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The a-Gal epitope - the cause of
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and Marianne van Hage1,2*

1Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and
Karolinska University Hospital, Stockholm, Sweden, 2Center for Molecular Medicine, Karolinska
Institutet, Stockholm, Sweden, 3Innovative Centre of the Faculty of Chemistry, University of Belgrade,
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The galactose-a-1,3-galactose (a-Gal) epitope is the cause of a global allergic

disease, the a-Gal syndrome (AGS). It is a severe form of allergy to food and

products of mammalian origin where IgE against the mammalian carbohydrate,

a-Gal, is the cause of the allergic reactions. Allergic reactions triggered by

parenterally administered a-Gal sources appear immediately, but those

triggered via the oral route appear with a latency of several hours. The a-Gal
epitope is highly immunogenic to humans, apes and old-world monkeys, all of

which produce anti-a-Gal antibodies of the IgM, IgA and IgG subclasses. Strong

evidence suggests that in susceptible individuals, class switch to IgE occurs after

several tick bites. In this review, we discuss the strong immunogenic role of the

a-Gal epitope and its structural resemblance to the blood type B antigen. We

emphasize the broad abundance of a-Gal in different foods and pharmaceuticals

and the allergenicity of various a-Gal containing molecules. We give an overview

of the association of tick bites with the development of AGS and describe innate

and adaptive immune response to tick saliva that possibly leads to sensitization to

a-Gal. We further discuss a currently favored hypothesis explaining the

mechanisms of the delayed effector phase of the allergic reaction to a-Gal. We

highlight AGS from a clinical point of view. We review the different clinical

manifestations of the disease and the prevalence of sensitization to a-Gal and
AGS. The usefulness of various diagnostic tests is discussed. Finally, we provide

different aspects of the management of AGS. With climate change and global

warming, the tick density is increasing, and their geographic range is expanding.

Thus, more people will be affected by AGS which requires more knowledge of

the disease.
KEYWORDS

a-Gal syndrome, galactose a-1,3-galactose, a-Gal epitope, carbohydrate epitope,
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Abbreviations: a1–3GT, a1–3galactosyltransferase; a-Gal, galactose-a-1,3-galactose; AGS, a-Gal syndrome;

anti-Gal, anti-a-Gal; BAT, basophil activation test; BGG, bovine gamma globulin; bTG, bovine thyroglobulin;

CCDs, Cross-reactive Carbohydrate Determinants; CSU, chronic spontaneous urticaria; GI, gastrointestinal;

GlcNAc, N-Acetylglucosamine; HDL, high-density lipoproteins; iGb3, isoglobotrihexosylceramide; MBC,

memory B cells; OIT, oral immunotherapy; WHO/IUIS, World Health Organization/International Union of

Immunological Societies.
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Introduction

The a-Gal syndrome (AGS) is an increasingly recognized public

health issue and the most enigmatic food allergy. It was discovered

more than a decade ago and represents a severe form of allergy to

mammalian meat, which has been reported worldwide (1). The

syndrome results from IgE-mediated responses to galactose-a-1,3-
galactose (a-Gal), a sugar moiety covalently bound to proteins and

lipids of mammalian origin. Numerous foods and pharmaceuticals

with components of mammalian origin contain a-Gal and may

trigger reactions, which is why this allergic disease is known as the

a-Gal syndrome, AGS.

AGS challenges the current paradigm of food allergy due to

several features: I) It is the first known allergic disease where a

carbohydrate solely is the cause of IgE-mediated allergic reactions.

In conventional allergies, IgE antibodies are directed to protein

epitopes, and before the discovery of AGS, IgE against

carbohydrates were considered of low or no clinical importance.

II) Patients with AGS develop allergic symptoms several hours

(typically 2 – 6 h) after consumption of a-Gal-containing foods,

which contrasts with conventional food allergies where patients

react to allergenic food within minutes following ingestion. This

delay is not yet understood. III) The sensitizing agents are several

tick species, but not the food itself. The patients develop IgE

against a-Gal after being tick bitten several times with the

consequence that all a-Gal containing food and pharmaceutical

sources are potentially allergenic. Tick exposure usually precedes

the onset of AGS by 1 to 6 months (2). IV) AGS affects mostly

middle-aged patients, although children may also develop the

disease. V) Individuals expressing the B-antigen (blood group B/

AB) seem to have a significantly lower risk of developing AGS due

to the structural similarity between a-Gal and the B-antigen

resulting in immune tolerance. The prevalence of AGS is

currently unknown, but in 2023 the U.S. Centers for Disease

Control and Prevention estimated that as many as 450,000 people

might have been affected in the US (3). The number of suspected

AGS cases has increased substantially since 2010, and geographic

locations with established populations of certain tick species are

most affected, although suspected AGS cases were also identified

in areas outside of ticks’ range (3).
IgE antibody responses
to carbohydrates

Protein glycosylation is among the most common

posttranslational modifications, and it is highly conserved among

many organisms. Glycosylation contributes significantly to protein

characteristics and functions (solubility, stability, adherence,

targeted transport, activity, etc.). Common glycosylation patterns

found in plants, invertebrates, and non-primate mammals are

absent in humans, which makes them immunogenic. Many

allergens, especially those from pollen, plant food, and

Hymenoptera venom are N-glycosylated with carbohydrate

determinants with IgE binding properties. These carbohydrates
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have a common structure of a core (two N-acetylglucosamine

(GlcNAc) sugars with two or three terminal mannose residues)

with b1–2 linked xylose and/or a1–3 linked fucose [Reviewed in

(4)], and they exhibit wide cross-reactivity. Therefore, they are

termed as cross-reactive carbohydrate determinants (CCDs). Sera

from patients with anti-CCD IgE antibodies demonstrate high

cross-reactivity between inhalant (e.g., pollen allergens) and plant

food allergens (5, 6). However, the anti-CCD IgE has little or no

clinical relevance, as it does not contribute to allergic symptoms

(5, 6). The overall prevalence of IgE to CCDs among pollen and

food allergic subjects is around 20% (7, 8). Therefore, some

diagnostic multiplex IgE assays offer either a specific testing for

common CCDs in parallel with protein allergens, or even include a

CCD blocking step before testing for protein specific IgE. Inhibition

of IgE binding against CCDs leads to a significant reduction in false-

positive in vitro diagnostic tests (9).

