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Identification and experimental
validation of cuproptosis
regulatory program in a sepsis
immune microenvironment
through a combination of single-
cell and bulk RNA sequencing
Tingru Zhao*, Yan Guo and Jin Li

Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou, Henan, China
Background: In spite of its high mortality rate and poor prognosis, the

pathogenesis of sepsis is still incompletely understood. This study established a

cuproptosis-based risk model to diagnose and predict the risk of sepsis. In

addition, the cuproptosis-related genes were identified for targeted therapy.

Methods: Single-cell sequencing analyses were used to characterize the

cuproptosis activity score (CuAS) and intercellular communications in sepsis.

Differential cuproptosis-related genes (CRGs) were identified in conjunction with

single-cell and bulk RNA sequencing. LASSO and Cox regression analyses were

employed to develop a risk model. Three external cohorts were conducted to

assess the model’s accuracy. Differences in immune infiltration, immune cell

subtypes, pathway enrichment, and the expression of immunomodulators were

further evaluated in distinct groups. Finally, various in-vitro experiments, such as

flow cytometry, Western blot, and ELISA, were used to explore the role of LST1

in sepsis.

Results: ScRNA-seq analysis demonstrated that CuAS was highly enriched in

monocytes and was closely related to the poor prognosis of sepsis patients.

Patients with higher CuAS exhibited prominent strength and numbers of cell–cell

interactions. A total of five CRGs were identified based on the LASSO and Cox

regression analyses, and a CRG-based risk model was established. The lower

riskScore cohort exhibited enhanced immune cell infiltration, elevated immune

scores, and increased expression of immune modulators, indicating the

activation of an antibacterial response. Ultimately, in-vitro experiments

demonstrated that LST1, a key gene in the risk model, was enhanced in the

macrophage in response to LPS, which was closely related to the decrease of

macrophage survival rate, the enhancement of apoptosis and oxidative stress

injury, and the imbalance of the M1/M2 phenotype.
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Conclusions: This study constructed a cuproptosis-related risk model to

accurately predict the prognosis of sepsis. We further characterized the

cuproptosis-related gene LST1 to provide a theoretical framework for

sepsis therapy.
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Background

Sepsis refers to a life-threatening dysfunction of organs caused by

an imbalanced host response to infection, leading to an uncontrolled

syndrome of inflammation and immune dysregulation resulting in

organelle dysfunction. This condition is strongly linked to elevated

levels of illness and mortality (1). When infected, the Toll-like

receptors bind to pathogen-associated molecular patterns, thereby

provoking the secretion of proinflammatory cytokines that initiate an

inflammatory reaction (2, 3). A cytokine storm arises when the

inflammatory response becomes unmanageable, eventually leading

to microcirculatory disorders and multiple organ failure.

Unfortunately, managing sepsis has yielded limited advancement

(4). Traditionally, PCT and CRP have been widely utilized for

diagnosing and predicting sepsis, although their effectiveness

remains restricted. Recently, data-driven approaches have been

employed to enhance the characterization, early detection,

classification, prognosis, and treatment of sepsis (5). Thus, the

identification of novel biomarkers is urgently necessary to enable

an early diagnosis, evaluate the response to early treatment, and

predict the prognosis of sepsis patients.

In recent studies, cuproptosis has emerged as a novel form of

copper-dependent cell death, distinct from apoptosis, ferroptosis, or

necroptosis (6, 7). Intracellular accumulation of copper can lead to

oxidative stress and impair cellular function, while copper homeostasis

is carefully regulated (8, 9). The buildup of copper can result in the

binding of lipoylated enzymes in the tricarboxylic acid cycle, triggering

protein aggregation, proteotoxic stress, and ultimately cell death

(10). Researchers have identified several cuproptosis-related genes

(CRGs) that contribute to disease progression, with a primary focus

on tumor advancement, which may impact the tumor immune

microenvironment and predict the effectiveness of immunotherapy

(11–14). Additionally, studies have indicated that CRG signatures are

closely associated with certain inflammation-related conditions,

including inflammatory bowel disease (15), ulcerative colitis (16, 17),

and Alzheimer’s disease (18, 19). Considering that sepsis is

characterized by a systemic inflammatory response, we hypothesize

that cuproptosis may play a role in sepsis. CRGs might be involved in

its early diagnosis, treatment, and prognosis.

Over the past decade, single-cell sequencing has emerged as a

powerful technology in next-generation sequencing, encompassing
02
single-cell DNA sequencing, single-cell RNA sequencing, and single-

cell epigenomic sequencing (20). Single-cell sequencing has gained

popularity in sepsis research, leading to numerous studies exploring

the transcriptomic features and immunological landscape of sepsis

(21, 22). While the characteristics of different single-cell subsets in

sepsis have been discussed (23, 24), little is known about the impact of

immunological genomic signatures on regulating sepsis. To date,

there have been no studies explicitly focusing on CRG signatures in

septic patients, and the comprehensive characteristics of CRGs and

their relationship with the inflammatory response and prognosis of

septic patients remain unclear.

In this investigation, we acquired scRNA-seq data and bulk

RNA-seq data of septic samples from the GEO database to explore

the regulation patterns of cuproptosis comprehensively. We

exhibited the immune landscape of septic patients and performed

further analysis to ascertain the association between the activity

score of cuproptosis [referred to as cuproptosis activity score

(CuAS)] and the immune microenvironment. Utilizing the

WGCNA algorithm, LASSO, and Cox regression analysis, we

identified the prognostic CRGs and used them to develop a

riskScore consisting of five genes. To validate the predictive

accuracy of the riskScore, we employed three additional

independent GEO datasets. Furthermore, we constructed a novel

nomogram that integrates the riskScore with clinicopathological

characteristics to estimate the clinical application of riskScore

features in sepsis prognosis. Additionally, we evaluated the

disparities in enriched pathways and immunological characteristics

between distinct riskScore groups in sepsis patients. Ultimately,

through in-vitro experiments, we investigated the role of LST1, a

crucial gene associated with cuproptosis, in promoting sepsis-

induced injury.
Materials

Acquisition of raw data

We obtained peripheral blood single-cell data from two normal

individuals and five hospitalized patients diagnosed with gram-

negative bacterial sepsis at 0 and 6 h after diagnosis (25) from the

GEO website (GSE167363). We also downloaded the bulk sepsis
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transcriptome data (GSE65682, GSE95233, GSE63042, GSE106878)

consisting of 802, 129, and 124 blood samples and 94 circulating

leukocyte samples from sepsis patients, respectively. GSE65682 was

selected as the training set, and after excluding samples with

missing prognostic information, a total of 42 normal, 114 sepsis

non-survivors, and 365 sepsis survivors were yielded in GSE65682.

