (36). Afterward, they actively participate in regulating the

HNSCC microenvironment through direct secretion. These

macrophages can secrete factors that enhance cell migration,

including epidermal growth factor, cysteine cathepsins, and

matrix metalloproteinases. Through the action of these matrix-

degrading enzymes, they facilitate the movement of tumor cells

(37). TAMs can also suppress T cell cytotoxicity by secreting IL-10,

promote regulatory T cells, leading to immune evasion and tumor

proliferation (38). Moreover, they can produce factors that promote

the growth of blood vessels within the tumor, such as VEGF-A,

VEGF-C, and adrenomedullin, thereby supplying oxygen for tumor

development (39).
2.2 Exosomes

Extracellular vesicles, also known as exosomes, serve as vesicles

originating from tumor cells, immune cells, and various other cell

types. They play a role in promoting tumor proliferation, invasion,

migration, modulating tumor immunology, fostering angiogenesis, and

reprogramming the tumor microenvironment (40). In the progression

of head and neck cancer, exosomes serve as a vital means of

communication between macrophages and cancer cells. Previous

studies have revealed that M1 macrophages secrete exosomes,

inhibiting the proliferation, migration, and invasion abilities of head

and neck cancer. These exosomes can also induce apoptosis in cancer

cells, and HOXA transcripts at the distal tip (HOTTIP), as a

tumorigenic specific lncRNA, is a critical molecule in these

exosomes, showing the same functionality when overexpressed (41).

Additionally, in oral squamous cell carcinoma, cancer cells

secrete exosomes, particularly CMTM6, which induce polarization

of M2 macrophages via the ERK1/2 signaling pathway, thereby

promoting malignant progression of the tumor. During this

process, CMTM6 also enhances the expression of PD-L1, thereby

driving tumor migration and invasion (42).

Exosomes extracted from other HNSCC cell lines, including

JHU011, SNU1076, and SCC-VII, can significantly induce

polarization of M2 macrophages. Exosomes carrying PD-L1 and

stimulating HNSCC promote the activation of regulatory T cells

(aTregs), further strengthening the positive feedback loop between

aTregs and M2 macrophages, ultimately leading to immune escape in
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tumors (43). The crosstalk mediated by exosomes between

macrophages plays a significant role in the complex pathophysiology

of head and neck cancer.
2.3 Macrophage polarization identification

Traditionally, in HNSCC surgical specimens, TAMs are

typically detected using specific antibodies like CD68, CD80, and

CD163. CD80+ corresponds to M1 type, while CD163+

corresponds to M2 type (44).

Recently, there has been a shift towards using the mutually

exclusive gene expression of CXCL9 and SPP1, along with their

ratio, as key features and standards for assessing the polarization level

of macrophages within the TME. Bill et al. conducted sequencing and

clinical data analysis on 52 patients with head and neck squamous cell

carcinoma, revealing that the CXCL9:SPP1 expression ratio, termed

CShi or CSlow, is associated with inhibition of certain pro-tumor and

anti-tumor effects in head and neck tumors. For instance, CShi

tumors are more prone to immune cell infiltration, promoting anti-

tumor immunity (45). They propose that evaluating the CXCL9:SPP1

ratio in macrophages could serve as a comprehensive indicator for

several critical aspects, such as the presence of anti-tumor immune

cells in cancer, gene expression profiles of different tumor-infiltrating

cell types, control or progression of communication networks

influencing tumors, and the effectiveness of immunotherapy (45).

This valuable insight holds profound implications for prospective

studies aimed at formulating personalized treatment strategies and

prognostic evaluations.
3 Diverse macrophage polarization
and its implications in the progression
of HNSCC

3.1 Polarization

Macrophage polarization refers to the distinct activation status of

macrophages at a specific moment. This state is determined by their

variable expression of surface receptors, secretion patterns, and

functional roles. In cancer researches, macrophages typically exhibit

an M1 pro-inflammatory profile in the early phases, but they

transition to an anti-inflammatory M2 profile in later stages.