The biological relevance with respect to allergenic activity of

CCDs has been demonstrated in a few allergens only (10–15).

However, no plant-derived CCDs have been associated with

anaphylaxis (16). The discovery of AGS, in which IgE against a

mammalian CCD (a-Gal) solely mediates allergic reactions

including severe anaphylaxis, contrasts with traditional

understanding of carbohydrate IgE responses in allergy. The

clinical significance of the a-Gal epitope led to the recent

incorporation of glycan epitopes into the WHO/IUIS Allergen

database (4).
The a-Gal epitope – a
strong immunogen

The a-Gal epitope (which naturally occurs as Gala1–3Galb1–
4GlcNAc–R) is a common N-terminal glycosylation in all non-

primate mammals and new-world monkeys (17). It is synthesized

by the glycosylation enzyme a1–3galactosyltransferase (a1–3GT)
(17). This enzyme links the galactose residue to the N–

acetyllactosaminyl group (Galb1–4GlcNAc–R) using uridine

diphosphate galactose as the sugar donor, thus forming the

trisaccharide Gala1–3Galb1–4GlcNAc–R on various glycans (18).

The a-Gal epitope is one of the most abundant carbohydrate

epitopes on glycoproteins and glycolipids of non-primate

mammals. In humans, apes, and old-world monkeys the gene for

the a1–3GT enzyme has been inactivated due to a premature stop

codon, and therefore they do not express the a-Gal epitope (17).
The a-Gal epitope is highly immunogenic for humans, apes and

old-world monkeys, all of which produce natural anti-a-Gal
antibodies (anti-Gal) of the IgM, IgA and IgG subclasses (19).

Due to gut microbiota expressing a-Gal, anti-Gal antibodies are one
of the most abundant types of antibodies in humans (20, 21),

constituting 0.2 - 1.0% of total immunoglobulins (22, 23). Anti-Gal

antibodies are characterized by a preferential use of Ig variable

region V3 family genes in the heavy chain (24–26), where a

germline encoded tryptophan in pos i t ion 33 of the

complementarity determining region is essential for the binding

to a-Gal (26). The formation of anti-Gal antibodies begins in the
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first few months of life and the IgM isotype rises faster and steeper

compared to IgG and IgA until 2 years of age (27). It is believed that

anti-Gal antibodies function in humans as a barrier to zoonotic

infections by enveloped viruses produced in hosts synthesizing a-
Gal epitopes (28). Both the a-Gal epitope and the anti-Gal

antibodies have been well studied and the focus of research for

the last 50 years due to their role in the initiation of hyperacute

rejection of xenografts (29). Human anti-Gal IgG antibodies

recognize a-Gal on endothelial cells of an organ xenotransplant

and initiate complement-mediated cell lysis leading to rapid

rejection of xenografts. New light has been shed on the a-Gal
epitope after the discovery of anti-Gal IgE antibodies and their role

in allergic reactions including life-threatening anaphylaxis (1).
The a-Gal epitope structurally
resembles the blood group B antigen

The a-Gal oligosaccharide structurally resembles the blood

group B antigen, where the only difference is an a1–2 linked

fucosyl group on the penultimate galactosyl group in the B

antigen. Indeed, anti-Gal antibodies from healthy individuals can

cross-react with blood group B antigen (30). Subjects with B or AB

blood groups, although they possess a-Gal-specific antibodies, lack
those which cross-react with the B antigen (30). Similarly, patients

with AGS or a-Gal sensitized subjects typically have IgE antibodies

which cross-reacts with both a-Gal and the B antigen, except for

subjects expressing the B antigen (Figure 1) (31, 32). The blood

group B or AB also seems to be protective for developing AGS (33,

34). The molecular mechanisms underlying the protective effect of

blood type B need further research. Whether broader specificities in

subjects with A or O blood type act as drivers of a-Gal sensitization
and AGS remains to be answered. Interestingly, although AGS

patients develop IgE against a-Gal, they rarely have IgE against

other mammalian carbohydrate epitopes or even CCDs (35, 36).

The a-Gal epitope confers
allergenicity to diverse molecules

Due to the broad abundance of a-Gal on glycolipids and

glycoproteins in mammals, an almost infinite number of these

molecules can be the cause of an allergic reaction to food and

products of mammalian origin. Among the first proteins

determined to contain a-Gal and bound IgE from patients with

beef allergy, were the high molecular weight beef laminin g-1 and

collagen a-1 (VI) chain (37). We identified seven a-Gal containing
beef proteins that bound AGS patient IgE, whereof four (creatine

kinase M type, aspartate aminotransferase, a- and b- enolase) were
stable after heat treatment (38). Furthermore, bovine gamma

globulin (BGG, Bos d 7) was determined to be the most

recognized a-Gal containing beef protein among AGS patients

(39), a protein which is also the cause of beef allergy. BGG is also

present in bovine milk. Perusko et al. have shown that BGG

together with the milk proteins lactoferrin and lactoperoxidase,

have allergenic activity in AGS patients (40). Interestingly, sheep
Frontiers in Immunology 03
immunoglobulins seem to have more a-Gal than bovine (41),

which is demonstrated in a case study where two AGS patients

reacted to cheese made from sheep’s milk but not cow’s milk (42).

