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Department of Microbiology and Immunology, School of Medicine, Aichi Medical University,
Nagakute, Aichi, Japan
Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/

myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and

cytokine storm. TLR4 signaling is diverted to the classical acute innate immune,

inflammation-driving pathway in conjunction with the classical NF-kB pivot of

MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory

transcription and chromatin structure-function; in addition, TLR4 signaling to

the TIR domain-containing adapter-induced IFN-b (TRIF) apparatus and to

nuclear pivots that signal the association of interferons alpha and beta (IFN-a
and IFN-b) with acute inflammation, often coupled with oxidants favor inhibition

or resistance to tissue injury. Although the immune response to LPS, which

causes sepsis, has been clarified in this manner, there are still many current gaps

in sepsis immunology to reduce mortality. Recently, selective agonists and

inhibitors of LPS signals have been reported, and there are scattered reports

on LPS tolerance and control of sepsis development. In particular, IRF3 signaling

has been reported to be involved not only in sepsis but also in increased

pathogen clearance associated with changes in the gut microbiota. Here, we

summarize the LPS recognition system, main findings related to the IRF3, and

finally immunological gaps in sepsis.
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1 Introduction

Septic shock is characterized by a dangerous degree of hypotension, high fever,

tachycardia and tachypnea due to severe sepsis (1) by various mechanisms, including the

direct effects of bacterial toxins, such as endotoxin. Severe sepsis causes circulatory, cellular,

and metabolic disturbances, as a result, organs are unable to receive adequate blood supply,

resulting in dysfunction (2). In spite of careful treatments, the mortality rate in sepsis is still

high (3). Immune-modulating therapy is the main treatment of septic shock, and

extracorporeal blood purification remains contentious (2). Furthermore, it is unclear

how the various innate immune pathways relate to induction or regulation of sepsis,

because there are still many current gaps in sepsis immunology to reduce mortality.
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Interferon regulatory factor 3 (IRF3) is a transcription regulator

in many cell types, and key to rapid antiviral immune responses (4).

After microbial infection, IRF3 is rapidly phosphorylated by kinases

that are part of several pattern recognition receptors (PRRs)

pathways such as TLR3 (5), TLR4 (6), retinoic acid–inducible

gene I (RIG-I) (7), melanoma differentiation-associated protein 5

(MDA5) (8), and stimulator of IFN genes (STING) (9). After

phosphorylation, IRF3 dimerizes and localizes to the nucleus,

then it works as an integrating transcription factor for promoters

of type I IFNs, several cytokines, as well as several antiviral IFN-

stimulated genes (ISGs) (4). There are many reviews of IRF3

function during viral infection, but few recent reviews of IRF3

function in response to endotoxin. Here, we firstly review the

mechanism of LPS recognition, secondly present results from

IRF3-deficient mice, IRF3 inhibitors, and molecules that affect

IRF3 in endotoxic sepsis, and outline the effects of IRF3 on

bacterial clearance. Finally, we provide an overview of current

gaps in sepsis immunology.
2 LPS recognition and
response mechanism

LPS, also known as endotoxin, is a glycan-based pathogen-

associated molecular pattern (PAMP) found on the cell surface of

gram-negative bacteria that is composed of three domains: an

amphipathic glycophospholipid (lipid A) component, hydrophilic

polysaccharides in the core, and an O-antigen consisting of repeated

units of common hexose sugar (10). Lipid A is a major inducer of

the endotoxic properties of LPS. The induction of inflammatory

responses by LPS starts with its binding to LPS binding protein

(LBP), a 60 KD acute phase protein synthesized preliminary in the

liver (11, 12). LPS aggregates in aqueous environments owing to its

amphiphilic nature (13). LBP disrupts aggregation prior to its

transfer to a cluster of differentiation 14 (CD14), which can be

found either in a soluble form or linked to the cell surface by

glycosylphosphatidylinositol anchor (14, 15).
2.1 TLR4 signaling diverting into the
MyD88 classic NF-kB activation

The signaling responses are mainly supplied by TLR4 which is

non-covalently linked to the soluble protein MD-2 (sMD-2) and

secreted as a large disulfide-bound multimeric glycoprotein. CD14

immediately leaves LPS-LBP complexes after LPS is transferred to

MD-2 (13). The association of the monomers LPS and MD-2 with

the ectodomain of TLR4 triggers a series of consecutive events,

including the dimerization of TLR4/MD-2 (16). This association

triggers the formation of a hexametric ligand-receptor complex

consisting of two copies of the TLR4/MD-2/LPS homodimer, an

active complex. This results in the assembly of the intracellular Toll

interleukin-1 receptor (TIR) domain, which further recruits

downstream adaptor proteins that mediate the signaling cascade.

