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Mendelian randomization and
transcriptome analysis identified
immune-related biomarkers
for osteoarthritis
Wei-Wei Pang1, Yi-Sheng Cai1, Chong Cao1, Fu-Rong Zhang1,
Qin Zeng1, Dan-Yang Liu1, Ning Wang1, Xiao-Chao Qu1,
Xiang-Ding Chen1, Hong-Wen Deng2* and Li-Jun Tan1*

1Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University,
Changsha, Hunan, China, 2Tulane Center of Biomedical Informatics and Genomics, Deming
Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, United States
Background: The immune microenvironment assumes a significant role in the

pathogenesis of osteoarthritis (OA). However, the current biomarkers for the

diagnosis and treatment of OA are not satisfactory. Our study aims to identify

new OA immune-related biomarkers to direct the prevention and treatment of

OA using multi-omics data.

Methods: The discovery dataset integrated the GSE89408 and GSE143514

datasets to identify biomarkers that were significantly associated with the OA

immune microenvironment through multiple machine learning methods and

weighted gene co-expression network analysis (WGCNA). The identified

signature genes were confirmed using two independent validation datasets.

We also performed a two-sample mendelian randomization (MR) study to

generate causal relationships between biomarkers and OA using OA genome-

wide association study (GWAS) summary data (cases n = 24,955, controls n =

378,169). Inverse-variance weighting (IVW) method was used as the main

method of causal estimates. Sensitivity analyses were performed to assess the

robustness and reliability of the IVW results.

Results: Three signature genes (FCER1G, HLA-DMB, and HHLA-DPA1) associated

with the OA immune microenvironment were identified as having good

diagnostic performances, which can be used as biomarkers. MR results

showed increased levels of FCER1G (OR = 1.118, 95% CI 1.031-1.212, P =

0.041), HLA-DMB (OR = 1.057, 95% CI 1.045 -1.069, P = 1.11E-21) and HLA-

DPA1 (OR = 1.030, 95% CI 1.005-1.056, P = 0.017) were causally and positively

associated with the risk of developing OA.
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Conclusion: The present study identified the 3 potential immune-related

biomarkers for OA, providing new perspectives for the prevention and

treatment of OA. The MR study provides genetic support for the causal effects

of the 3 biomarkers with OA and may provide new insights into the molecular

mechanisms leading to the development of OA.
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1 Introduction

Osteoarthritis (OA) is a common and disabling chronic

degenerative joint disease with major pathological changes

including articular cartilage degeneration, bone fragmentation,

mild synovial inflammation, and subchondral bone remodeling

(1, 2). With the continuing global obesity epidemic and an aging

population, the prevalence of OA is gradually increasing, resulting

in a substantial medical and economic burden (3). The etiology of

OA has conventionally been attributed to mechanical strain causing

the deterioration of cartilage, thereby characterizing it as a non-

inflammatory condition. However, recent studies have shown that

OA is inflammatory, accompanied by multiple immune cells

infiltrating the synovial membrane (4, 5). Moreover, the synovial

immune microenvironment in OA promotes cartilage injury or

repair (6). At present, pharmacological treatments for OA are

mostly limited to pain relief rather than immunotherapy based on

restoring damage to joint structures and reducing inflammation (7).

Therefore, it is necessary to identify reliable biomarkers associated

with the OA immune microenvironment and guide the

personalized treatment of OA patients.

Studies have increasingly demonstrated that changes in immune

cells in the synovium play a pivotal role in synovial inflammation and

cartilage damage and repair (8, 9). For example, M1 macrophages

within the synovium exacerbate synovitis and cartilage degeneration

by secreting pro-inflammatory factors (IL1b) and matrix

metalloproteinase (MMPs) (10). In contrast, M2 macrophages

express anti-inflammatory factors (IL10) and growth factors (TGF-

b) that accelerate the regression of inflammation and contribute

to cartilage repair (11, 12). Type 1 T helper (Th1) cells and type

17 T helper (Th17) cells are involved in OA progression by

releasing inflammatory cytokines (13, 14). Inflammatory and

immunostimulatory cytokines released by mature dendritic cells

(DCs) aggravate synovial inflammation and cartilage degradation

(15). In contrast, immature DCs promote the proliferation of

regulatory T cells and induce cartilage differentiation in

mesenchymal stem cells (MSCs), thus aiding in cartilage repair

(16). Together, these findings emphasized the critical role of the

immune cells in OA. Consequently, considering the potential of
02
immunotherapy to alleviate the symptoms of OA, it is crucial to

meticulously explore the signature genes associated with the OA

immune microenvironment.