Pork kidney has been recognized as the meat source containing the

highest amount of a-Gal and the most potent trigger of AGS

symptoms (43). This is reflected in immunohistochemical

staining of a-Gal in pork and beef kidney and muscle, where

pork kidney stains the strongest while a-Gal was barely detected

in pork muscle (44). Two pork kidney proteins with allergenic

activity, aminopeptidase N and angiotensin-converting enzyme 1,

have been identified and the allergenic activity was shown to be due

to a-Gal (45). Interestingly, gelatin obtained from bovine or porcine

sources contains small amounts of a-Gal (46). Consumption of

gelatin-containing candy after exercise has been shown to induce a

delayed allergic reaction in one AGS patient (47), emphasizing that

all forms of food from mammalian sources need to be considered

for avoidance in AGS patients.

The a-Gal epitope is also present in numerous pharmaceuticals

with some mammalian content. Indeed, AGS was discovered when

a monoclonal antibody, cetuximab, used in colorectal and head and

neck cancer treatment induced anaphylaxis in 22% of patients in

certain geographic locations (48). Cetuximab was produced in a

mouse cell line and investigations showed that the target of the IgE

binding was an oligosaccharide, a-Gal, located on the asparagine at

position 88 in the Fab region of the heavy chain (49). Similarly,

antivenoms, i.e. mammalian anti-venom Fab are also a possible risk

for AGS patients. Antivenoms contain a-Gal and can activate

basophils in vitro (50). The antivenom FabAV has been involved

in immediate hypersensitivity reactions in several patients (51, 52),

and the a-Gal on the Fab can activate basophils in vitro (52).

Gelatin of porcine or bovine origin is present in some vaccine

formulations (MMR, Zoster, varicella vaccine) and AGS patients’

IgE binding to these vaccines has been demonstrated (53, 54). These

vaccines possess capacity to activate AGS patients’ basophils (55).

Furthermore, there are case reports on anaphylaxis upon parenteral

administration of zoster vaccine, or a combination of MMR and

varicella vaccine in adult and pediatric AGS patients (53, 54).

Gelatin-based colloid plasma substitute (Gelofusine) may also

induce anaphylaxis in AGS patients (56).

Proteins containing a-Gal are also present in ticks. In extract

from the European tick Ixodes ricinus, two major groups of proteins

were found to carry a-Gal, vitellogenins and a-2-macroglobulin

(57). Many proteins and enzymes involved in carbohydrate

metabolism were found as a-Gal carrying candidates in the

American tick species Amblyomma americanum and Ixodes

scapularis (58). Although the extract from I. ricinus as well as

saliva from A. americanum and I. scapularis were shown to activate

AGS patients’ basophils (57, 58), the allergenic activity of individual

a-Gal-carrying proteins has not been assessed. Figure 2 summarizes

discussed a-Gal-carrying molecules.
Association of AGS with tick bites

The association of AGS with tick bites has been postulated since

the first reports of AGS, which was based on the geographical
frontiersin.org
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overlap with tick endemic areas in the southeastern US and coastal

eastern Australia (1, 2, 59). Also, documented AGS cases from

Australia were characterized by large local reactions to tick bites (2).

Accumulated evidence over the past 15 years has strengthened the

hypothesis that repeated tick bites lead to the development of AGS

in susceptible individuals, although the exact mechanisms are not

well understood. Several tick species such as I. holocyclus in

Australia, A. americanum in North America, I. ricinus in Europe,

Haemaphysalis longicornis and Amblyomma testudinarium in Asia

and Amblyomma sculptum in South America have been linked with
Frontiers in Immunology 04
the development of AGS (33, 59–63). The first potential explanation

for the relationship between tick exposure and sensitization to a-
Gal came from the early work of Hamsten et al., who demonstrated

the presence of a-Gal within the gastrointestinal tract of I. ricinus

ticks (64). This opened the question of the origin of a-Gal within
the ticks: biosynthesis by ticks themselves, transfer from a

mammalian host organism during feeding, or biosynthesis by

midgut microbiota. The presence of a-Gal has been demonstrated

in A. americanum tick saliva and salivary glands when fed on

human blood which lack a-Gal (58). The a-Gal moieties in tick
FIGURE 1

Structural resemblance between a-Gal and the blood group B antigen. Regardless of blood type, individuals may develop AGS. However, individuals
with blood group B/AB are underrepresented among AGS patients, as the structural similarity between the a-Gal epitope and the blood group B
antigen confers protection against developing anti-a-Gal IgE antibodies. In addition, anti-a-Gal IgE antibodies from AGS patients with blood group A
or 0 often cross-react with the blood group B antigen. This cross-reactivity is absent in AGS patients with blood group B/AB. Created
with BioRender.com.
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salivary glands were colocalized to the salivary secretory vesicles of

the salivary acini, confirming the secretory nature of a-Gal-
containing antigens in ticks (58). So far, the enzyme a1–3GT has

not been ident ified in t i cks . However , three o ther

galactosyltransferase encoding genes have been identified in the I.