Macrophage polarization is dynamic, reflecting their adaptability,

and it can change in response to a variety of signals from other

cells, tissues, and pathogens (46).

In the mice model of oral cancer precursor lesions exposed to

nicotine smoke, the degree of M2 polarization at the disease site

increased with exposure. Simultaneously, metabolic levels of

compounds such as L-nicotine, D-glutamate, arachidic acid, and L-

arginine also rose. Some of the mice with heightened M2 polarization

even directly developed oral cancer. During this process, there was a

decrease in pro-inflammatory factors (iNOS and TNF-a) that induce
M1 polarization, resulting in reduced monocyte recruitment to replace

them. The polarization shifted towards M2, leading to a significant
Frontiers in Immunology 04
increase in M2 functional factors like Arg-1 and IL-10. Further, this

sustained M2 polarization is indicative of an ongoing immune

response, facilitating heightened he activity of Th2 cells and

instigating an immunogenic reaction (47).

In head and neck tumors, the Warburg effect manifests as

excessive lactate formation, enabling cancer cells to adapt their

metabolism to meet the oxygen requirements and the substantial

nucleotide, amino acid, and lipid needs for cell proliferation (48).

The end product, lactate, is found at higher concentrations in head

and neck cancer compared to normal tissue, creating an active

environment to promote cancer progression. Notably, the lactate

produced by tumor cells has multifaceted effects. It can promote

tumor progression by activating pro-inflammatory pathways like

IL-23/IL-17 (49), while also inducing monocytes to polarize

towards the M2 phenotype, thereby serving as a mediator of

immunosuppression to further drive cancer progression (50, 51).

Indeed, low pH can reduce the expression of iNOS, CCL2, and IL-6

in M1 macrophages, but increase the expression of M2 macrophage

markers in the TME (52). Correspondingly, lactate can promote the

M2-like phenotype by activating G-protein-coupled receptor 132

(GPR132) in macrophages, and genetic deletion of Gpr132 in

macrophages reduces the M2-like features of tumor-associated

macrophages and decreases lung metastasis in a mouse breast

cancer model (53). Additionally, lactate can induce the expression

of the enzyme ARG1 which indicates lactate can transform

macrophages into immunosuppressive macrophages and promote

M2-macrophage polarization in mice (54). The intratumoral lactate

levels in human HNSCC are associated with the polarization of M2-

like macrophages in the TME as well. When lactate levels in the

tumor are low, more macrophages accumulate at the tumor site.

Conversely, under conditions of high lactate concentration,

monocyte migration is inhibited, preventing effective macrophage

infiltration into lactate-rich tumors, but it promotes their

polarization towards the M2 phenotype. However, unlike in mice

models, both lactate and M2-polarization levels are not associated

with the expression of ARG1 in human macrophages (55).

Moreover, in the interaction between cancer cells and

macrophages in HNSCC, cancer cells release Apelin peptide, which

promotes the polarization of M2 macrophages. Inhibiting the release

of Apelin peptide by cancer cells leads to an increase in pro-

inflammatory responses in co-cultured macrophages, resulting in a

significant upregulation of genes like IL-1b, IL-6, and TNF-a, along
with a marked reduction in anti-inflammatory cytokine levels. In the

Apelin (+) group, pro-inflammatory factors are decreased, while anti-

inflammatory factors are heightened (56).Tumor-derived

extracellular vesicles expressing TGF-b also play a significant role

in the crosstalk between tumor cells and macrophages in the HNSCC

TME. These extracellular vesicles induce polarization and chemotaxis

of human macrophages and also reprogram the function of primary

human macrophages. This reprogramming results in increased

secretion of pro-angiogenic factors, including Angiopoietin-2,

MMP-9, PD-ECGF, and TIMP-1, and a shift toward a pro-

angiogenic phenotype. Upon injection into mice with oral cancer

induced by 4-nitroquinoline 1-oxide (4-NQO), these vesicles

promote tumor angiogenesis, enhance infiltration of M2-like

macrophages, and accelerate tumor progression (28).
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The mechanisms through which M2-polarized cells regulate the

progression of head and neck cancer are intricate. TAMs enhance

the stemness of head and neck cancer cells by activating the PI3K-

4EBP1 pathway. Additionally, TAMs interact with head and neck

cancer cells through the CD44-VCAM-1 pathway, ultimately

boosting the invasive capabilities of cancer cells (57).