TLR4 transduces the signals via two distinct pathways: MyD88 and

TRIF dependent.
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The MyD88-dependent pathway commences on the plasma

membrane, whereas the TRIF-mediated signaling begins after

internalization of the TLR4/MD-2/LPS complex into endosomes

(17). The MyD88-dependent pathway is indispensable for the

production of inflammatory cytokines (18, 19). After TIRAP (also

known as MAL) is recruited to the TLR4, MyD88 triggers the

formation of a complex by binding to serine/threonine kinases,

interleukin-1 receptor-associated kinases 2 and 4 (IRAK2 and

IRAK4) (20, 21). Then, TNF receptor-associated factor 6

(TRAF6), an ubiquitin E3 ligase, is recruited and NF-kB is

activated, then proinflammatory cytokines are produced

(Figure 1, priming step).
2.2 TLR4 signaling diverting into the
TRIF activation

A lack of MyD88 in cells might lead to the MyD88-independent

pathway, initiating the late phase of the TLR4 signaling pathway

(22). Additionally, CD14 mediates the internalization of the TLR4/

MD-2/LPS complex into endosomes (23). Once MyD88 and TIRAP

are discharged from the plasma membrane, TLR4 is triggered to

harbor into the endosomes where it binds to TRIF. TRAM, also

known as TICAM-2, facilitates the interaction between TRIF and

TLR4 (24). Then, the E3 ubiquitin ligase TRAF3 is recruited and

subsequently activates the noncanonical IKK kinases: TANK-

binding kinase 1 (TBK1) and IKKϵ. TRAF3 involves in both

MyD88 and the TRIF-mediated pathway, regulating both

cytokine and IFN production (25). In addition, abolishing

degradative (not self) TRAF3 ubiquitination inhibited all

proinflammatory cytokines without affecting the IFN response.

The consensus motif of TRIF is phosphorylated by TBK1 and

causes recruitment of interferon regulatory factor3 (IRF3) (26).

IRF3 is phosphorylated by TBK1, activated, dimerized, and

translocated to the nucleus (27). IRF3 deficient mice cannot

induce type 1 IFN production especially IFNb (28). (Figure 1).
2.3 Caspase-11 activity and pyroptosis

It has recently become clear that LPS is not only recognized

extracellularly via TLR4/MD-2, but also recognized intracellularly.

Kayagaki et al. reported that intracellular LPS-activated caspase-11

causes cell death called pyroptosis (29). Pyroptosis is an

inflammation-induced programmed cell death that involves rapid

disruption of cellular membranes and the release of damage-

associated molecular patterns (DAMPs). Pyroptosis is induced by

caspase-1 or mouse caspase-11 (human caspase-4/5) cleaves

gasdermin D (GSDMD), a pore-forming protein that is usually

exists in the auto-suppressed state (30). Recently, the “tag-team”

LPS recognition system, consisting of both TLR4 and caspase-11,

has come to be understood as a regulator of the response to harmful

infections. Extracellular LPS primarily stimulates TLR4/MD-2,

followed by inducing a priming signal for the expression of

inflammasome components. Intracellular LPS induces caspase-11-

dependent inflammasome activation in the cytoplasm (31)
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(Figure 1, activation step). Intracellular molecules, such as caspase,

or GSDMD, will be clinical target of shock therapy in the future.