scapularis genome that are possibly involved in the a-Gal synthesis
pathway (65). I. scapularis has not been linked to AGS (66), and

similar genes in AGS related tick species are still to be found. An

immunoproteomics-based study by Apostolovic et al. revealed the

presence of a-Gal-carrying proteins in both larvae and adult I.

ricinus ticks (57). Fisher and coworkers performed an

immunohistochemistry study showing that a-Gal was present in

fed and unfed I. ricinus ticks. Furthermore, they presented evidence

that the metabolic incorporation of constituents of a mammalian

blood meal as well as the endogenous production contribute to the

presence of a-Gal epitopes in tick tissue and saliva (67). Findings of

intact host proteins (e.g. host immunoglobulins) adsorbed in the

tick midgut and their later secretion into the tick saliva support the

hypothesis that at least some a-Gal present in tick saliva originates

from a mammalian blood meal (68). The role of tick microbiome

for the presence of a-Gal in tick saliva, although suggested, is less

clear (66). No published reports have provided evidence that

microbes common to relevant ticks express a-Gal, nor contribute
Frontiers in Immunology 05
to a-Gal sensitization (66, 69–71). So far, it has been shown that the

tick bacterium Anaplasma phagocytophilum has the capacity to

increase the content of a-Gal in infected tick cells (65). However,

the individual significance of the a-Gal epitope in tick saliva

originating from different sources for the development of AGS

has not been clarified yet.

The observed relation between tick bites and AGS has raised

the question whether other biting or stinging arthropods may be

associated with AGS as well. It is currently suspected that

Trombiculidae larvae, known as chiggers, who bite and

parasitically feed on mammals, may also be implicated in a-Gal
sensitization and development of AGS (72). A study by

Choudhary et al. demonstrated that AGS patients from the US

were 5 times more likely to be sensitized to hymenoptera venom

compared to controls (73). Venom allergy has also been reported

among meat allergic patients from Turkey (74). More than 50% of

our AGS patients were sensitized to wasp, however the IgE levels

to wasp were low. We noted that wasp sensitization mainly

occurred among AGS patients with higher IgE levels to a‐Gal
and was probably due to cross-reactivity between wasp and tick

proteins (75). Positive associations between sensitization to a-Gal
and bee and wasp venom were also found in an AGS cohort from

the US (34).
FIGURE 2

a-Gal carrying glycoproteins identified so far from innards, beef, milk, sweets, pharmaceuticals, and ticks. Created with BioRender.com.
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Mechanisms of sensitization to a-Gal

Tick bites are thought to contribute directly to IgE class

switching in AGS, and tick saliva is essential in this process.

Saliva from several different tick species has been shown to have

immunosuppressive effects (76–81), and the high amount of

prostaglandin E2 in tick saliva has been indicated as a possible

mediator of these effects (82). The early host response to tick bite is

dominated by innate immune cells while lymphocytes increase after

more than 24 h of tick attachment (83). The infiltration of immune

cells is also more pronounced in skin from humans that have been

previously tick bitten (63, 84), and especially infiltration of

basophils is stronger in subjects that have been tick bitten more

than one time (63, 85). In addition, CD4 T cells present at the bite

site have an increased Th2/Th1 cytokine expression ratio in subjects

that have been tick bitten several times, and the IgE level to a-Gal
increases with the number of tick bites (63, 85).

I. ricinus salivary gland extract inhibits T cell proliferation and

polarizes the cytokine profile towards Th2 in PBMC culture (86).

The ability of tick saliva and salivary gland extract to skew immune

responses towards Th2 type of cytokines (76–79, 86) suggests that T

cells can be involved in the induction of AGS. The a1-3GT
knockout mouse model (87) has been used for studying the

immune response to a-Gal. These mice spontaneously develop

anti-Gal antibodies, similar to humans (87). T cells from a1-3GT
KOmice are reactive to a-Gal containing xenopeptides as a result of
antigen presentation by a-Gal recognizing B cells, but removal of a-
Gal does not affect this response (88). However, T cell help was

essential for development of the anti-Gal response (88, 89).

Similarly, in humans, CD4+ T cells proliferate more to wild type

pig PBMCs than to the a1-3GT KO counterpart (90). We have

recently reported that T cells from AGS patients proliferate in

response to tick extract and secrete the Th2 cytokines IL-4, IL-13,

IL-3 and IL-31, but that this is not dependent on a-Gal (91). At the
same time, B cell proliferation to tick extract was a-Gal dependent
and required T cell help (91).

Since all immunocompetent humans produce anti-Gal in

response to the gut microbiota, a-Gal-specific memory B cells

(MBC) of the IgM and IgG isotypes exist before induction of

AGS. In humans, the presence of IgE+ MBCs is unclear.

However, allergen-specific IgG+ MBC have been clonally linked

to IgE+ plasma blasts (92), and IgG+ MBC that differentiate into

IgE+ plasma cells have been shown to have a specific surface

phenotype, expressing CD23 and the IL-4R (93–95). In AGS

patients, no a-Gal-specific IgE+ B cells were found in circulation,

but a-Gal-specific B cells had similar usage of B cell receptor heavy

chain V genes as healthy individuals, that were mainly of the IgM

isotype (26). However, there is evidence that human IgE+ B cells

mainly seem to have differentiated from IgG1+ B cells through

sequential class-switching (92, 96, 97). In AGS patients, anti-Gal is

more often of the IgG1 isotype than in healthy individuals (31, 32,

39, 98). Whether this is due to an already developed allergenic

response towards a-Gal or if these individuals already have a higher
level of anti-Gal IgG1 before sensitization is unknown. The anti-Gal