To ensure data quality, we performed log2 transformation and

normalization using the robust multiple array average (RMA)

function in the “affy” R package. We extracted a total of 41

cuproptosis-related genes (CRGs) based on previous studies (26).
scRNA-seq data processing and
cell annotation

scRNA-seq data were processed using the “Seurat” R package.

We filtered out genes expressed in less than five single cells and cells

with fewer than 200 or more than 4,000 genes. Additionally, we

removed cells with over 25% mitochondrial genes to retain high-

quality scRNA-seq data. After these filtering steps, we identified a

total of 59,695 suitable cells. Next, we applied the “NormalizeData”

and “ScaleData” techniques to normalize and scale the remaining

cells. To identify highly variable genes for further analysis, we used

the “FindVariableFeatures” function and identified the top 2,000

hypervariable genes. We employed the “RunHarmony” function to

mitigate batch effects since the data originated from multiple

samples. We used principal component analysis (PCA) for

dimensionality reduction and identified anchor points. We used

the t-distributed stochastic neighbor embedding (t-SNE) algorithm

to discover meaningful clusters and tested the top 15 principal

components. Subsequently, we identified 12 cell clusters using the

“FindNeighbors” and “FindClusters” functions with a resolution of

0.3. Finally, we visualized these clusters using a “t-SNE” diagram.

Cell-type annotation was performed using the “Celltypist” Python

package by previous findings (27).
Cuproptosis activity score

The CuAS for each cell lineage was determined using the single-

sample gene set enrichment analysis (ssGSEA) and “UCell”

algorithms from the “irGSEA” R package. The cells were then

classified into high- and low-CuAS groups based on the 75%

quantile values of the ssGSEA score.
Cell communication analysis

Cell communication analysis was conducted using the “CellChat”

R package based on the CellChatDB.human ligand–receptor

interaction database. CellChat objects were created for each group

(low and high CuAS) based on the UMI count matrix (28) for each

group (low and high CuAS). The default parameters were used for the

analysis. The CellChat objects from each group were combined using

the “mergeCellChat” function to compare the total number and

strength of interactions. Differences in the number and strength of
Frontiers in Immunology 03
interactions among distinct cell types between groups were visualized

using the “netVisual_diffInteraction” function. Signaling

pathways with differential expression were determined using the

“identifyOverExpressedGenes” function. The distribution of

signaling gene expression between groups was visualized using the

“subsetCommunication” and “netVisual_chord_gene” functions.
ssGSEA and WGCNA analysis

The ssGSEA algorithm was utilized to calculate the percentage

of absolute enrichment of a specific gene set in each sample. In this

particular investigation, we implemented the ssGSEA method to

assign cuproptosis enrichment values to each individual in the

GSE65682 dataset.

A signed weighted co-expression network of GSE65682 was

constructed utilizing the “WGCNA” package available in R software

(29). The detailed procedures were conducted as follows: First, we

el iminated any genes with miss ing values using the

“goodSamplesGenes” function. Subsequently, we visually

determined the optimal soft threshold (softPower = 9) for

adjacency computation. To reveal the interconnectedness of the

network, we converted the expression matrix into an adjacency

matrix, which was further transformed into a topological overlap

matrix (TOM). Utilizing the variations in TOM, we performed

average linkage hierarchical clustering. Then, to integrate modules

exhibiting high correlation coefficients, we dynamically pruned the

hierarchical clustering tree to identify similar modules with a

minimum module size set to 60. The module eigengenes (MEs),

representing all genes within a specific module, served as the main

component for further analysis. Pearson correlation analysis was

applied to explore the relationship between eigengene values and

clinical characteristics. Eventually, we selected module genes that

exhibited the most remarkable correlation with CuAS for in-

depth analysis.
Construction and validation of
the riskScore

Univariable analysis was conducted to determine genes

significantly correlated with patient survival. We then used the

least absolute shrinkage and selection operator (LASSO) Cox

regression analysis to identify genes closely associated with

prognosis and calculate the corresponding risk coefficients, as

previously reported (30–32). In addition, we performed statistical

analysis of survival using log-rank tests to identify the gene

combination with the smallest p-value, which was considered the

final characteristic gene. To assess the predictive ability of our

findings, we calculated a risk score for each sepsis patient based on

the coefficients identified from the log-rank tests. Patients were then

categorized into high- and low-risk groups based on the median risk

score. We used the Kaplan–Meier method to plot survival curves

based on these risk groups.

Additionally, we employed receiver operating characteristic

(ROC) curves to evaluate the efficacy of our prediction model. An
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area under the curve (AUC) value greater than 0.7 indicated

excellent performance. The predictive ability of the signature was

validated in three independent GEO datasets utilizing AUC.
Assessment of the prognostic model