Further, blood LPS, and blood HMGB1, that is an important

endotoxin delivery DAMPs protein and mediates caspase-11-

dependent lethality in sepsis (32), may be also target for the

clinical therapy.
3 IRF3 function in sepsis

Next, we focus on the role of IRF3 in sepsis, because IRF3 is not

only an important molecule in the sepsis mortality but is also

associated with important roles in microbiome.
3.1 IRF3 is an important gene for IFN
production and cell death

IRFs are a family of transcription regulators for a wide range of

genes associated with immune responses (33). Although IRF3 is

expressed in almost all cells, it is localized in the cytoplasm as an

inactive form. However, upon viral or duplex RNA stimulation, a

specific serine residue at the C-terminus is phosphorylated, and

IRF3 homodimerization was induced, then IRF3 dimer was

transferred into the nucleus. After binding of b-catenin to IRF3,
Frontiers in Immunology 03
IRF3 also forms a complex with p300/CBP, and acquires DNA

binding ability, thereby converting into the active form,

subsequently increase IFN-b expression (34–37) (Figure 1).

Further, the activation of IRF3 occurs not only through TLRs-

TRIF axis, but also thorough intracellular receptors such as (RLRs)

(RIG-I/MDA5)–mitochondrial antiviral signaling protein (MAVS)

(38, 39) and the cytosolic DNA receptor cyclic GMP-AMP

(cGAMP) synthase (cGAS)/STING axis (40). STING is a

stimulator of IFN genes and the signaling pathway is activated

not only by viral DNA but also by autologous genomic DNA and

mitochondrial DNA through the activation of the cGAMP, then

induces type I interferon, thereby relating to the promoting

autophagy (41) and various kinds of cell death (e.g., apoptosis,

necroptosis, pyroptosis, ferroptosis, mitotic cell death, and

immunogenic cell death) (42).
3.2 The importance of IRF3 in
endotoxin shock

IRF3 KO mice are resistant to LPS-induced endotoxin shock

(28). Because these mice were found another null mutation in the

Bcl2l12 gene, Taniguchi et al. further showed that selective IRF3

deficiency in myeloid cells reduced the serum levels of type I IFN

and increased the survival rate in the endotoxin-induced shock (43).
FIGURE 1

Extra- and Intra-cellular LPS recognition mechanism. TLR4 mediated NLRP3 (canonical) inflammasome signaling cascade consists of NLRP3, ASC
and caspase-1 which leads to maturation and release of IL-1b and IL-18. Two distinct pathways are involved to trigger this signaling cascade. The
first one is priming initiated with the recognition of extracellular LPS by TLR4. This activates NF-kB leading to pro IL-1b and pro IL-18 and up-
regulates the expression of NLRP3 and pro-caspase-1. Expression of caspase-11 is also elevated by IFN-b/IFNR signaling. IRF3 and STING function as
primary stimulator for IFN-b production. Another one is activation induced in response to intracellular LPS which is recognized by caspase-11
(Human: caspase-4/5). This results in the formation of non-canonical inflammasome complex and then activation, that is followed by pyroptosis
through GSDMD cleavage. Meanwhile, the activation of IL-1b and IL-18 during the process of pyroptosis is mediated by processing of precursors of
these cytokines by caspase-1.
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Cecal ligation and puncture (CLP) model induces peritonitis by

puncturing the distal part of the ligated cecum to induce leakage of

feces, and this model is considered to be more clinically similar to

sepsis. In the CLP model, disease score, mortality, hypothermia, and

bacterial load are all reduced in IRF3 KO mice, compared to their

WT counterparts (44, 45). Furthermore, in adoptive transfer

experiments by using IRF3 KO bone marrow chimera, little

protection from sepsis was shown, whereas chimeras with IRF3-

KO stroma showed a substantial degree of protection. This result

shows that IRF3 in the stroma principally enhances sepsis

pathogenesis (45). From above, IRF3 functions as an immune

protector through IFN production; however, IRF3 activation

augments sepsis mortality.
3.3 Effect of IRF3 inhibitors on
endotoxin shock

Several specific inhibitors of IRF3 have been reported. We

focused on those that have been reported to inhibit endotoxic

shock. Piceatannol (trans-3,3′,4,5′-tetrahydroxystilbene) is one of

the stilbene derivative found in many plants such as red grapes.