IgE is bound by FcϵRI on circulating basophils and tissue resident
Frontiers in Immunology 06
mast cells, which will exert their effector functions and initiate an

allergic reaction when a-Gal is encountered.
Mechanisms of the effector phase
allergic reaction to a-Gal

The IgE-mediated immediate-type allergic reaction with a

delayed onset of 2–6 h following ingestion of mammalian meat is

a feature exclusive to AGS. Several lines of evidence show that IgE to

a-Gal is indeed causal for allergic reactions in AGS. In vitro

stimulation of patients’ basophils with a-Gal-carrying proteins or

lipids leads to basophil activation within 30 minutes, which

corresponds to kinetics of other immediate-type food allergies

(40, 45, 99, 100). Open food challenges performed with beef or

pork meat in 12 AGS patients demonstrated that in vivo basophil

activation occurs in the same time frame as appearance of clinical

symptoms (101). Furthermore, in vivo reactions during intradermal

skin test occur rapidly (102). Finally, if patients are subjected to

intravenous injection of a-Gal, the allergic reaction is immediate

(49). Taken together, it seems that the latency in symptom

appearance reflects the time it takes for the allergen to reach the

circulation. Indeed, Eller et al. showed that a-Gal appears in serum

of healthy individuals several hours after ingesting pork kidney,

reflecting the clinical situation of AGS (several hours of latency)

(103). Different explanations for the time delay have been suggested

but the field is far from fully investigated. One hypothesis is that the

allergic reactions are mediated by a-Gal-carrying glycolipids (16,

102). Lipids are metabolized more slowly than proteins. Ingested

glycolipids are first digested and then absorbed by the intestinal

epithelial cells and packed into chylomicrons. Chylomicrons are too

large to enter the circulation directly, but they can pass through

fenestrations in the lacteals, which bring them into the lymphatic

system. From the lymphatic system, chylomicrons enter the blood

circulation at the left subclavian vein. In the bloodstream, exchange

of proteins and lipids occurs between chylomicrons and smaller

lipoprotein particles such as high-density lipoproteins (HDL). HDL

carrying ingested glycolipids can penetrate to the tissues where

resident mast cells loaded with anti-Gal IgE can be activated. Thus,

transport of a-Gal-carrying glycolipids from the ingestion site to

the effector cells at distant sites would take 4 – 5 hours (104),

explaining the delay in symptom appearance. Metabolomic

profiling of AGS patients and control subjects before and after

oral pork challenge revealed alterations in lipid and fatty acid

metabolism that are consistent with the clinical delay (105). Also,

in support of the glycolipid hypothesis are the results of a recent

study which used Caco-2 cell line as a model system of intestinal

barrier (106). The authors performed in vitro digestion of beef lipid

and protein extracts and stimulated Caco-2 cells with the digestion

products. They found that only a-Gal bound to lipids, but not to

proteins, passed the model system of intestinal barrier and activated

basophils of an AGS patient (106). Furthermore, the a-Gal epitope
on the natural glycolipid isoglobotrihexosylceramide (iGb3) was

recognized by AGS patients’ IgE, and the synthetic homolog of

iGb3, PBS-113, was a potent activator of in vitro sensitized
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basophils (100). In addition, it was shown that anti-Gal IgE from

AGS patients bound to a-Gal-carrying glycolipid complexed with

human CD1d, and thus antigen presentation of dietary lipid

through CD1 molecules may represent a mechanism of delayed

food allergy (107).

Although the glycolipid hypothesis sounds convincing, it

cannot explain for example, delayed (up to 11h) anaphylactic

reactions after ingestion of gelatin-containing candies which do

not contain a-Gal-carrying lipids, but only a-Gal-carrying protein

(47, 108). Thus, it is likely that both a-Gal-carrying lipids and

proteins contribute to allergic manifestations. Recent literature data

has shown that a-Gal is more abundantly expressed on

glycoproteins than on glycolipids from pork kidney and beef

(109). Furthermore, protein extracts from both pork kidney and

beef had higher in vitro and ex vivo allergenicity than lipid extracts.

The authors suggested a major role of glycoproteins in delayed

anaphylaxis upon consumption of these food sources (109). In

addition, it was shown that a-Gal glycosylation hampered

transcytosis of the protein through the Caco-2 monolayer (110).

Other immunological mechanisms that include non-IgE

pathways could also play a role in AGS. It is well recognized that

anti-Gal IgG increases in parallel with anti-Gal IgE (31, 32, 39), and

the alternative pathway of allergic response and/or anaphylaxis

mediated by IgG and its Fc gamma receptor could take place (111,

112). Furthermore, anti-Gal IgG could form immune complexes

with a-Gal carrying proteins and/or lipids which would precipitate

in various tissues such as skin or joints and trigger the classical

complement pathway. Complement activation may further induce

mast cell degranulation (113). Indeed, this mechanism could

explain why some AGS patients suffer joint pain and arthritis

(114–116).
Clinical manifestations

In most cases, AGS develops in middle-aged patients who have

previously tolerated mammalian food. A systematic review of the

literature has shown that the mean age of AGS cases was 51.3 (SD =

16.7, range 5–85, n = 229) (117). Similarly, increased sensitization to

a-Gal was noted more frequently in subjects aged over 50 years (71).

However, AGS has also been reported among pediatric patients (118,

119). It remains an open question if pediatric cases are underreported

or if qualitative and/or quantitative differences in Th2 type responses

between the young and aging immune system contribute to a higher

predisposition of developing AGS in adulthood. Indeed, beginning

with the sixth decade of life, the human immune system undergoes

aging-related changes (120, 121).