To provide a more comprehensive prognostic model, we

developed a nomogram that combines riskScore with age and

gender as independent prognostic factors. We used calibration

curves to evaluate the accuracy of the nomogram in predicting

the probability of overall survival at 28 days. Furthermore, we used

decision curve analysis (DCA) to assess the net benefit of the

nomogram in comparison to clinical characteristics alone.
Enrichment analysis

Gene ontology enrichment analysis was carried out using the

“clusterProfiler” R package (33), based on the Kyoto Encyclopedia

of Genes and Genomes (KEGG) and Gene Ontology (GO). The

biological functions examined included biological processes (BP),

molecular functions (MF), and cellular components (CC). Statistical

significance was determined for p-values below 0.05. To assess

heterogeneity in biological processes and pathway activities, gene

set variation analysis (GSVA) enrichment was conducted using the

“GSVA” R package (34). The preferred gene sets for GSVA were

selected from the Molecular Signatures Database (MSigDB) under

the hallmark gene set “c5.go.bp.v7.5.1.symbols.” Various molecular

features were discovered within DDR subtypes. Differences in

biological functions and signaling pathways were calculated using

the “limma” R package, with absolute t-values and a GSEA score

above 2 considered statistically significant. Additionally, pathway

activities were examined through gene set enrichment analysis

(GSEA) using the “clusterProfiler” R package. Normalized

enrichment scores (NES) were ranked, and statistical significance

was determined for p-values below 0.05. Activity scores for classical

disease-related signaling pathways were calculated between groups

using the progeny R package, with p-values below 0.05 considered

statistically significant.
Sepsis immunity

The immune-infiltrating levels were assessed using ssGSEA

algorithms, which evaluated the proportions of different immune

cells in each sample based on global marker genes. The fractional

enrichment or relative abundance of each immune cell subset was

calculated using the algorithms. Differences in immune infiltration

levels between groups were determined using the Wilcoxon rank-

sum test. A heatmap was generated using different algorithms to

visually display the abundance of immune infiltration in each sepsis

sample. The “ESTIMATE” R package was used to estimate the

immune infiltration levels in sepsis patients. Immune checkpoints

consist of various molecules expressed on immune cells that

regulate the level of immune activation. These molecules,
Frontiers in Immunology 04
including antigens, cell adhesion molecules, co-inhibitors, co-

stimulators, ligands, and receptors, play an essential role in

limiting excessive immune activation. We compared the

expression levels of well-known immune checkpoint genes in

both groups.
Preparation and culture of macrophages

RAW264.7 cells, a mouse macrophage cell line, were purchased

from Beyotime Biotechnology (Shanghai, China) and cultured in

complete medium consisting of high-glucose DMEM (Gibco, NY,

United States), 10% fetal bovine serum (FBS, Gibco, NY, United

States), penicillin (100 U/mL), and streptomycin (100 mg/mL) at

37°C with 5% CO2. The cells were then exposed to LPS (100 ng/mL)

for 24 h to mimic a septic injury model.
RNA extraction and RT-PCR

The total RNA of macrophages was extracted utilizing the

TRIzol reagent (Invitrogen Life Technologies, NY, United States).

Subsequently, the cDNA was synthesized utilizing the PrimeScript

RT reagent (TaKaRa, Otsu, Japan) following the manufacturer’s

instructions. Quantitative PCR reactions were conducted using a

Power SYBR Green PCR master mix (Applied Biosystems, CA,

United States) in the Applied Biosystems 7500 sequence detection

system. Relative quantification of mRNA expression was calculated

using the 2−DDCt method. The expression level of each mRNA was

calculated by the standard curve method and normalized with

GAPDH. All samples for each mRNA were run in triplicate and

independently repeated four times. Primers used for PCR analyses

are detailed in Supplementary Table S1.
Cell viability and cytotoxicity assay

RAW264.7 cells were incubated with or without LPS for 24 h in

a 96-well plate. CCK8 solution (Beyotime Biotechnology, Shanghai,

China) was added to each well and incubated for 1 h, and the OD

value at 450 nm was measured to determine cell viability. The

cytotoxicity of the cells was evaluated using the LDH Cytotoxicity

Assay Kit (Beyotime Biotechnology, Shanghai, China), following

the manufacturer’s instructions. The supernatants were collected,

and the OD value at 490 nm was measured to determine LDH

activity. The data were presented as folds of LDH release compared

to control cells.
Western blot assay

Cell lysates were collected from RAW264.7 cells using the

western cell lysis buffer (Beyotime Biotechnology, Shanghai,

China). The total protein was quantified with a Pierce BCA

Protein Assay Kit (Thermo Fisher Scientific, MA, United States).

The PVDF membrane was incubated with a primary antibody
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against LST1 (Abcam, Cambridge, United Kingdom, 1:2,000),

followed by incubation with the secondary antibody, goat against

mice (ABclonal, MA, United States, 1:5,000). Protein bands were

visualized using a WB imaging instrument (Bio-Rad, CA, United

States) after using an enhanced ECL immunoblotting detection

reagent (Thermo Fisher Scientific, MA, United States).

Densitometric analysis of the Western blot results was performed

using the ImageJ software.
Flow cytometry analysis

RAW264.7 cells were incubated in 6-well plates and exposed to

various treatments. The cells were digested in 0.25% trypsin (without

EDTA), centrifuged at 300×g for 3 min, and then resuspended in 300

mL of binding buffer. Subsequently, the cell suspension was incubated

with LST1 (LMAI Bio, Shanghai, China) for 30 min on ice to assess

the expression of LST1. In addition, we also analyzed the subset of

macrophages by staining the RAW264.7 cells with antibodies against

iNOS (M1 marker, eBioscience, CA, United States) and CD206 (M2

marker, eBioscience, CA, United States) for 30 min on ice. The

fluorescence signal was analyzed using a FACScalibur cytometer (BD

Biosciences, CA, United States), and the data were processed using

FlowJo 10.0 version software.
shRNA knockdown

The shRNA plasmids targeting LST1 and negative control

shRNA were purchased from GeneChem (Shanghai, China) for a

knockdown. The indicated shRNA lentiviral virus was packed in

293 T cells. RAW264.7 cells were transfected with lentivirus and

selected using 2 mg/mL of puromycin for 72 h.
Detection of oxidative stress-
related markers

MDA, SOD, and GSH-Px detection kit (Beyotime Biotechnology,

Shanghai, China) was used to measure the oxidative stress level of

RAW264.7 cells following the manufacturer’s guidelines.
Statistical analysis

We analyzed statistics using different software programs, namely,

R 4.1.0, GraphPad Prism 8.0, and SPSS 22.0. In order to compare the

survival rates of the two groups, we utilized Kaplan–Meier curves

along with a log-rank test. All survival curves were generated using

the “ggsurvplot” R package. To assess prognostic variables, we

employed univariable Cox regression analysis. Moreover, we

utilized LASSO regression to identify the factors that had a more

significant impact on sepsis outcomes. The R software package

“ggplot2” was employed to visualize the data, while the R package

“survival” was used to calculate the overall survival (OS). To examine

the relationship between two continuous variables, we performed
Frontiers in Immunology 05
Spearman’s correlation analysis. To compare the difference in

continuous variables between the two groups, we employed either

the Wilcoxon sum-rank test or the two-tailed t-test. Furthermore, we

used the chi-square test to make comparisons regarding non-

continuous variables between the two groups. In cases where there

were three or more groups, one-way ANOVAwas employed to assess

differences. Prior to conducting the analysis, we checked the

normality of data distribution using the Kolmogorov–Smirnov test

and evaluated the homogeneity of variances using Levene’s test. A

statistically significant value was considered as p <0.05.