Furthermore, it has been demonstrated that M2 polarization can

increase the expression of PD-L2 in TAMs, leading to immune

evasion and tumor progression through the PD-1 signaling

pathway (58).
3.2 Re-polarization

In general, M1 macrophages provide immune protection by

releasing pro-inflammatory cytokines, whereas M2 macrophages

exhibit anti-inflammatory properties that aid in tissue remodeling

and tumor advancement (59). In cancer research, the differentiation

of macrophages into M1 type from the alternative M2 type, a process

known as macrophage repolarization, is a promising approach in

contemporary cancer immunotherapy. Repolarizing TAMs from

M2-to-M1 is considered a prospective therapeutic strategy.

To reprogram TAMs without altering the M1/M2 polarization

balance within healthy organs, Xiao et al. developed a micelle nano-

therapy. They released M2-targeted antagonists after exposure to

the acidic tumor microenvironment, co-delivering inhibitors like

STAT6 to effectively achieve M2-to-M1 repolarization, thereby

inhibiting tumor growth and metastasis (60). Additionally, Wu

et al. have coupled targeted drugs with tumor-specific STING

agonists, finding that within the tumor microenvironment, M2

repolarizes towards M1 (61). Furthermore, statins have been found

to inhibit proliferation of recurrent/metastatic HNSCC cells,

enhance T cell cytotoxicity against tumor cells, and promote M2-

to-M1 macrophage repolarization (62). Statins, known for their

tolerability and affordability, may further enhance responses to PD-

L1 checkpoint blockade and other HNSCC immunotherapies,

although this potential remains to be fully explored.

Simultaneously, macrophage repolarization often broadly refers

to macrophages polarizing towards different functional directions.

In the previously mentioned exosomes, M1 exosomes and HOTTIP

induced M1 repolarization within the tumor microenvironment,

encompassing macrophage repolarization.
4 Main targets for macrophage
targeting in HNSCC

4.1 STAT3

Signal transducer and activator of transcription 3 (STAT3) is

frequently overactivated in various human cancers, serving as a

crucial signaling node in tumor cells and the cellular components of

the TME, especially in tumor-infiltrating immune cells (63).

Radiation therapy, a commonly used treatment for HNSCC, aims

to utilize high-energy radiation to selectively kill or control the
Frontiers in Immunology 05
growth of cancer cells, reducing tumor size or eliminating the tumor

altogether (64). It is often employed as a treatment option for

patients who are not suitable candidates for surgery.

In the circulatory system of HNSCC patients undergoing

radiotherapy, there is an accumulation of therapy-resistant bone

marrow cells, which affects the efficacy of radiation therapy (65).

Moreira et al. found that targeting STAT3 in TAMs can enhance the

therapeutic effects of radiation therapy for HNSCC. They employed

the CpG-STAT3ASO strategy to target STAT3 in HNSCC-related

macrophages in conjunction with TLR9 triggering. This approach

can overcome radiation resistance in tumors of both HPV-positive

and HPV-negative mice. The combined treatment results in

reduced residual M2 macrophages in the tumor and the

recruitment of activated M1 macrophages to the tumor-draining

lymph nodes (TDLNs).

A single-cell transcriptomic study of oral squamous cell

carcinoma has revealed an enrichment of the IL-6/JAK2/STAT3

axis in the tumor microenvironment, particularly in cell

populations like macrophages, in samples induced by

chemotherapy and other treatments (66). Additionally, the

phosphorylation level of STAT3 can modulate the response of

regulatory T cells (Tregs) to radiation therapy in head and neck

cancer (67). These findings indicate that STAT3 could serve as a

significant combinatorial therapeutic target to enhance the efficacy

of radiotherapy and chemotherapy in head and neck cancer.