Mendelian randomization (MR) is a method used to infer causal

associations between exposures and outcomes (17). The MR approach

has been widely used to identify molecular markers that contribute to

the development of diseases, which means that causal relationships

between genes and diseases can be inferred by using expression

quantitative trait loci (eQTL) variants of genes as instrumental

variables (18, 19). Previous studies have examined the OA immune

microenvironment and immune-related genes only through

transcriptomic data (20, 21). In this study, we comprehensively

explored the OA synovial immune microenvironment patterns and

explored immune-related biomarkers of OA using transcriptomics

and genomics data. Single-sample gene set enrichment analysis

(ssGSEA), machine learning, and weighted gene co-expression

network analysis (WGCNA) were used to explore the signature

genes associated with the OA immune microenvironment as

potential new biomarkers. Moreover, we investigated the

expressions of signature genes at single-cell resolution and cellular

communication. We inferred the causal relationships between

biomarkers and OA through a MR study. Overall, we used multi-

omics data to explore signature genes associated with the OA immune

microenvironment as novel biomarkers, providing resources for the

accurate diagnosis and treatment of OA.
2 Materials and methods

2.1 Data acquisition and processing

We retrieved publicly available five transcriptome datasets

(GSE89408, GSE143514, GSE55235, GSE46750, and GSE152805)

from Gene Expression Omnibus (GEO) database using the

keywords “osteoarthritis”, “synovium”, and “Homo sapiens” (22–

26). The inclusion criteria were as follows: Firstly, the datasets were

derived from synovial tissue of human knee OA. Secondly, only

datasets from published articles were considered to ensure data

quality. Finally, datasets containing at least 10 OA and 10 healthy
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samples were used as the validation datasets to make the validation

results more convincing. The details of the datasets included in this

study are shown in Supplementary Table 1. Two transcriptome

sequencing datasets (GSE89408 and GSE143514) were integrated

into a discovery dataset containing 31 normal tissues and 27 OA

synovial tissues after applying the R package “sva” to remove batch

effects. The R package “DEseq2” was used to calculate differentially

expressed genes (DEGs) from the discovery dataset, taking adjusted

p-value < 0.05 and |log2 FC| ≥ 1 as the criteria for statistical

significance. Two normalized microarray datasets (GSE55235 and

GSE46750) were utilized as the validation sets. The single-cell

dataset (GSE152805) was analyzed after quality control,

normalization, downscaling, and cell annotation using cellular

marker genes. The study design is shown in Figure 1.
2.2 Evaluation of immune infiltration

The immune score and immune infiltration analyses were

conducted using the single-sample gene set enrichment analysis

(ssGSEA) method in the “GSVA” R package. Immune score analysis

was an overall assessment of the abundance of immune cells in the

OA synovium. Immune infiltration analysis was performed to

assess the expression of marker genes for 28 immune cell types in

the immune cell gene set, aiming to infer the abundance of each

immune cell in the OA synovium from the discovery dataset. The

ssGSEA is an extension and improvement of the gene set

enrichment analysis (GSEA) method (27), which defines

enrichment scores based on the ranking of gene expression levels

and is used to assess the degree of enrichment of specific gene sets in

each sample. ssGSEA score provided a way to quantify the relative

abundance of immune cells in OA synovial tissues and was able to

assess the level of immune infiltration in each sample. Wilcoxon test

was applied to assess the difference in the abundance of immune
Frontiers in Immunology 03
cells between the normal and OA groups, with p-values less than

0.05 being considered statistically significant.
2.3 Identification of characteristic
immune cells