Results

The scRNA profiling of non-sepsis donors
and septic patients

Figure 1 presents the flowchart depicting the methodology

employed in this research. To comprehensively examine the global

landscape of cuproptosis, we initially utilized one single-cell dataset,

known as GSE167363, which consisted of two control samples and 10

septic samples derived from five individuals suffering from sepsis.

This dataset was further subjected to analysis after undergoing quality

assessment based on cell signatures and the proportion of

mitochondrial genes. Subsequently, a total of 59,695 cells of high

quality (43,902 cells from septic patients and 15,793 cells from

healthy controls) were deemed suitable for further investigation.

The distribution of cells within each sample was predominantly

consistent, as observed in Supplementary Figure S1A, thereby

allowing for subsequent exploration. The application of t-SNE, a

method of dimensionality reduction, facilitated the classification of all

cells into 12 distinct clusters, which were subsequently categorized as

T cells, B cells, monocytes, ILC, megakaryocyte/platelets, erythroid,

DC, and HSC/MPP, as depicted in Supplementary Figures S1A, B.

The representation in Figure 2A illustrates the distribution of cell

categories across healthy donors, the early stage of non-surviving

septic patients (NS_ES), the late stage of non-surviving septic patients

(NS_LS), and surviving septic patients (S). Figure 2B serves as an

illustration of typical markers associated with different cell types.

Additionally, Figure 2C displays a heatmap showcasing the

expression patterns of the top 10 marker genes specific to each cell

subtype. The inclusion of samples from various groups resulted in the

differentiation of cell categories within the sepsis and control groups,

highlighting the enrichment of all cell subtypes, primarily in sepsis

samples, as demonstrated in Figure 2D.
Analysis of cuproptosis activity score

We then utilized the “ssGSEA” and “UCell” algorithms to

compute the CuAS of every cell subtype. Notably, higher CuAS

values were predominantly observed in various cell types, with a

significant concentration in monocytes (Figures 3A, C). Our findings

also indicated a notable elevation in CuAS among septic patients,

particularly in those in the later stages and non-survivors (Figures 3B,

D). In addition, we established an in-vitro sepsis model and examined
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1336839
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1336839
the expression of 10 critical CRGs using RT-PCR analysis. The results

showed that LPS insult could increase the levels of DLD, SLC31A1,

ABCB6, ATOX1, CYP1A1, and MTF1 but decreased the levels of

FDX1 and LIPT1. Interestingly, the levels of CDKN2A and ATP7A

remained unchanged after LPS damage (Supplementary Figure S2).

These results suggest a strong association between cuproptosis and an

unfavorable prognosis in sepsis patients.

Subsequently, we categorized single cells from septic patients

into high- and low-CuAS groups based on the 75th percentile values

of the ssGSEA score (Figure 3E). A total of 10,975 single cells were

classified as the high-CuAS group, while the remaining 32,927 cells

were classified as the low-CuAS group. According to our

investigation, cells exhibiting high CuAS demonstrated enhanced

levels of cytotoxicity, exhaustion, M2 polarization, antigen

presentation, and apoptosis scores, whereas cells with low CuAS
Frontiers in Immunology 06
displayed stronger native, M1 polarization, and IFN responsiveness

activity (Figure 3F).
Cell–cell interactions within low-CuAS and
high-CuAS cells

Subsequently, to ascertain the correlation between cuproptosis

with immune cells, CellChat analysis was performed to elucidate

differences in cell–cell interactions between low- and high-CuAS

groups. The numbers and strength of these interactions increased as

we transitioned from low CuAS to high CuAS (Figure 4A). Notably,

the high-CuAS group displayed more robust interaction numbers and

strengths with other cell types, including monocyte, T cells, B cells,

DC, and HSC/MMP cells, compared to the low-CuAS group
FIGURE 1

The flowchart of this study.
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(Figures 4B, C). By comparing the interaction strengths of each

pathway, we identified specific pathways that were more active in

the high-CuAS cells than the low-CuAS cells. Notably, signaling

pathways such as MIF, PARs, CCL, GALECTIN, and GRN showed

significant activation in high-CuAS cells (Figure 4D). To illustrate, the

upregulation of the CCL3/5 and CCR1 signaling pathways in high-

CuAS cells primarily manifested as increased communication between

HSC/MPP (senders) and monocytes (receivers). Additionally,

frequent communication between HSC/MPP (senders), monocyte

(receivers), and DC (receivers) led to impaired ANXA1 and FPR1

signaling pathways in high-CuAS cells (Figures 4E, F).
Identification of the most relevant genes
for cuproptosis

The ssGSEA algorithm was performed to determine the absolute

enrichment percentage of cuproptosis enrichment values in individuals

in the GSE65682 dataset. As shown in Figure 5A, in sepsis patients,

CuAS levels were significantly higher compared to healthy donors, with

non-survived patients exhibiting greater CuAS levels than survived

patients. To investigate the gene co-expression network in the sepsis

cohort, we constructed the WGCNA network using the expression

profile data of sepsis. The optimal soft threshold b was set to 9, as

shown in Figure 5B. Subsequently, we detected gene modules based on
Frontiers in Immunology 07
variations in TOM and identified 12 gene modules in this analysis, as

shown in Figures 5C–E. The black and green-yellowmodules exhibited

the highest correlation with sepsis, as depicted in Figure 5E. We

obtained 770 specific genes related to cuproptosis within these two

modules for further enrichment analyses. GO enrichment analysis

revealed that cuproptosis-associated genes were enriched in processes

such as neutrophil degranulation, immune effector process regulation,

leukocyte-mediated immunity, and immune receptor activity

(Supplementary Figure S3A). By performing KEGG enrichment

analysis, we found that cuproptosis-associated genes were enriched

in hematopoietic cell lineage, glutathione metabolism, Staphylococcus

aureus infection, and viral protein interaction with cytokine and

cytokine receptor (Supplementary Figure S3B).