Targeting STAT3 in current research offers several advantages,

including improving immune dysregulation in the tumor

microenvironment, reducing endogenous proliferation of tumor

cells, and enhancing the anti-tumor effects of tumor-infiltrating

immune cells, among others (68, 69). As a potential target for

cancer treatment, the current drug development efforts against

STAT3 involve direct inhibition using peptides, small molecules,

and decoy oligonucleotides (70–73), or indirect inhibition through

blocking upstream signaling pathways such as the IL-6 and JAK2

pathways (74, 75).
4.2 CCL2/CCR2

CC-chemokine receptor 2 (CCR2) is primarily expressed in

monocytes and macrophages and has a strong pro-inflammatory

function (76). This has led to the development of CCR2 antagonists

aimed at inhibiting unnecessary immune responses in

inflammation and autoimmune diseases. Paradoxically, in the

tumor microenvironment, CCR2-expressing monocytes and

macrophages can strongly suppress immune responses (77). In

recent years, researchers have explored strategies using CCR2

antagonists to selectively attract suppressive monocytes and

macrophages into the tumor, with the goal of altering the tumor

microenvironment and enhancing the immune system’s ability to

combat cancer (78).

While the mice model of HNSCC treated with radiotherapy,

there showed an increase in the production of the chemotactic

factor CCL2 in tumor cells, leading to the accumulation of CCR2-

dependent TNF-a-producing monocytes/macrophages and CCR2+

Tregs (79). CCL2/CCR2 could potentially serve as clinical
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candidates for radioimmunotherapy to counteract the radio-

protective effects of macrophages and Treg cells. Currently,

synthetic inhibitors of CCL2, Bindarit(Bnd) (80) and Carlumab

(CNTO 888) (81), as well as CCR2 antagonists RS-50439 and

MLN1202, have been developed for targeted disruption of CCL2/

CCR2 signaling to intervene in the progression of various tumor

types (82–85).
4.3 NRF2

NRF2, encoded by the NFE2L2 gene, plays a crucial role in

maintaining cellular redox homeostasis, regulating immune

responses, and detoxifying drugs (86, 87). Activation of NRF2 can

lead to metabolic reprogramming, enhancing tumor proliferation,

suppressing various forms of stress, and promoting immune

evasion (88).

NRF2 is upregulated in HNSCC, and its expression levels are

positively correlated with malignancy (89, 90). Carcinogens such as

nicotine and arecoline can trigger c-myc-driven NRF2 activation in

HNSCC cells, reprogramming the pentose phosphate pathway

metabolism in the tumor microenvironment (90). In this

metabolic pathway, glucose-6-phosphate dehydrogenase (G6PD)

and transketolase (TKT) are key downstream effectors driven by

NRF2, contributing to the progression of head and neck squamous

cell carcinoma.

Mutations in the NRF2-encoding gene NFE2L2 can result in

radiation resistance in HNSCC. Notably, in HNSCC patients

undergoing radio chemotherapy, NFE2L2 mutations are

significantly linked to a heightened risk of local treatment failure.

In immunocompetent mice, tumors carrying NFE2L2 mutations

displayed increased resistance to radiation compared to tumors

with the wild-type NRF2. However, this discrepancy was less

pronounced in immunodeficient mice. NFE2L2 enhances

radiation resistance by diminishing the presence of M1-polarized

macrophages (91).