Support vector machine recursive feature elimination (SVM-

RFE) and random forest (RF) algorithms were used to determine

the optimal immune cells related with OA (28, 29). We used the two

methods to ensure that the shared results were more robust and

reliable. SVM-RFE and RF analyses were performed by the “e1071”

and “randomForest” R packages, respectively. SVM-RFE is a

support vector machine approach based on recursive feature

elimination (RFE) to find the best variables. The RF algorithm

constructs multiple decision trees through the sampling of objects

and variables. Sequentially, the objects are classified, and the relative

importance of the variables to the classification is measured while

the classification is being performed. We selected immune cell types

with mean Gini importance > 2 as the characteristic immune cells in

the RF analysis. Finally, the shared immune cells in the results of

two algorithms were identified as the characteristic immune cells.
2.4 Construction and validation of
signature genes related to the OA
immune microenvironment

Utilizing the “WGCNA” R package, weighted gene co-expression

network analysis (WGCNA) was used to find modules of highly

related genes and explore the relationships between modules and

specific traits (30). In our study, we used characteristic immune cells

as traits and explored co-expressed gene modules that had the highest

significant positive correlation with characterized immune cells. The

optimal soft-threshold power was selected as the first power value that

reached a scale-free topology index of 0.85. Immune-related genes

were obtained from ImmPort (https://www.immport.org/home)

database (31). The DEGs associated with the OA immune

microenvironment were identified using the intersection of immune-

related genes, DEGs, and genes from modules significantly correlated

with all characteristic immune cells. We further explored the biological

pathways and functions involved in the DEGs through the Metascape

(http://metascape.org) database (32). Based on the DEGs, we employed

the “e1071” R package to execute the least absolute shrinkage and

selection operator (LASSO) algorithm for the selection of signature

genes (33). LASSO regression typically generates a penalty function to

filter the variables to prevent overfitting the model when there are too

many variables and the sample size of the dataset is small. The

signature genes filtered by the LASSO algorithm were validated and

evaluated for diagnostic confidence in OA by two independent

validation datasets (GSE55235 and GSE46750). Finally, the validated

signature genes were considered as immune related biomarkers for

OA, and the R package “pROC” was applied to plot the AUC curves of

the biomarkers to visualize the diagnostic effect.
FIGURE 1

The workflow of the present study. SVM-RFE, support vector
machine recursive feature elimination; RF, random forest; WGCNA,
weighted gene co-expression network analysis; LASSO, least
absolute shrinkage and selection operator; OA, osteoarthritis; MR,
mendelian randomization; LD, linked disequilibrium.
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2.5 Gene set enrichment analysis

We conducted Gene Set Enrichment Analysis (GSEA) to

further explore the involved prospective molecular mechanisms

for the signature genes. The pathway gene sets were obtained from

the Molecular Signature Database (MSigDB) (https://www.gsea-

msigdb.org/gsea/msigdb/) (34). Based on the gene expression

profile data of the discovery dataset, the median expression values

of signature genes were calculated separately. All samples in the

dataset were divided into high and low expression groups based on

whether the expression value of the signature gene was higher or

lower than its median. The GSEA method used the differentially

expressed gene list between the two groups and predefined pathway

gene sets to explore significantly enriched pathways. Through

GSEA analysis based on the grouping of signature gene

expression levels, we can better understand the biological

pathways associated with different signature gene expression

levels in OA. Enrichment results were considered significant

when they met the following statistical thresholds: p-value < 0.05,

|normalized enrichment score (NES)| > 1, and false discovery rate

(FDR) < 0.25 (35).
2.6 Correlation of signature genes with OA
related disease genes and
inflammatory genes

To explore potential correlations between signature genes and OA

related disease genes, we obtained OA genes of the knee from the

DisGeNet database (36). The DisGeNET database (http://

www.disgenet.org/) is a database of disease-associated genes

integrating data from expert curated repositories, GWAS catalogues,

animal models, and the scientific literature. We obtained a set of

inflammation-associated genes (GOBP_INFLAMMATORY_

RESPONSE) from the MSigDB and performed differential expression

analysis between the normal and OA groups in the discovery dataset.