Moreover, we conducted differential analyses to identify CuAS-

related DEGs between high- and low-CuAS groups, resulting in the

selection of 730 DEGs for further investigation. Additionally,

correlation analysis was performed to identify genes most closely

associated with CuAS, and we selected the top 150 genes for

subsequent analysis. The DEGs and the genes obtained from the

correlation analysis were then merged, resulting in a total of 740

genes that were found to have the most significant impact on CuAS

in the single-cell analysis. Finally, we intersected these 740 CRGs

with the two modular genes most associated with cuproptosis

obtained from WGCNA, leading to the selection of 71 overlapped

genes for further analysis (Figure 5F).
A

B

D

C

FIGURE 2

Annotation of single-cell data. (A) The t-SNE plots demonstrate the presence of all cell categories in healthy donors, as well as in early-stage non-
survived septic patients (NS_ES), late-stage non-survived septic patients (NS_LS), and survived septic patients (S). (B) Representative marker genes for
each cell group are shown. (C) A heatmap illustrates the expression patterns of the top marker genes for each cell subtype. (D) The distribution of
each cell type is compared between healthy donors and septic patients.
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Identification of prognosis genes
associated with sepsis and construction of
a risk model

We conducted a univariable Cox regression analysis on 71

overlapping genes to identify genes that exhibit a statistically

significant correlation with patient survival (p < 0.05). This analysis

identified 29 genes as protective factors and one gene as a risk factor

(Figure 6A). To refine our selection and focus specifically on

prognosis genes, we performed LASSO Cox regression analysis,

which resulted in the identification of seven genes with non-zero

coefficients (Figures 6B–D). These genes include small VCP/p97-

interacting protein (SVIP), leukocyte immunoglobulin-like receptor,

subfamily B member 1 (LILRB1), Fc fragment of IgG, low-affinity

IIIa, receptor (CD16a) (FCGR3A), trinucleotide repeat containing 6B

(TNRC6B), leukocyte-specific transcript 1 (LST1), collagen/

fibrinogen domain-containing protein 1 (FCN1), and protein

tyrosine phosphatase receptor type J (PTPRJ). These seven genes

yielded a total of 127 gene combinations. Subsequently, we calculated

the survival curve and p-value for each combination using the log-

rank (Mantel–Cox) test. Interestingly, the combination of a five-gene

signature exhibited the lowest p-value, suggesting its better predictive

ability for sepsis prognosis (Figure 6E). Therefore, based on the

coefficient value and expression corresponding to each gene, we

construct a riskScore using the following formula: riskScore =
Frontiers in Immunology 08
(−0.2274916 × PTPRJ expression) + (−0.2093238 × FCN1

expression) + (−0.1423479 × SVIP expression) + (−0.0223379 ×

LILRB1 expression) + (0.0316062 × LST1 expression). K-M analysis

reveals the impact of each member of the riskScore model on overall

survival in sepsis patients (Supplementary Figure S4).
Validation of riskScore and
clinicopathological parameters

Subsequently, we employed ROC curves to evaluate the

performance of the predictive model in different datasets

(GSE65682, GSE63042, GSE95233, and GSE106878). The AUC

values obtained from all four datasets were as follows: AUC =

0.653 (GSE65682), 0.725 (GSE63042), 0.801 (GSE95233), and 0.729

(GSE106878) (Figures 7A–D), indicating that the constructed

riskScore can predict the prognosis of sepsis to some extent. In

the GSE65682 dataset, the AUCs for predicting the 7-, 14-, 21-, and

28-day OS were 0.717, 0.68, 0.648, and 0.653, respectively

(Figure 7E). Next, based on the median, we categorized septic

patients in the GSE65682 dataset into high- and low-riskScore

groups. Survival analysis revealed a markedly worse OS in septic

patients with high risk (Figures 7F, G).

To enhance the accuracy of outcome prediction in septic patients,

we developed predictive nomograms that incorporated riskScores
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FIGURE 3

Characteristic of cuproptosis activity score (CuAS) at the single-cell level. (A) Analysis of CuAS based on UCell algorithm scores reveals significant
differences. (B) Comparison of UCell scores between the control and septic groups. (C) Evaluation of CuAS using the ssGSEA algorithm scores
shows distinct patterns. (D) Differences in ssGSEA scores between the control and septic groups are observed. (E) The distribution of high-CuAS
cells and low-CuAS cells is shown. (F) Naive, cytotoxicity, exhaustion, M1 polarization, M2 polarization, antigen presentation, apoptosis, and IFN
responsiveness scores are compared between high-CuAS cells and low-CuAS cells. **p < 0.01, ****p < 0.0001.
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and clinic pathological features (age and sex) using the GSE65682

dataset (Figure 8A). The calibration plot, utilizing clinical outcome

parameters at 7, 14, 21, and 28 days, demonstrated the nomogram’s

effectiveness in accurately forecasting survival outcomes

(Figures 8B–D).
Characterization of pathway enrichment
between risk groups

Analysis of function annotations using the GSVA algorithm

revealed that high-risk subtypes primarily exhibited biological

functions associated with the ERK1/2 cascade, differentiation of

mononuclear cells, production of chemokines, processes in the

nervous system, migration of lymphocytes and T cells, and

development of the vasculature. On the other hand, low-risk

subtypes showed a strong association with biological functions

such as DNA metabolic processes, transport of substances from

the endoplasmic reticulum to the cytosol, the cell cycle, oxidative

phosphorylation, metabolic processes involving glycosyl

compounds, fission of mitochondria, B-cell-mediated immunity,

and response to oxidative stress (Figure 9A). Similarly, results from

GSEA revealed that the pathways upregulated in high-risk subtypes

included the cell cycle, oxidative phosphorylation, metabolism of
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porphyrin and chlorophyll, pyrimidine metabolism, and ubiquitin-

mediated proteolysis (Figure 9B). Conversely, the pathways

upregulated in low-risk subtypes included cytokine–cytokine

receptor interaction, ERBB, JAK-STAT, NOTCH, and Toll-like

receptor signaling pathways (Figure 9C). The heatmap displayed

distinct expression patterns of 13 well-known disease-related

signaling pathways between high-risk and low-risk patients, with

five pathways found to be significantly upregulated in high-risk

patients and five pathways showing enhanced activity in low-risk

patients (Figure 9D).
Differences in immunity and therapeutic
between distinct RiskScore patients

Under the ssGSEA algorithm, the immune infiltration cells in

each septic sample were visualized using a heatmap in Figure 10A.