Previously, researchers have attempted to inhibit NRF2 by

studying the natural inhibitory protein Kelch-like ECH-associated

protein 1 (KEAP1) that targets NRF2 (92, 93). Additionally, in

order to discover new NRF2 inhibitors for targeted therapy, Singh

et al. conducted a quantitative high-throughput screening in the

small molecule library MLSMR and identified ML385 as a probe

molecule that binds to NRF2 and inhibits its downstream target

gene expression (94).
4.4 CD47

CD47 is a widely expressed cell surface protein that acts as a ligand

for signal regulatory protein alpha (SIRPa) onmacrophages, which, in

turn, inhibits phagocytosis (95). Previous studies in various preclinical

models have demonstrated that blocking the CD47-SIRPa pathway

can enhance phagocytic functions, demonstrating significant anti-

tumor efficacy across multiple tumor types (96, 97).

Regarding a macrophage-mediated anti-tumor immunotherapy

strategy based on gene-edited nanoparticles: the first step involves
Frontiers in Immunology 06
blocking the CD47-SIRPa pathway, and the second step is to

repolarize tumor-associated macrophages (98). Additionally, Ni

and colleagues discovered in preclinical models using the IBI188

drug to block the CD47-SIRPa pathway that angiogenesis can, to

some extent, limit the effectiveness of anti-CD47 antibodies against

tumors. Combining anti-angiogenesis therapies with CD47

blockade can achieve higher therapeutic efficacy (99).

Recently, Lee et al. conducted macrophage phagocytosis

experiments on the HN31R head and neck cancer cell line and

found that the downregulation of Tristetraprolin (TTP) can induce

sustained overexpression of CD47, which, in turn, inhibits the

phagocytosis of head and neck cancer cells (100). Furthermore,

when CD47 was expressed in vitro in HNSCC cell lines, both M1

and M2 macrophages exhibited a certain degree of phagocytic

potential (101). However, under conditions where CD47 was

inhibited, the phagocytic ability of M1 enhanced, while M2 did

not (101). In summary, CD47-positive oral squamous cell

carcinoma cells primarily inhibit M1 phagocytosis, leading to

immune evasion.

Currently, several antibodies targeting CD47 have entered clinical

trials, such as Hu5F9-G4, TTI-621, and others, for the treatment of

both solid tumors and hematologic malignancies (102, 103).
4.5 TGF-b

Transforming growth factor-b (TGF-b) is a widely recognized

immunosuppressive factor, playing a role in restraining excessive

inflammatory responses (104–106). Additionally, TGF-b triggers

macrophage M2 polarization, contributing to the alleviation of

inflammation mediated by macrophages (105, 107).

PD-1 blockade therapy in the treatment of HNSCC has

demonstrated a significant extension of survival in recurrent/

metastatic (R/M) patients, coupled with favorable safety profiles

(108, 109). However, numerous challenges persist, with a

substantial portion of cancer patients exhibiting suboptimal

responses to PD-1 monotherapy (110). The crucial role of TGF-b
in the delicate balance between immunity and tolerance among

non-responsive patients to PD-1 monotherapy has been identified

(111, 112). TGF-bmodulates the cancer immune cycle by altering T

cell proliferation, activation, differentiation, and impeding the

activity of dendritic cells and natural killer cells (113). Combining

anti-TGF-b with anti-PD-1 therapy has proven effective in

overcoming resistance in immune rejection models (114, 115).

Subsequently, Yi et al. developed the bispecific antibody (BsAb)

YM101 which targeting both TGF-b and PD-L1 (116). They

observed potent anti-tumor activity of this drug in immune-

inflammatory and immunosuppressive models of diverse tumors

(117). Additionally, a TGF-b/PD-L1 specific antibody, the drug

BiTP, has been developed and demonstrated promising anti-tumor

efficacy in both in vitro and in vivo experiments (118).