Based on the gene expression values, the Hmisc package was used to

investigate the correlations between inflammatory genes differentially

expressed in OA and signature genes. Finally, to uncover the

correlation between signature genes and immune cells in the OA

immune microenvironment, we also performed a correlation analysis

between signature genes and immune cells based on gene expression

values and enrichment scores of immune infiltration analysis.
2.7 Expression of signature genes and
cellular communication in single-cell data

To obtain a more comprehensive understanding of the roles of

signature genes correlated with the immune microenvironment in

the progression of OA, we analyzed the single-cell RNA (scRNA)

sequencing data containing 3 OA synovial samples. The single-cell

expression matrix data from GSE152805 were downloaded, and

data processing was performed using the Seurat package, including

filtering of low-quality cells, data normalization, variable feature
Frontiers in Immunology 04
identification, data scaling, and principal component analysis. The

three samples were integrated with CCA (cross-dataset

normalization) algorithm. Cells were clustered at the appropriate

resolution utilizing the “FindClusters” function and then visualized

using the “RunUMAP” function. Cellular annotation of processed

single-cell data was based on marker genes provided by the authors

of the data (26). We assessed the expression of signature genes in

different immune cell clusters. Cell-cell communication analyzes

the expression of ligand-receptor pairs in different cell types and

reveals specific signaling pathways between cell types. The immune

cell clusters in which signature genes were involved in cell-cell

communication were elucidated by CellChat (37).
2.8 MR analysis of biomarkers and OA

Two-sample MR analysis was performed to assess the causality

between biomarkers and OA using the TwoSample package (38). The

expressions of biomarkers were used as exposure factors and OA as an

outcome. Since cis-eQTLs have a more direct regulatory effect on gene

expression, this study used SNPs from cis-eQTLs of biomarkers in the

GTEx database (https://www.gtexportal.org/) as instrumental variables

(IVs) (39). SNPs (physical distance threshold 10,000 kb, linkage

disequilibrium threshold of r2 < 0.2) at genome-wide significance (P

< 5 × 10-6) were included in the MR analysis. The GWAS summary

data for OA were extracted from a GWAS meta-analysis based on the

UK Biobank and the Arthritis Research UK Osteoarthritis Genetics

(arcOGEN) resource, which included 24,955 knee osteoarthritis cases

and 378,169 controls (40). To explore the causal effects of biomarkers

expression on OA, three MR analysis methods were used in this study.

We applied the random-effects inverse-variance weighting (IVW), the

weighted median (WM), and the MR-Egger method making different

assumptions about horizontal multiplicity were used as complements

to the IVW to test the robustness of the MR analysis. Estimates from

the random-effects IVW method were used as the primary results

because this method is the most efficient method for MR analysis (41).

TheWMmethod is robust in the presence of outliers and can provide a

consistent estimate of the causal effect even if 50% of the IVs are invalid

(42). MR-Egger regression can provide a test of horizontal pleiotropy,

but its estimates generally exhibit low precision (43).
2.9 Sensitivity analyses

Sensitivity analyses, including tests for horizontal pleiotropy

and heterogeneity, were also performed to validate the MR

hypothesis and to ensure the robustness of the causal associations

of the identified candidate biomarkers. We evaluated the

heterogeneity between the causal estimates of each SNP using the

Cochran’s Q test. Specifically, the P value of Cochran’s Q test less

than 0.05 was considered to be significantly heterogeneous. Even in

the presence of heterogeneity, the random-effects IVW test also

provided reliable causal estimates in the absence of horizontal

pleiotropy (41). The leave-one-out analysis was conducted to

assess whether any individual SNP would cause bias in the MR
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results. The horizontal pleiotropy between SNPs was detected by the

MR-Egger intercept test (44). Steiger filtering was also performed to

determine the directionality of the relationship between IVs of

biomarkers and OA (45). When the Bonferroni-corrected p-value

threshold was less than 0.017 (correcting for 3 exposures and 1

outcome), the correlation was considered to have statistical

significance, while a p-value less than 0.05 was regarded as

nominally significant evidence of a potential causal association (46).
3 Results

3.1 Assessment of immune infiltration in
OA patients

Given the importance of changes in the immunemicroenvironment

contributing to the progression of OA, we compared the immune scores

of OA and normal individuals in the discovery dataset, which provided a

qualitative assessment of the immune microenvironment (Figure 2A).