The analysis of the Wilcoxon rank-sum test results revealed higher

levels of infiltration for various immune cell subtypes in the high-

RiskScore subtypes. These subtypes included type 17 T helper cells,

activated CD4 T cells, and effector memory CD4 T cells.

Conversely, the low-RiskScore subtypes showed the presence of

activated CD8 T cells, effector memory CD8 T cells, neutrophils,

natural killer T cells, regulatory T cells, MDSCs, and monocytes
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C

FIGURE 4

Intercellular communication difference between high-CuAS cells and low-CuAS cells. (A) Bar charts highlight the disparities in interaction numbers
and strengths in the cell–cell communication network between high-CuAS and low-CuAS cells. (B, C) Thicker lines indicate stronger interactions,
while red or blue colors denote increased or decreased signaling in low-CuAS patients. (D) Stacked plots depict the variations in intercellular
signaling pathways between high-CuAS and low-CuAS patients. (E, F) The chord diagram reveals frequent upregulation or downregulation of signal
communications between cell states.
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(Figure 10B). Additionally, there were significant differences in

immune modulators and immune checkpoints between septic

patients with different RiskScores. Notably, immune genes

associated with antigen presentation (HLA-A, HLA-B, HLA-C,

HLA-DPA1, HLA-DQB1, MICA, and MICB), cell adhesion

(ICAM1 and ITGB2), co-inhibitors (BTN3A1, BTN3A2, CD274,

and SLAMF7), ligands (CCL5, IL12A, IL1B, TGFB1, and TNF),

receptors (CD27, CD40, HAVCR2, TIGIT, and TNFRSF14), and

other immune modulators (PRF1) were significantly higher in

patients with lower riskScores. Conversely, patients with higher

riskScores exhibited lower levels of cell adhesion (SELP), ligands

(CX3CL1 and IL10), receptors (EDNRB, IL2RA, and PDCD1), and

other immune modulators (ARG1, ENTPD1, and HMGB1)

(Figure 10C; Supplementary Figure S5). The observation of a
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weakened immune score in septic patients with higher riskScores

indicates poor responsiveness to a bacterial-induced inflammatory

response (Figure 10D). Correlation analysis further demonstrated

that a higher riskScore was negatively correlated with most immune

cell types, suggesting a weaker inflammatory response (Figure 10E).
Validation of the expression of LST1 in LPS-
induced macrophages

Out of the five CRGs examined in this study, the association

between septic injury and LST1 has yet to be investigated. We first

looked at the expression levels of LST1 in each cell type of single-cell

samples, and the result showed that LST1 was mainly enriched in
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FIGURE 5

The most relevant genes for cuproptosis. (A) A comparison was made between the CuAS in sepsis patients and healthy donors. (B) The scale
independence and mean connectivity of various soft threshold values (b) were analyzed. The red numbers indicate different soft threshold values (1–
20), while the red lines highlight the selected cutoff values. (C) Clustering dendrograms, along with their assigned module colors, were constructed
based on the dissimilarities among all genes. (D) A network heatmap plot was generated, representing the topological overlap matrix of all analyzed
genes. (E) WGCNA analysis was performed to identify the modules most significantly associated with cuproptosis, showing the relationship between
significant module membership and gene significance. (F) Venn plots were used to identify the genes strongly associated with cuproptosis.
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FIGURE 6

Identification of prognosis genes associated with sepsis and construction of a risk model. (A) Through univariable analysis, 30 genes were found to
correlate with patients’ overall survival statistically. (B, C) LASSO Cox regression analysis was then conducted to filter further for prognosis genes
with non-zero coefficients. (D) The specific coefficient values of the seven genes associated with cuproptosis were obtained using the LASSO
algorithm and the optimal lambda value. (E) The CuAS signatures and their performance in predicting the prognosis of sepsis were evaluated.
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FIGURE 7

Validation of riskScore in independent datasets. (A–D) The ROC curve values of the five-gene signature riskScore in four separate datasets
(GSE65682, GSE63042, GSE95233, and GSE106878) were determined. (E) The ROC curve value of the five-gene signature riskScore was analyzed for
different stages of sepsis in the GSE65682 dataset. (F) The riskScore distribution in sepsis patients and the correlation between riskScore and survival
data were represented in scatter plots. High-risk and deceased patients were denoted by purple dots, while green dots denoted low-risk and
surviving patients. A heatmap displayed the expressions of the five-gene signature in septic patients with varying riskScores. (G) The overall survival
times of high-risk and low-risk groups were compared using a Kaplan–Meier survival curve.
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monocytes (Supplementary Figure S6). Subsequently, we focused

our research on uncovering the role of LST1 in sepsis through a

series of experimental procedures. Initially, the expression of LST1

in RAW264.7 cells was assessed using flow cytometry and Western

blot analysis. The evaluation of LST-positive cell proportions

revealed a significant increase in LST1 expression in macrophages

at 6 h post-LPS stimulation compared to controls. This enhanced

expression of LST1 persisted for up to 24 h following LPS-induced

injury (Figures 11A, B). Moreover, the levels of LST1 protein in

macrophages displayed an initial rise at 6 h and gradually increased

from 12 to 24 h after LPS exposure (Figures 11C, D). These results

indicate a time-dependent alteration in LST1 expression in

macrophages within the LPS-induced injury model. Taken

collectively, these findings suggest that LST1 potentially plays a

role in the pathophysiology of sepsis.
Inhibition of LST1 protects against LPS-
induced macrophage damage

To determine the impact of inhibiting LST1 on septic injury, we

transfected lentivirus-shLST1 into RAW264.7 cells and used flow

cytometry to analyze the level of apoptosis among different groups.