Piceatannol is known as a phytoalexin to protect the plant against

fungal infection, and exhibits antioxidant and anti-inflammatory

effects (46, 47). Piceatannol was previously reported as a Syk-

specific tyrosine kinase inhibitor (48). Recently, the inhibitory

effect on IRF3 is also known in more detail. In the nucleus, IRF3

binds to interferon stimulated response elements (ISREs) in the

promoters of a subset of ISGs. Piceatannol prevents LPS-induced

ISG induction by inhibiting the signaling cascade leading to IRF3

binding to the ISRE. Thus, piceatannol inhibits LPS-induced

activation of IRF3, prevents the production of cytokines, and

reduces septic shock after LPS challenge in animals (49).

Although the reduction in mortality was limited (from >70% to

< 35%), the same protective effect was also recognized using

tetramethoxystilbene (TMS), a methylated form of piceatannol,

instead of piceatannol. This result supports the notion that the

protective effect might be related to the tyrosine kinase inhibitor,

not the antioxidative properties of piceatannol (49).

Fucoxanthin (FX), which is a carotenoid derived from brown

algae, binds to IRF3 and inhibits the phosphorylation of IRF3, then

reduces pro-inflammatory cytokine production, thereby decreasing

mortality in a mouse CLP-induced sepsis model (50). Further, FX

also affects microbiota composition in intestine, that influences the

development of sepsis. FX significantly reduced the bacterial load in

the abdominal cavity in CLP-induced sepsis mice model via and

increased the short-chain fatty acids (SCFAs) levels such as acetic

and propionic acids, which showed negative correlations with the

expression levels of inflammatory factors, in their intestines (51).

FX alters the microbial diversity and promotes SCFAs production,

in CLP-induced sepsis mice model, thus reshaping gut

homeostasis (51).

The importance of IRF3 activation in the induction of septic

shock is also confirmed by the results of epidermal growth factor

receptor (EGFR) inhibitors (52). The binding of LPS to TLR4 and
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EGF to EGFR, respectively, both on the plasma membrane led to

endocytosis. EGFR is important for the activation of PI3K/AKT

pathway which is required for b-catenin activation and IRF-driven

gene expression of TLR4 signaling. Further, the kinase activity of

EGFR is needed for the activation both of IRF3 and its co-activator,

b-catenin. If EGFR activity is inhibited, LPS-induced induction of

IFN and ISGs is spoiled, then septic shock response is impaired.

Indeed, the EGFR kinase activity inhibitor (gefitinib)-treated mice

were protected from LPS-induced septic shock by the selective block

of the IRF-driven genes in TLR4 signaling (52). These results

demonstrate the selective regulation of TLR4 signaling by direct

and indirect IRF3 inhibitors and emphasize the potential use of

these inhibitors to treat sepsis.
3.4 Intracellular molecules and
IRF3 activation

Accumulating evidence suggests that inflammation,

cardiomyocyte apoptosis, and pyroptosis are involved in

developing sepsis and sepsis-induced cardiomyopathy (SIC). IRF3

is important for sepsis-induced cardiac injury (53). In wild type

mice and cardiomyocytes, LPS-induced cardiac injury stimulates

STING through cGAS -cGAMP, which further mobilizes TBK1,

then IRF3 is phosphorylated. Phosphorylated IRF3 subsequently

translocated into nucleus and increased the expression of NOD-like

receptor protein 3 (NLRP3). STING knockout attenuates LPS-

induced cardiac injury by preventing NLRP3-mediated

inflammation, apoptosis, and pyroptosis. This study suggests that

STING-IRF3 might be a therapeutic target for SIC (53).