OA patients had higher immune scores than normal individuals,

demonstrating that immune cells were more abundant in OA. Next,

we specifically examined the differences in the enrichment scores of 28

immune cell types in the OA and healthy groups. The results showed

that 20 immune cells had significantly different immune infiltration

levels between the normal and OA groups (Figure 2B). Compared to

controls, OA patients had higher levels of T cell infiltration, including

central memory CD4 T cells, central memory CD8 T cells, regulatory T
Frontiers in Immunology 05
cells, and Th1 cells. Moreover, macrophages, myeloid-derived

suppressor cells (MDSC), immature dendritic cells, mast cells also had

high level of infiltration. To further identify the characteristic immune

cells associated with OA progression, we performed SVM-RFE and RF

analyses. The results of the SVM-RFE algorithm selected 14 immune

cells (Figure 2C), while the RF analysis showed five different immune

cells with an importance of more than 2 (Figure 2D). Finally, based on

the shared immune cells of both algorithms, we identified five immune

cells as characteristic immune cells, namely central memory CD8 T cells,

effector memory CD8 T cells, immature dendritic cells, macrophages,

and Th1 cells (Figure 2E).
3.2 Identification of immune-related
signature genes

We used the WGCNA algorithm to extract co-expressed gene

modules significantly correlated with all five characterized immune

cells. The power value of 4 was chosen as the optimal soft-

thresholding power because it was the first power to reach a

scale-free topology index of 0.85 (Figure 3A). The greenyellow

module had a highly significant positive correlation with central

memory CD8 T cells, effector memory CD8 T cells, immature

dendritic cells, macrophages, and Th1 cells. In contrast, the salmon

module had a significant negative correlation with the five

characteristic immune cells (Figure 3B). The greenyellow module

had the strongest positive correlation with central memory CD8 T
B

C D E

A

FIGURE 2

Immune infiltration analysis of OA. (A) Scatterplot displaying the differences in immune scores between OA patients and normal individuals. Normal
(n = 31), OA (n = 27). (B) Boxplots of the immune infiltration abundance in OA and non-OA individuals. Normal (n = 31), OA (n = 27). (C) The SVF-
RFE algorithm screens out 14 immune cells. (D) Ranking of immune cells based on importance scores by RF algorithm. (E) The Venn diagram shows
that five characteristic immune cell types are determined by the two algorithms described above. Statistical comparisons obtained by the Wilcoxon
test in (A, B) (ns not significant, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1334479
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pang et al. 10.3389/fimmu.2024.1334479
cells, macrophages, and Th1 cells, respectively. The purple module

showed the strongest positive correlation with effector memory

CD8 T cells, while immature dendritic cells had the highest positive

correlation with the green module. Therefore, the genes in the

greenyellow module, the purple module, and the green module were

selected for the following analysis. Using the genes in the three

modules, DEGs between OA and normal samples, and immune-

related genes from the ImmPort database, we identified 44 DEGs

associated with the immune microenvironment (Supplementary

Table 2). The biological pathways and functions involved in the 44

immune microenvironment-related DEGs were mainly enriched in

positive regulation of cytokine production, inflammatory response,

positive regulation of response to external stimulus, toll-like

receptor signaling pathway, and NF-kappa B signaling pathway

(Figure 3C), suggesting that the immune microenvironment-

related DEGs were implicated in the pathogenesis of OA. To

further filter for signature genes associated with the OA immune

microenvironment, the 7 signature genes (HLA-DPA1, SEMA3A,

FCER1G, HLA-DMB, INHBB, IL10, and OSM) were identified

from 44 DEGs using the LASSO algorithm (Figures 3D, E).
Frontiers in Immunology 06
Compared to healthy controls, all 7 signature genes were

upregulated in the OA of the discovery dataset.
3.3 Validation and evaluation of
signature genes