As expected, the increased rate of apoptosis induced by LPS was
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reduced in the group where LST1 was knocked down (Figures 12A, B).

To further validate the effects of LST1 on cell viability and toxicity

following sepsis damage, we conducted the analysis using CCK8 and

LDH release in the RAW264.7 cells where LST1 was inhibited. We

observed a significant increase in cell viability and a marked decrease in

toxicity (Figures 12C, D). Additionally, we evaluated the effects of LST1

on the activation of oxidative stress in RAW264.7 cells, both in the

absence and presence of LPS insult. No significant difference in

oxidative stress markers was observed between LV-shNC- and LV-

shLST1-transfected RAW264.7 cells when not stimulated with LPS.

However, in the LST1-inhibited RAW264.7 cells after LPS stimulation,

the peroxide product MDA was significantly reduced, and the

antioxidant products SOD and GSH were markedly elevated

(Figures 12E–G).

To assess the impact of inhibiting LST1 on the M1/M2

phenotypic balance of macrophages in sepsis, we stimulated

RAW264.7 cells with LPS to induce the M1 phenotype. We

observed a decrease in the percentage of iNOS-positive

macrophages (M1 markers) and an increase in the percentage of

CD206-positive macrophages (M2 markers) in the RAW264.7 cells

treated with LST1 inhibition compared to those treated with LV

empty (Figures 13A–D). These findings suggest that inhibiting

LST1 could improve the proinflammatory and oxidative stress

status and protect macrophages from apoptosis.
A B

D

C

FIGURE 8

Prediction accuracy of CuAS and clinicopathological parameters. (A) A nomogram model was constructed to integrate the riskScore and
clinicopathological parameters. (B) Calibration curves were generated to assess the accuracy of the nomogram model for predicting outcomes at 7,
14, 21, and 28 years. (C). A decision curve was plotted to evaluate the clinical usefulness of the nomogram model at 7, 14, 21, and 28 years. (D) The
proportion of clinicopathological parameters was analyzed in septic patients with high or low riskScore.
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Discussion

The connection between sepsis and septic shock and the high

mortality rates, ranging from 30% to 60%, remains persistent (35).

Furthermore, sepsis continues to be the leading cause of critical care

deaths (36). Early detection, diagnosis, and rational therapeutic

interventions can effectively manage sepsis and reduce its mortality

rate. However, due to the lack of specific biomarkers, the diagnosis

and treatment of sepsis remain challenging (37). To address this, the

utilization of scRNA-seq provides a valuable approach to detect

immune cell alterations associated with sepsis resulting from

bacterial pneumonia in a dynamic disease progression. Teng et al.

(21) examined peripheral blood mononuclear cells (PBMCs)

obtained from healthy controls and two sepsis patients. They

observed an upregulated interferon-gamma response, activation

and exhaustion properties in T/NK cell subtypes, increased NK

cell-induced plasma cells, and activation of T/NK cell subtypes

driven by IL-1b signaling pathways. Recently, monocytes have

garnered increased attention in understanding the development of

sepsis, as the presence of monocyte aggregates in sepsis is linked to a

poor clinical outcome (38). In our current study, a total of 12

distinct cell clusters were identified from the analysis of two control

samples and 10 septic samples using scRNA-seq. We found that the
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proportion of monocytes was significantly higher in survivors of

sepsis than in normal individuals, suggesting that they primarily

mediate immune inflammatory responses in the early stages of

sepsis. Consistently, in a multicenter international European

prospective study (39), monocyte distribution width (MDW)

emerged as a superior early indicator of sepsis in emergency

departments compared to PCT or CRP. However, the proportion

of monocytes in septic deaths was even lower than in normal

subjects, suggesting that monocytes became immunosuppressed as

sepsis progressed, ultimately exacerbating disease damage. Several

recent studies have focused on constructing prognosis models for

sepsis using scRNA-seq and RNA-seq data (40–42). Cuproptosis, a

form of mitochondrial cell death triggered by copper, has been

linked to immune infiltration in tumors and autoimmune diseases

(14). Song et al. discovered a significant correlation between sepsis-

induced cardiomyopathy and cuproptosis (43). However, it remains

unclear whether cuproptosis genes influence the development and

prognosis of sepsis. In our current study, we calculated the CuAS to

determine the association between cuproptosis and sepsis prognosis

based on the UCell or ssGSEA algorithms. We found that CuAS

gradually increased as sepsis progressed and was mainly enriched in

a part of monocytes. In addition, the high-CuAS group exhibited

enhanced cytotoxicity and immune exhaustion activity. Combined
A B
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FIGURE 9

Characterization of pathway enrichment between risk groups. (A) The t-value of the GSVA scores was used to rank the differences in biological
functions between high-risk and low-risk septic patients. (B, C) The GSEA scores of signaling pathways revealed the upregulated and downregulated
main pathways between high-risk and low-risk septic patients. (D) A heatmap displayed the expression profiles of 13 characteristic CuAS between
low-risk and high-risk septic patients. Patient annotations included status, age, gender, and risk subtypes.
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with the reduced proportion of monocytes in non-survivors of

sepsis, we hypothesized that cuproptosis may lead to immune

exhaustion of monocytes in the late stage of sepsis, ultimately

resulting in disease exacerbation. Therefore, the constructed

CuAS may indicate the severity and outcome of sepsis, reflecting

the status of the immunosuppressive function.