Furthermore, caspase-11 activation can also be affected by other

proteins (54). The caspase-11 inflammasome in macrophages is

negatively regulated by the zinc (Zn2+)-regulating protein,

metallothionein 3 (MT3). In challenge with intracellular

lipopolysaccharide, macrophages increased MT3 expression,

which reduced the activation of caspase-11, caspase-1 and IL-1b.
It is considered that MT3 increased intra-macrophage Zn2+ to

downmodulate the TRIF-IRF3-STAT1 axis, a prerequisite for

caspase-11 effector function. MT3 suppresses the activation of the

caspase-11 inflammasome in vivo, whereas caspase-11 and MT3

synergistically impair antibacterial immunity (54). Thus, the

inflammasome activation signal is influenced by various factors.
3.5 The relationship between intestinal
microbiota and IRF3

As mentioned above, the CLP model is mainly used because it

closely mimics the clinical progression of sepsis in humans (44). In

the CLP model, bacteria, fungi, and metabolites migrate into the

abdominal cavity, leading to abdominal infections and systemic

sepsis. The gut microbiome plays an important role for keeping the

body homeostasis, pathogen defense, food digestion and

absorption, and immune system regulation (55). Preclinical

studies show that microbiome-dependent metabolic pathways are
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able to drive immunological response against invading pathogens.

Microbiome is also related to the onset of sepsis (56).

Recently, the relationship between intestinal microbiota and

IRF3 has received much attention. Although the ligands are

unknown, IRF3 is activated in macrophage cultures with live or

sonicated commensal bacteria (44). Also, IRF3 enhances pathogen

clearance by restoring host immunity. Fecal microbiota

transplantation (FMT) rescued mice from lethal infection due to

a pathogen community, isolated from a sepsis patient by restoring

systemic immunity in an IRF3-dependent manner (57). Pathogenic

community infection reduces fecal butyrate levels, which

normalizes IRF3 levels. FMT, by providing operational taxonomic

units (OTUs) such as Bacteroides, which can produce butyrate, and

increase the expression level of IRF3, then protects against systemic

pathogen community infections (57). In sepsis models, such as CLP,

IRF3 functions as an enhancer of sepsis. In contrast, in pathogenic

community infections, IRF3 restores the protective immunity

in sepsis.
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4 Important gaps in
sepsis immunology

Even with the above mechanisms of LPS recognition as a trigger

for sepsis, a variety of events, as shown in Table 1, actually play a

significant role in the pathogenesis of sepsis.

Sepsis is a highly heterogeneous syndrome, which contains not

only excessive inflammation but also immunosuppressive events.

This makes it difficult to understand the status of the host response

and to consider the suitable treatment strategy. Flow cytometry

readouts such as monocyte HLA-DR and PD-L1 expression may be

useful for the monitoring marker (58), however highly sensitive

biomarker to determine the severity of sepsis even in mixture

immunological situation is needed.

Nitric oxide (NO) and reactive oxygen species (ROS) play

important roles in nonspecific infection defense mechanisms. The

excess NO produced by inducible NO synthase (iNOS) induction

reacts with ROS at the site of infection to form chemically reactive
TABLE 1 Important gaps in sepsis immunology (No mark: known, *: unknown).

1) mixing LPS responses with sepsis variation in temporal programming responses

Sepsis remains a highly heterogeneous syndrome. The immune system is changed from homeostasis in two opposite directions (excessive inflammation and immune
suppression), which the various extent is dependent on individuals (58).

In sepsis patients, anti-inflammatory reactions are recognized with the pro-inflammatory response (The increase of IL-10 correlated with the rise of TNF-alpha, IL-6, and
IL-8.) (59).

* Lack of insights into the direction and time course of the host response before the clinical recognition of severe disease (59)

* Lack of suitable immunological profiles which facilitates the stratification of patients with sepsis into subgroups depend on the level of severity of sepsis (58)

2) coupling to immunometabolic paralysis, as well as activation deactivation axes

Septic plasma typically exhibits a mixed environment of hyperinflammatory and immunosuppressive properties, therefore this may possibly modulate circulating
leukocytes in a variety of ways. However, the evaluation of its plasma status and the regulation of circulating leukocytes are difficult, actually (59).

* Lack of suitable biomarker for the stratification of patients with sepsis into more homogeneous subgroups (58)

* Lack of research about the long-term sequelae and etiology for the development of therapy and usage as outcome parameter in clinical trials (58)

3) pathway connection with redox states of oxidation and reduction normality or excesses

Activated Pathogen recognition receptors such as TLRs increases reactive oxygen species (ROS) through NADPH oxidase enzymes and mitochondria. ROS is required for
the release of pro-inflammatory cytokines (60).