The AGS symptoms may vary from urticaria, angioedema,

gastrointestinal (GI) symptoms with abdominal pain, vomiting,

nausea, and diarrhea to anaphylaxis. In our Swedish cohort of AGS

patients, as many as 90% of patients suffered from urticaria, 74%

from GI symptoms, 60% from angioedema and 47% from

anaphylaxis (122). A similar study in the US reported urticaria in

93% of cases, GI symptoms in 64% and anaphylaxis in 60% (34).

Patients often experience a combination of symptoms, and in the

Swedish cohort the most common combination of symptoms
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included anaphylaxis, angioedema, urticaria and GI symptoms

(122). GI symptoms are a common manifestation of food

allergies. However, isolated GI symptoms without involvement of

skin or cardiopulmonary symptoms are rather uncommon for food

allergies. The AGS phenotype with GI symptoms only has been

described in 21% of AGS cases in a black African cohort of 131

patients (119). However, it seems that the GI only phenotype is

more common among black African children (median age 12 years)

than in older white Americans (median age 37 years) (123).

Similarly, a case report on three AGS pediatric patients described

their phenotypes as non-anaphylactic GI only or GI predominant

(124). Furthermore, the GI only phenotype manifests with a shorter

delay (median 90 min) in comparison to systemic symptoms

(median 120 min) (123). A small group of Swedish patients (8/

128) reported only GI symptoms, and their a-Gal IgE levels and

total IgE levels were similar to the other patients (122).

Since many AGS patients suffer from urticaria, distinguishing

AGS from chronic spontaneous urticaria (CSU) can be challenging.

As many as 31% (9 out of 29) of patients with CSU presenting at the

University of Virginia Allergy Clinic were found to have IgE to a-
Gal and experienced a complete remission of their symptoms after

avoidance of mammalian meat or mammalian-derived products

(125). a-Gal sensitization was observed only in a small fraction of

Danish CSU patients (126). However, in a cohort of German

patients from the Berlin area, with moderate-to-severe CSU, we

found that an allergic response to a-Gal is highly unlikely to be an

unrecognized cause of CSU (127). About 50% of patients report

manifestations of life-threatening anaphylaxis (34, 122). Pattanaik

et al. have, in a retrospective analysis of anaphylaxis cases evaluated

over a 10-year period, reported that in some areas in the US, AGS

was found to be the most common cause of anaphylaxis and

represented the most striking difference over time (128). In a

prospective study of patients with idiopathic anaphylaxis, 9% had

IgE to a-Gal (129).
With regards to atopy as a risk factor for AGS, data are

conflicting between different cohorts. We have noted that more

than half of our Swedish AGS patients were atopic (122). Other

European studies also found an association between atopy and

sensitization to a-Gal, but in an AGS cohort from US such

association was absent (34, 130, 131). Interestingly, a study on

patients experiencing anaphylaxis upon the first dose of cetuximab

found a strong association with atopic history (48). Furthermore, in

our Swedish cohort, atopy increased the risk of experiencing

anaphylactic symptoms in the respiratory system (122), but in the

US cohort atopy was not associated with the severity of reactions

(34). One reason for the discrepancy could be the definition

of atopy.

Unlike most food allergies, where ingestion of small amounts of

allergen elicits reactions, there is a wide interindividual variability in

AGS with respect to eliciting dose of a-Gal, as well as type of food
ingested (132). Some patients react only to foods containing high

amounts of a-Gal, e.g. innards, while others may react to low

amounts e.g. milk (40, 114, 133). Patients with AGS may not react

with every ingestion of mammalian food (46, 118, 133) and the type

and severity of the reaction may be different at different occasions.

This may depend on the amount of a-Gal in the mammalian food,
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or the presence of co-factors such as consumption of alcohol, intake

of non-steroidal anti-inflammatory drugs, physical exercise and

infection that can increase intestinal absorption and lower the

threshold dose (133). Wide interindividual variability is also

present with respect to onset of symptoms. While symptoms

mainly appear with a delay of at least 2 hours after ingestion of

a-Gal containing foods, some AGS patients may experience

symptom onset in less than 1 hour after innards consumption, or

after as much as 11 hours after gelatin consumption (47, 133).

AGS patients often describe large local reactions at the site of

tick bites. Most AGS patients also have IgE against tick extract (91,

134). Furthermore, recent tick bites appear to make patients more

sensitive to prior tolerated exposures, or even lower the threshold

for reactivity (135). It is well known that continuous tick bites

contribute to a sustained and/or increased level of anti-Gal IgE in

AGS patients, as well as in tick-bitten subjects (63, 136, 137).

Conversely, AGS patients that do not experience further tick bites

typically present decreased IgE levels to a-Gal over time (134, 136).