Simultaneously, Matos et al. have recently engineered a

Polyoxazoline-Based nano-vaccine carrying a TGF-b expression

regulator in combination with a PD-1 inhibitor. This

combination exhibits synergistic anti-tumor effects and holds
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significant potential in improving the immunotherapeutic

outcomes for solid cancer patients (119).
4.6 Other targets

The regulation of macrophage proliferation, differentiation, and

survival hinges on the control of CSF1R and its ligands. A multitude of

preclinical investigations have underscored that the inhibition of

CSF1R leads to a decreased density of TAMs, resulting in the

inhibition of tumor growth and heightened sensitivity to

chemotherapy (120, 121). Besides, elevated expression of CSF1R

leads to increased lactate levels in HNSCC, reduces the presence of

tumor-infiltrating macrophages, and promotes the induction of M2-

like macrophage polarization within the tumor (55). The drugs

targeting CSF1/CSF1R, such as PLX3397 and HMPL-012, have been

proven to be effective in other tumors, including tenosynovial giant cell

tumor and neuroendocrine tumors (122, 123).

Moreover, high expression of RACK1 in oral squamous cell

carcinoma (OSCC) is associated with increased infiltration of M2

macrophages (124). OSCC cells that overexpress RACK1 promote

M2-like macrophage polarization through the regulation of NF-

kappa B, leading to an increase in the proportion of M2-like

macrophages in xenograft mouse models (27). The corresponding

targeted drug is M435-1279, a critical ubiquitin-conjugating

enzyme E2T (UBE2T) inhibitor that catalyzes the proteasomal

degradation of RACK1, which also has certain prospects for

future applications (125). Those typical targets, pathways, and

associated drugs of macrophages in the progression HNSCC are

shown in Table 1.
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5 Applications of macrophages in the
treatment of HNSCC

5.1 Conventional immunotherapy targeting

Macrophages are an important target in current checkpoint

blockade immunotherapy, suppressing adaptive immune responses

by expressing inhibitory counter-receptors such as PD-L1 and PD-

L2. Certain chemotherapy drugs, like anthracyclines, induce the

release of tumor antigens and co-stimulatory molecules, a process

referred to as immunogenic cell death, engaging macrophages in a

productive cancer immune cycle (126). There are also other cell-

depleting therapies aimed at targeting macrophages (127). Specific

strategies focused on macrophages have partly entered clinical

assessment, including monocyte-derived macrophages used for

cellular therapy, either through targeted recruitment and

differentiation or functional reprogramming via activation or

inhibition of checkpoint receptors.

In the treatment of recurrent/metastatic HNSCC patients,

checkpoint inhibitors have demonstrated their effectiveness (128).

However, the majority of patients do not benefit from these drugs

(129). To enhance the efficacy of checkpoint inhibitors, Sato-

Kaneko F et al. have established HNSCC models and employed a

combination of TLR agonists and PD-1 blockade (130). They found

that this approach could activate TAMs, induce tumor-specific

adaptive immunity, and thus inhibit primary tumor growth and

prevent metastasis. Notably, treatment with TLR7 agonists

increased the M1/M2 ratio and promoted the generation of

tumor-specific immune factors.

To enhance the immunotherapeutic efficacy in HNSCC, Wu

et al. developed an injectable nano-composite hydrogel (131). This

hydrogel is created by incorporating imiquimod-encapsulated

CaCO3 nanoparticles (RC) and a cancer cell membrane (CCM)-

coated mesoporous silica nanoparticle within a polymer framework

(PLGA-PEG-PLGA). These components include a peptide-based

protein hydrolysis targeting chimera (PROTAC) against BMI1

paclitaxel (PepM@PacC). The injectable hydrogel can selectively

manipulate tumor-associated macrophages, further activating T cell

immune responses.
5.2 Engineering macrophages

In response to the phagocytic and pro-inflammatory actions of

M1 macrophages on tumor cells, engineered macrophages targeting

cancer cells as carriers for anti-tumor therapy have been developed

to modulate the tumor microenvironment (132).

For example, controlled-release biomimetic or macrophage

membrane-coated nanoparticles have been developed for cancer

therapy to respond to the TME (21). Rao et al. engineered cell

membrane-coated magnetic nanoparticles (gCM-MNs) to enhance

the affinity between the genetically overexpressed SIRPa variant on

gCM shells and CD47, effectively blocking the CD47-SIRPa pathway

and preserving macrophage’s ability to phagocytose cancer cells (133).