Mitochondrial ROS (MtROS)-induced priming leads to de-ubiquitination of NLRP3 inflammasome, which is suggesting a non-transcriptional priming (61).

Excessive ROS due to disruption of electron transfer chain, Ca2+ overload, and depletion of endogenous antioxidants also cause cell death, including apoptosis and
autophagy (62) (63). Upon mitochondrial damage, highly expressed mtROS trigger the opening of mitochondrial permeability transition pores (mPTPs) and promote
apoptosis (64).

During sepsis, activated caspase-1 interacts with molecular events which promotes mitochondrial dysfunction, such as ROS production of mitochondria, disturbance of
membrane permeability, and fragmentation of mitochondrial network, then exacerbates apoptosis with pro-inflammatory response (65). Apoptotic events orchestrated by
elevated intracellular oxidative stress was suggested for pathogenesis of sepsis- induced acute respiratory distress syndrome (66).

Endogeneous nitric oxide (NO) has been identified as a negative regulator for NLRP inflammasome in macrophage, and enhances survival via inducing autophagy (67).

A shift from oxidative phosphorylation to glycolysis (Warburg effect) induces succinate accumulation, then the stability of hypoxia-inducible factor 1a (HIF1a) is
increased, in turns increases the transcription of IL-1b (which encodes IL-1b) (68).

Increase of mitochondrial oxidation of succinate (through succinate dehydrogenase) and upregulation of mitochondrial membrane potential induce the production of
mtROS, as a result, pro-inflammatory gene expression is raised (69).

* The types of mitochondrial dysfunction might have consequences on the inflammatory nature of the ongoing cell death, regulated by formulation of apoptosome or
inflammasome in a context-dependent manner (70).

(Continued)
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active NO species such as peroxynitrite. It exhibits strong

antibacterial activity, and plays an important role in innate

immunity and infection defense functions by phagocytic cells

such as macrophages. On the other hand, NO and ROS damage

host cells and tissues and cause oxidative stress. For the reason, the

function of NO and ROS are considered as a “double-edged

sword” (60).

Nutrition and cell metabolism also highly affects immunity. As

shown in Table 1, both malnutrition and overnutrition are

negatively affect immunity. Zinc, one of the micronutrients, is

important for the modulatory effect in sepsis inflammation. As

mentioned above, Zinc also acts the indirect inhibitor on TRIF-

IRF3 activation signals (54). Metabolic state is also strongly related

to the inflammasome signaling and lethality.

“Epigenetics” is a regulatory mechanism of gene expression

without changes in DNA sequence, and consists of DNA

methylation, histone modifications, and non-coding RNAs (77).
Frontiers in Immunology 06
Host inflammatory response through MyD88-dependent pathway

is also characterized by epigenetic modifications in key regulatory

genes, such as TNF. In humanmonocytic cell lines, stimulation with

LPS decreased methylation of the TNF promoter, which in turn

displaced nucleosomes from the NF-kB binding site, then NF-kB
was able to bind to the TNF promoter, resulting in upregulation of

TNF transcription (77, 81). Epigenetic mechanisms are likely

central to the pathogenesis of sepsis because it associates with the

host-pathogen interaction (histone modification), the pathogenesis

of the early pro-inflammatory response (DNA methylation), and

the establishment of endotoxin tolerance (DNA methylation) (77).

Microbiota is also important for immunity. The gut microbiome

has a protective role in sepsis by keeping the gut barrier, regulating

leukocyte function, and modulating immunity (82). Recently, it was

reported that microbiome-dependent metabolic pathways can drive

distinct immune response to pathogens (82). Other study showed

that sepsis patient is characterized by a loss of diversity, lower number
TABLE 1 Continued

4) differential tissue and organ responses

In sepsis, blood and spleen leukocytes go to hyporesponsive in the acute disease stage, such as tolerance in these hematopoietic compartments. However, the functionality
of alveolar macrophages, liver kupffer cells, intestinal epithelial lymphocytes, microglia cells, and skin’s CD8 T-cells was shown to be unaffected or primed (71) (72). Thus,
compartments other than the blood participate in shaping immunosuppression.