After performing an intersection of scRNA-seq data with two

modular genes obtained from WGCNA analysis, we identified a

total of 71 common differentially expressed genes (CRGs). These

CRGs were then utilized to construct a novel prognostic prediction

model. Using a combination of LASSO and Cox regression analysis,

we identified a five-gene signature (SVIP, LILRB1, LST1, FCN1, and

PTPRJ) as the most compelling prognostic indicator for septic

patients. Among the identified prognosis genes, LST1 stood out as

the only poor prognostic factor. It was found that LST1, a
Frontiers in Immunology 14
multifunctional gene encoded within the MHC class III region,

exhibited enhanced expression in response to lipopolysaccharides,

interferon-gamma, and bacterial stimuli (44). SVIP was a critical

regulator of endoplasmic reticulum-associated degradation

(ERAD), specifically through its involvement in the transfer of

very low-density lipoprotein (VLDL) (45). On the other hand,

LILRB1, a receptor expressed on immune cells, binds to MHC

class I molecules on antigen-presenting cells. It is believed to play a

crucial role in controlling inflammatory responses and cytotoxicity,

thereby aiding in the modulation of immune responses and limiting

autoreactivity (44). FCN1 encodes ficolin 1, an essential precursor

for the complement lectin pathway. Ficolin family proteins are

pattern-recognition molecules that interact with sugars present on

microbial surfaces. They have been closely associated with

circulating phagocytes and have been implicated in the
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FIGURE 10

Differences in immunity and therapeutic between distinct RiskScore patients. (A) The heatmap visualized the landscape of immune infiltration cells
for each septic sample under the ssGSEA algorithm. (B) The Wilcoxon rank-sum test results showed infiltration levels of multiple immune cell
subtypes in high- and low-risk septic patients. (C) The heatmap visualized the landscape of immune modulators and immune checkpoints between
septic patients with different risk scores. (D) ImmuneScore in septic patients with different risk scores. (E) Correlation between riskScore and immune
cell subtypes. **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
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pathogenesis of early-onset sepsis (46). PTPRJ, a protein tyrosine

phosphatase (PTP) family member, is expressed in all

hematopoietic lineages. It has been shown to negatively regulate

T-cell receptor (TCR) signaling (47). All five genes in our risk

signature may collectively contribute to the modulation of the

inflammatory response associated with sepsis. To evaluate the

predictive performance of our risk signature, we constructed ROC

curves, nomograms, and calibration curves and conducted DCA.

Our results demonstrated that the riskScore, derived from our

riskScore model, can predict the prognosis of sepsis patients to

some extent. Importantly, our riskScore exhibited higher accuracy

in predicting short-term prognosis in septic patients.

Using the constructed riskScore, we categorized sepsis patients

into two groups based on their low- and high-risk levels. Through

pathway enrichment analysis, it was revealed that patients with higher

riskScores exhibited lower levels of ImmuneScore and a decreased

infiltration of immune cells compared to patients with lower

riskScores. Previous studies indicated that the majority of patients

experiencing prolonged sepsis display an immunosuppressive state,

with late-stage sepsis-related immunosuppression being a significant

contributor to mortality in these patients (23). Upon analyzing the

distribution of immune cell subtypes, we discovered that patients with

a lower risk score possess a higher abundance of innate immune cells

and cytotoxic T cells, highlighting their more excellent antibacterial

activity. The low-risk score group also suggests an intensified

activation of pathways involved in negative leukocyte apoptotic

processes, the activation of the innate immune response, and

cytokine production. It is worth noting that this increased

activation of pathways was positively correlated with an enhanced

antibacterial immune response. Furthermore, when assessing typical

immunomodulatory factors and immune checkpoints, it was
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observed that patients with a low-risk score showcased an

upregulation of antigen presentation molecules. This finding

suggests that the early activation of the innate immune system and

efficient antigen presentation play a pivotal role in preventing sepsis-

induced death in patients.

As a constituent member of the identified CRGs, the role of

LST1 in sepsis has not been fully elucidated. Previous studies have

indicated that LST1 is primarily expressed in immune cells, with

elevated levels of LST1 observed in various inflammatory diseases,

such as viral infections, rheumatoid arthritis, and inflammatory

bowel disease (48, 49). In our current investigation, we observed an

increase in LST1 expression in macrophages over time in a model of

LPS-induced injury, indicating its close association with the

progression of sepsis. Interestingly, the knockdown of LST1

resulted in increased cell viability, reduced cell apoptosis and

toxicity, improved resistance against oxidative stress insults, and

maintained a balanced M1/M2 macrophage phenotype. These

findings strongly suggest that LST1 plays an extensive role in

sepsis-induced damage.

There are two areas for improvement in the current research.

Firstly, our study did not elucidate the potential mechanism of LST1

in promoting septic insult. Secondly, we only validated the role of

LST1 in sepsis in vitro, and further validation is needed at the in-

vivo level.
Conclusions

We described the cuproptosis level of cells in sepsis at the

single-cell level. Based on the regulators of cuproptosis, we
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FIGURE 11

LPS promoted the expression of LST1 in macrophages. (A) Flow cytometry analysis of LST1 expression in RAW264.7 cells. (B) The percentage of LST-
positive macrophage is shown (n = 3). (C) Represent the Western blot bands of LST1 and b-actin. (D) Quantification of protein expression of LST1 (n
= 3). *p < 0.05, **p < 0.01, ***p < 0.001 versus the control group.
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FIGURE 12

Inhibition of LST1 protects against LPS-induced macrophage damage. (A) Apoptotic level was analyzed by flow cytometry after LPS stimulation for
24 h (B) The percentage of apoptotic RAW264.7 cells is shown (n = 3). (C) Cell viability was measured by CCK8 analysis after LPS stimulation for 24 h
(D) Cytotoxicity was measured by LDH release analysis after LPS stimulation for 24 h (E–G) Oxidative stress was evaluated by detection of MDA,
SOD, and GSH-Px in RAW264.7 cells after LPS stimulation for 24 h. ***p< 0.001 versus control + shNC group, #p < 0.05, ##p < 0.01, ###p < 0.001
versus the LPS group.
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FIGURE 13

Inhibition of LST1 switches macrophage M1 phenotype to M2 phenotype. (A) iNOS expression on macrophages was analyzed by flow cytometry. (B)
The percentage of iNOS-positive macrophage is shown (n = 3). (C) CD206 expression on macrophages was analyzed by flow cytometry. (D) The
percentage of CD206-positive macrophage is shown (n = 3). ***p < 0.001 versus control+shNC group, ###p < 0.001 versus the LPS group.
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constructed a cuproptosis-related risk model to predict the early

diagnosis of sepsis accurately. In addition, LST1, a cuproptosis-

related molecule in the model, was proven to be enhanced in the

macrophage in response to LPS. Finally, we found that LST1

regulated the M1/M2 polarizing phenotypic transformation of

macrophages and aggravated sepsis-induced cell injury.
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