Meanwhile, these magnetic nanoparticles promote M2-to-M1

repolarization in the tumor microenvironment of B16F10 melanoma
TABLE 1 Typical targets, pathways, and associated drugs of
macrophages in HNSCC progression.

Targets Pathways Drugs References

STAT3 IL-6/JAK2/STAT3 LL1 (70)

SD-36 (72)

W1131 (73)

CCR2 CCL2/CCR2 Bnd (80)

CNTO 888 (81)

RS-50439 (83)

MLN1202 (84)

NRF2 KEAP1/NRF2 ML385 (94)

CD47 CD47/SIRPa IBI188 (99)

Hu5F9-G4 (102)

TTI-621 (103)

TGF-b TGF-b/PD-L1 YM101 (117)

BiTP (118)

CSF1R CSF1/CSF1R PLX3397 (122)

HMPL-012 (123)

RACK1 RACK1/NF-kappa B M435-1279 (125)
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mice model and the triple negative breast cancer 4T1 mice model,

blocking the process of tumor cells secreting colony-stimulating factors

to polarize tumor-associated macrophages into tumor-promoting M2

macrophages. This synergistically enhances macrophage phagocytosis

of cancer cells and triggers anti-tumor T-cell immunity. This method

effectively activates macrophages for anti-tumor immunotherapy. In

addition, macrophage membrane-coated nanoparticles (cskc-PPiP/

PTX@Ma) developed by Zhang et al. show enhanced therapeutic

effects, homing to tumor sites and gradually controlling drug release

in response to the acidic pH changes in the tumor microenvironment,

releasing the hydrophobic anti-cancer drug paclitaxel to kill cancer

cells. Testing the administration capability and therapeutic effects of

this formulation in an orthotopic breast cancer-bearing mice model,

this combination of a biomimetic cell membrane and a cascade-

responsive polymeric nanoparticle yielded significant results (134).

Furthermore, Rayamajhi and colleagues developed hybrid

exosomes (HE) with a size smaller than 200nm by hybridizing

exosomes extracted from mouse macrophages with synthetic

liposomes (135). They loaded a water-soluble doxorubicin into

these HE, increasing the toxicity of drug-loaded HE to cancer

cel ls and enabl ing drug release in the acidic tumor

microenvironment. These macrophage-derived mimetic exosome

vesicles effectively deliver bioactive molecules to recipient cells,

making them suitable for drug delivery and therapy in cancer.
5.3 CAR-macrophage

Chimeric antigen receptor (CAR)-T cell therapy is an early cell-

based immunotherapy designed to prevent tumor cells from

evading recognition by T cell receptors. This method has been

successfully used to treat hematologic malignancies, but its

effectiveness in solid tumors remains limited (136). In the tumor

microenvironment, macrophages, as the most abundant innate

immune cells, can infiltrate solid tumor tissues and interact with

almost all other cell types (137). Therefore, researchers are

attempting to use CAR-modified macrophages (CAR-M) to

combat solid tumors.

The first-generation CAR-M cells primarily utilize the

characteristics of macrophages, focusing on their phagocytic

function (138, 139). In contrast, second-generation CAR-M cells,

in addition to retaining the features of the first generation, also aim

to improve the presentation of tumor-associated antigens and T cell

activation. In this scenario, Klichinsky et al. design murine or

human macrophages through chimeric vectors and then obtain

the drug after in vitro expansion, concentration, and purification

(140). Currently, third-generation CAR-M cells are being designed

by reprogramming CAR-M cells in vivo using non-viral vectors

(141). There has been an approach to fuse nanobiotechnology with

CAR-M cells, using nanocarriers to deliver the encoded CAR and

interferon-gamma genes to macrophages in vivo, with the aim of

further enhancing anti-tumor efficacy by repolarizing M2-polarized

macrophages into M1 macrophages (142).