* Understanding organ-specific immune responses to sepsis is important for the recognition how the local control of the infection affect the whole immunity and
progression of sepsis, persistent inflammation, immunosuppression, and catabolism syndrome (59).

5) cell metabolism that provides nutrient fueling or depletion into starvation and the reversing to regaining cell satiety/homeostasis

Malnutrition can negatively affect immunity and increase the frequency of sepsis (73).

Zinc is essential in resistance against sepsis because of the modulatory effect on the inflammatory response, phagocytosis, chemotaxis, and oxidative stress (74).

Vitamin D is indispensable role in the function of innate immunity, and low serum concentration of 25-hydroxyvitamin D is related with an increase of long-term risk of
subsequent community-acquired sepsis (75).

Significant switch of metabolic state (i.e.elevated saturated fatty acid, absence of ketogenesis) during sepsis goes to inflammasome signaling and was related to the increase
of lethality (70).

Autophagy is a system that maintains cellular homeostasis by removing defective intracellular proteins and organelles. In overnutrition, autophagy is reduced and
mitochondrial metabolic function is impaired, leading to a worse prognosis in sepsis and ICU admission (76).

* Chronic alteration conditions, such as aging, diabetes, obesity, and the chronic use of immunosuppressors, impair the immune system's ability against infection and
induce a lasting inflammation and metabolic dysfunction (59).

6) Epigenetics of sepsis

Epigenetic mechanisms are likely central to the pathogenesis of sepsis because it associates with the host-pathogen interaction (histone modification), the pathogenesis of
the early pro-inflammatory response (DNA methylation), and the establishment of endotoxin tolerance (DNA methylation) (77).

In human monocytic cell lines, stimulation with LPS decreased methylation of the TNF promoter, which in turn displaced nucleosomes from the NF-kB binding site (59),
then NF-kB was able to bind to the TNF promoter, resulting in upregulation of TNF transcription (77).

* Lack of human studies in the area of epigenetics, should be a priority for sepsis researchers (77)

7) Impact of microbiota on immunity

Dysbiosis in the gut has been linked to the subsequent hospitalization of patients with sepsis, and this suggests an association between the composition of the gut
microbiota and sepsis susceptibility (78).

Alveolar macrophages from microbiota-depleted mice show both a reduced responsiveness to microbial stimulation and a phagocytic capacity (79).

Neutrophil from microbiota-depleted mice reduced ability to migrate into tissues in response to inflammatory signals (80).

* There are many unknowns about how the host's microbiota affects immunity (59).

* Lack of data showing the relationship between changes in microbiota before and after sepsis and the development of immune paralysis (59)

* Regulation of the microbiome has great potential for anti-septicemia in prevention and personalized treatment. Therefore, it should be elucidated how microbiota
disruption creates, exacerbates, and sustains septic immune abnormalities (59).
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of the key commensal genera, and overgrowth of pathogens (82, 83).

Further, Probiotics and Fecal transplantation is useful for the

recolonization of the gut and for decreasing sepsis incidence and

mortality (84).
5 Conclusion

IRF3 activation is important for the mortality both in challenged

with endotoxin-induced shock and in CLP model. Recent clinical

targets for endotoxic shock therapy are becoming intracellular

molecules and intracellularly incorporated LPS. However, IRF3 is

also important and may be one of the therapeutic targets because it

affects not only the sepsis induction but also the pathogen clearance

via the restoration of host immunity.

One of the features that distinguishes sepsis from uncomplicated

infections is the dysregulation of the host response. Another is that at

the clinical diagnosis of sepsis, not only an inflammatory response but

also an immunosuppression has already occurred. Thus,

immunodeficiency indirectly contributes to the perpetuation of organ

failure. These two characteristics are also responsible for the difficulty of

sepsis treatment (59). Further, as shown in Table 1, there are still gaps

to be addressed. Addressing these gaps should help to better

understand the physiopathology of sepsis and provide translational

opportunities to improve its prevention, diagnosis, and treatment.
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