The implication of sensitization to a-Gal goes beyond allergic

responses, as it may be a risk factor for coronary artery disease

(CAD). Wilson et al. have shown that among 118 adult patients

who underwent coronary characterization at the discretion of their

cardiologist, 26% had IgE to a-Gal. The authors reported that

sensitization to a-Gal was associated with an increased atheroma

burden and plaques with more unstable features (138). Another

larger cross-sectional study on more than 1000 individuals with

suspected CAD, found that a-Gal sensitization was independently

associated with noncalcified plaque burden and obstructive CAD

(139). This association is only statistical so far and there are no

mechanistic studies behind it. The proposed hypothesis is that in

subjects who make IgE to a-Gal, dietary a-Gal-containing
glycolipids carried by LDL induce low level of activation of mast

cells residing within the atherosclerotic plaques, thus causing the

chronic inflammation in the walls of coronary arteries (140).
Prevalence of AGS

The association between tick bites and red meat allergy was

described for the first time in Australia in 2007 (141). Two years later,

Commins et al. reported a relationship between red meat allergy and

IgE antibodies to a-Gal (1). Shortly after, AGS reports came from

Spain, France, Sweden, Japan (33, 43, 142–144), and today AGS is

recognized worldwide. Although it is evident that AGS is a growing

health problem, there are no current estimates of global prevalence. A

recent large study from the US analyzed data on a-Gal-specific IgE in

serum samples from almost 300 000 subjects submitted to the

commercial laboratory Viracor. The authors estimated that up to

450 000 persons in the United States might have been affected by

AGS (3). An earlier report from Australia estimated that the

prevalence of AGS in endemic regions of I. holocyclus ticks is one

in every 550 people (61). An unselected cohort (n = 232) from central

Virginia displayed a high prevalence of IgE to a-Gal (145). A study

from Hamsten et al. investigated sensitization to a-Gal in a Swedish

general population and found that as many as 10% (from a total of

143 healthy blood donors from the greater Stockholm area) had IgE
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antibodies to a-Gal (>0.1 kUA/L) (33). Similarly, general populations

from sub-urban Copenhagen and north-western Spain displayed

sensitization to a-Gal (>0.1 kUA/L) in 5.5% and 8.1%, respectively,

and the sensitization was associated with tick bites (130). In addition,

screening of two Swedish cohorts of tick bitten subjects (207 patients

with Lyme disease from greater Stockholm area, and 148 patients

with erythema migrans from South Sweden) showed a prevalence of

22% sensitization toa-Gal (33, 146). The frequency of sensitization to
a-Gal has shown to be approximately 20 times higher in subjects

living in a rural pre-Alps area of Italy with high exposure to ticks,

than in subjects living in a nearby urban area (131). Additional

evidence that a life-style with increased tick exposure is associated

with sensitization to a-Gal, came from two European studies on

forestry workers that found a sensitization frequency of 35% (n =

105/300), and 15% (n = 22/147) (147, 148). However, in these two

cohorts only 1,7% and none suffered fromAGS. Thus, sensitization to

a-Gal does not necessarily imply having AGS as many sensitized

subjects tolerate intake of mammalian meat.

Prevalence of a-Gal sensitization among young adults seems

to be lower. In the large BAMSE cohort (n = 2201) of Swedish

young adults from urban and sub-urban areas, approximately 6%

were sensitized to a-Gal, but AGS was rare, only 0.1% (149).

Although the majority had been tick bitten, the prevalence of

sensitization increased with increasing number of tick bites. This

study demonstrated that the association between tick bites and a-
Gal sensitization is present already in young adults. Similarly,

among 3000 young Americans, 6% were sensitized to a-Gal, and
exposure to A. americanum, rural residence, and white race were

identified as risk factors (150). The low prevalence of AGS found

at young adulthood may be that the IgE levels to a-Gal are still

low and repeated tick bites are required for symptoms to

develop (149).

With climate change and global warming, tick populations are

increasing, and their geographic range is expanding (151–155).

Thus, it is likely that the incidence of AGS will be rising.
Diagnosis

AGS is often under-/misdiagnosed due to the delayed spectrum

of symptoms, as well as non-specific symptoms which may lead to a

long-lasting search for a diagnosis (156). A study by Flaherty et al.

aimed to determine the path to diagnosis experienced by AGS

patients and found that only one fifth of patients received a

diagnosis within their first year of symptoms, whereas the

remaining approximately 80% received a diagnosis in an average

of 7.1 years (157). Furthermore, in most cases the diagnosis

appeared to be patient-driven (157). A new onset of reactions to

red meat should alert clinicians to suspicion of AGS. Thus, there is a

need for increased healthcare provider education and awareness of

AGS to accelerate and improve the accuracy of AGS diagnoses,

patient care, and understanding of the epidemiology of this

emerging condition (158).

The diagnosis is based on the case history and IgE antibody levels

to a-Gal. There are no established criteria for the level of a-Gal IgE
that confirms an AGS diagnosis, but a cut-off >0.1 kUA/L as a positive
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test result has been used by most clinical authorities. IgE to bovine

thyroglobulin (bTG) of more than 0.35 kUA/L has a reported

specificity of 92.3% and sensitivity of 100% for diagnosis of AGS

(159). IgE to bTG showed higher diagnostic value than IgE to beef,

and significantly outperformed IgE to pork and lamb (159).

Furthermore, IgE levels to a-Gal are greater than or equal to 2

kUA/L or more than 2% of the total IgE, makes the diagnosis very

likely (115). The a-Gal IgE levels do not differ between patients

experiencing an early (2 hours or less) versus a delayed reaction

(more than 2 hours) (34, 122). Moreover, IgE binding to lactoferrin in

AGS has been shown to be associated with a risk of having

anaphylactic reactions to red meat (36). We have further shown

that IgE levels to a-Gal and lactoferrin were significantly higher in

patients with a history of allergic reactions to dairy, but receiver-

operating characteristic curve analysis showed that the sensitivity and

specificity were not sufficient to predict reactivity to dairy (40).