The progress of CAR-M therapy in HNSCC is currently quite

limited. However, with the continuous iteration of CAR-M
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technology and the advancement of macrophages in head and

neck squamous cell carcinoma, this field holds tremendous

potential for application.
6 Discussion and prospects

Macrophages exhibit a high degree of plasticity in response to

various microenvironments within normal human tissues,

inflammatory stimuli, and tumor tissues. This functional diversity

results in various characteristics within macrophages, making their

categorization challenging. Currently, macrophages are broadly

categorized into two phenotypes, M1 and M2, which are

associated with pro-inflammatory and anti-inflammatory

properties, respectively. Tumor-associated macrophages represent

the complex interplay of various cell types within the TME and can

exhibit M1 or M2 characteristics under the influence of different

TME stimuli. Typically, M1-like TAMs that promote an

inflammatory response against tumor cells often exhibit anti-

cancer effects , while M2-l ike TAMs tend to support

tumorigenesis (143).

Head and neck squamous cell carcinoma, being an invasive

malignant tumor, is characterized by high incidence and low

survival rates. Treatment options for HNSCC are limited,

typically involving local surgery, radiation, and chemotherapy

(144). The development of immunotherapy has harnessed the

collaborative role of the TME in HNSCC progression. By

understanding the processes of tumor cell evolution and immune

evasion (Figure 2), immunotherapy demonstrates effective anti-

cancer properties through the manipulation of self-immunogenicity

or the expression of immune inhibitory mediators, ultimately

enhancing the survival rates of HNSCC patients. However, it’s

worth noting that fewer than 20% of patients exhibit sustained

responses to these treatments (145).

Within the HNSCC microenvironment, TAMs, being the most

abundant group of innate immune cells, play a role in mediating

immunosuppressive effects on adaptive immune cells in the TME.

The polarization state of TAMs can be influenced by various signals

like nicotine, Apelin peptide, and lactate. This polarization state has

a strong connection with the development and immune evasion in

head and neck cancer, although it doesn’t necessarily impede

immune responses. In the context of head and neck cancer, the

M2 polarization of macrophages can impact tumor stemness,

invasiveness, and the mechanisms of immune evasion.

Consequently, inhibiting M2 polarization and promoting M2-to-

M1 repolarization have emerged as crucial strategies that leverage

the remarkable plasticity of macrophages in anti-cancer efforts.

Building upon this foundational theory, more effective

immunotherapeutic approaches have been further explored,

including the engineering of macrophages and the utilization of

CAR-M technology to eliminate HNSCC cells.

Targeting TAMs and HNSCC remains an ongoing and

challenging endeavor in progress. Macrophages play a crucial

dual role in different anticancer modalities, as they are actively

involved not only in chemotherapy, radiation therapy, and immune
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checkpoint blockade (ICB) immunotherapy, as mentioned above,

but also in anti-angiogenesis and hormone therapy. For instance, in

one study, it was found that metformin reduces the accumulation of

M2-TAMs in the tumor microenvironment, impeding M2-like

macrophage-induced angiogenesis promotion. On the other hand,

melatonin indirectly inhibits tumor angiogenesis by increasing the

accumulation of M1-TAMs (146). Consequently, developing more

precise targeted treatment strategies and exploring the potential of

macrophage-based therapies are all research directions for further

improving HNSCC survival rates and refining the approaches to

HNSCC treatment in the future.

This review presents a comprehensive overview of the immune-

regulatory roles played by macrophages in HNSCC. It delves into

the diverse polarization states of macrophages within the tumor

microenvironment and explores potential therapeutic strategies for

repolarization. Recent years have witnessed significant progress in

research targeting critical macrophage-related factors, along with

substantial advancements and refinements in macrophage-based

therapies for head and neck cancer. These developments aim to

boost the efficacy of immunotherapy for HNSCC. Through this

contribution, our objective is to advance macrophage-related

therapeutic strategies for HNSCC, revealing more effective

potential treatment methods in this evolving era.
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FIGURE 2

Crucial pathways and key molecules of tumor-associated macrophages in TME immune evasion.
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