Common in vivo diagnostic tests, such as skin prick tests with meat

extracts, have reported to be unreliable (1). However, prick-to-prick

tests with raw innards have shown to have high sensitivity (160). If the

above-mentioned tests are negative, despite a convincing history,

basophil activation test (BAT) may be helpful. Mehlich et al. have

shown that BAT can distinguish AGS patients from a-Gal sensitized
individuals (99). We further evaluated BAT as a tool to discriminate

between patients with severe i.e. anaphylactic reaction from non-

anaphylactic patients, but did not find a positive association (161).

Food challenge is the golden standard in the diagnosis of food

allergy, but due to the unpredictable nature of a-Gal food challenges,
risks and benefits should be discussed with the patients (135). Finally,

if the patient reports improvement of symptoms after mammalian

meat avoidance, this supports the diagnosis (115).
Management

Most AGS patients should be advised to avoid mammalian meat

as well as organ meat and sausages. We have previously shown that

the allergenicity of red meat proteins is preserved even upon

different thermal cooking, thus AGS patients should avoid not

only raw or medium rare meat, but also heat-treated meat (38).

Some patients need to avoid dairy products as well. We and

others have recently reported that approximately 5 - 20% of AGS

patients need avoidance of dairy products (40, 114, 115). However,

approximately half of our AGS patients experienced allergic

reactions to milk or dairy products at certain exposures only and

that depended on the amount consumed, type of dairy products and

co-factors (40). Patients experiencing reactions to dairy are more

likely to report GI symptoms (40, 114). However, dairy products do

not need to be avoided routinely, only if the patient continues to

have symptoms despite strict avoidance of mammalian meat (115).

A minor proportion of AGS patients need to avoid gelatin-

containing food as well (115). An open question is whether

consumption of small amounts of a-Gal could be protective and

help regain tolerance to mammalian meat (162). Some clinicians

encourage AGS patients to incorporate moderate amounts of dairy

products in their diets unless they report adverse reactions

following the ingestion of dairy (163). Patients who tolerate dairy,
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avoid further tick bites and have significant drops in IgE levels to a-
Gal are more likely to successfully reintroduce mammalian food

products into their diet if desired (163).

Some pharmaceuticals contain a-Gal and should be avoided or

administered with caution in AGS patients (164). For instance,

mammalian antibodies, such as cetuximab and antivenoms contain

a-Gal and present a high risk for AGS patients. Drugs of porcine

origin such as porcine pancreatic enzyme replacement contain a-
Gal and may induce symptoms in some patients, while others

demonstrate drug tolerance (135, 165). Gelatin in medical products

(certain vaccines, plasma expanders, or gel-based capsules) may

cause reactions in AGS patients (115). Heparin, used as an anti-

coagulant, is a glycosaminoglycan isolated from porcine or bovine

intestine and does not appear to carry a-Gal. However, there are

case reports on anaphylactic reactions caused by heparin in AGS

patients which could be due to contamination with a-Gal-carrying
molecules (166, 167). Bioprosthetic heart valves can be from

porcine or bovine sources, and patients with AGS undergoing

bioprosthetic valve replacement are at the risk of developing a

hypersensitivity reaction after surgery (168–170). Furthermore,

products such as glycerin and magnesium stearate, that might

hypothetically contain a-Gal need caution, though reactions to

these ingredients have not been clearly demonstrated (171).

An important part of management of AGS is avoidance of tick

bites. The patients should be informed about the relevance of tick

bites on the onset of the disease and that further tick bites increase

IgE levels to a-Gal, while avoidance of tick bites decreases their IgE
levels to a-Gal. There are cases whose IgE levels to a-Gal became

negative (or significantly dropped) after tick avoidance and they

were able to reintroduce mammalian meat in their diet (115, 163,

172). AGS patients should wear long trousers and long-sleeved

shirts in wooded and grassy areas and use insect repellents. Clothing

and body should be checked for ticks after being outdoors.

There is no cure for AGS. Recently, a small oral immunotherapy

(OIT) study for early and delayed-onset red meat allergy was

reported (173). Five patients underwent an early OIT and seven a

delayed protocol and the patients were followed for up to five years.

All patients became tolerant to red meat after OIT, however three

patients had to terminate OIT. One patient dropped out because of

discontinuation of the maintenance regimen and two due to rare

tick bites that acted as inducers of allergic reactions with

concomitant elevation of the a-Gal IgE concentrations. The

results of the study should be carefully interpreted in terms of few

patients and performed in only one country. Larger patient cohorts

from several countries are needed to further evaluate OIT.
Concluding remarks

It has been more than a decade since the a-Gal epitope, a
structural homolog of a blood group B antigen, was shown to be the

cause of a global allergic disease, AGS. It is the first known allergy

where a carbohydrate solely is the cause of IgE-mediated allergic

reactions. The clinical significance of the a-Gal epitope led to the

recent incorporation of glycan epitopes into the WHO/IUIS

Allergen database. AGS represents a severe form of delayed
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allergy to mammalian meat and is an increasingly recognized public

health issue. Most commonly, it develops in middle-aged patients

who have previously tolerated mammalian food, but children can

also be affected. Importantly, AGS is considered the first tick bite

acquired allergic disease.

The knowledge of AGS has increased greatly during the last years.

However, the impact of tick saliva on the development of AGS as well

as the mechanisms behind the delayed reaction need to be elucidated.

Moreover, the host characteristics that predispose to developing AGS

are to be revealed. In addition, the relevance of a-Gal sensitization
beyond allergic disease is a topic for further investigation. Currently

there is no treatment option for AGS apart from avoidance of

mammalian allergen sources. Therefore, there is a need for future

research to better understand the immunological responses to the a-
Gal epitope which will pave the way forward to the development of a

safe and effective therapy for AGS.
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