We tested whether the 7 signature genes were also differentially

expressed in two independent validation datasets, GSE55235 and

GSE46750. Only the 3 signature genes, FCER1G, HLA-DMB, and

HLA-DPA1, exhibited significant upregulated expression in both

validation datasets. (Figures 4A, B). Therefore, these three signature

genes associated with the OA immune microenvironment could

serve as potential biomarkers for OA. Subsequently, the accuracy of

the three signature genes for diagnosing OA was assessed using

ROC curve analysis. All the AUC values of three signature genes,

FCER1G, HLA-DMB, and HLA-DPA1, were greater than 0.7 in the

discovery dataset and two independent validation datasets,

suggesting that the 3 signature genes have good diagnostic

performance as biomarkers of OA. (Figures 4C–E).
B

C

D E

A

FIGURE 3

Screening for immune-related signature genes. (A) Different soft threshold powers (b) and analysis of mean connectivity. (B) Heatmap of correlation
between modules and five signature immune cells. (C) Enrichment analysis of GO and KEGG pathways related to 44 signature DEGs. (D) LASSO
coefficient profiles of 44 DEGs. (E) Selection of the best parameter for nonzero coefficients by 10-fold cross-validation in the LASSO
regression model.
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3.4 GSEA analysis of signature genes

We performed GSEA to explore the biological pathways

enriched by the 3 signature genes based on their expression

values (Figures 5A–C). The 3 signature genes were mainly

involved in rheumatoid arthritis, antigen processing and

presentation, inflammatory bowel disease, ECM-receptor

interaction, NF-Kappa B signaling pathway, and osteoclast

differentiation. In addition, FCER1G was involved in cytokine-

cytokine receptor interaction, while HLA-DPA1 participated in

Th17 cell differentiation and B cell receptor signaling pathway.

The above signaling pathways have been implicated in the immune

response and inflammation, suggesting that the 3 signature genes

are essential in the OA immune microenvironment and are

involved in the inflammatory reaction in OA.
3.5 Correlation of signature genes with OA
related genes, inflammatory genes and
immune cells

To explore the contribution of signature genes in OA progression,

we performed the correlation analysis of the 3 signature genes with

OA related genes, inflammatory genes, and immune cells. OA genes

obtained from the DisGeNET and DEGs shared 39 OA related genes

that were upregulated or downregulated in OA synovium

(Supplementary Figure 1A). The inflammatory genes were obtained
Frontiers in Immunology 07
from MSigDB sharing 77 DEGs (Supplementary Figures 1B, C).

Correlation analysis of the 39 OA related genes and the 3 signature

genes showed statistically significant correlations between the 3

signature genes and multiple OA related genes (Figure 5D). High

expression of FCER1G was significantly positively correlated with the

expression of IL10, SAMSN1, and CCL4. HLA-DM was notably

correlated with CTSK and GPC3. HLA-DPA1 exhibited significant

correlations with TLR2, COL2A1, and others. Furthermore, there

were also high and significant correlations between the 3 signature

genes and several inflammation-related genes (Figure 5E). Analysis of

the correlation between signature genes and immune cells showed that

the 3 signature genes were significantly associated with multiple

immune cells in the OA immune microenvironment, such as

macrophages, regulatory T cells, Th1 cells, and immature dendritic

cells (Supplementary Figures 2A-C).
3.6 Single-cell analysis of signature
genes associated with the OA
immune microenvironment

Based on the marker genes, we identified a total of 9 cell clusters:

synovial subintimal fibroblasts (SSFs), synovial intimal fibroblasts

(SIFs), macrophages, dendritic cells (DCs), endothelial cells (ECs),

smooth muscle cells (SMCs), T cells, proliferating immune cells

(ProICs), and mast cells, and visualized the marker genes of each

cell cluster by dot plots (Figures 6A, B). we analyzed the expression of
B

C D E

A

FIGURE 4

Validation and the diagnostic performance of immune-related signature genes. (A, B) Differential expression of the 3 signature genes in external
independent validation datasets. GSE55235 (A) and GSE46750 (B). (C-E) The receiver operating characteristic (ROC) curves and area under the curve
(AUC) scores for the diagnostic performance of signature genes in the discovery dataset (C), GSE55235 dataset (D), and GSE46750 dataset (E).
GSE55235 (10 normal and 10 OA samples). GSE46750 (12 normal and 12 OA samples). The Wilcoxon test in (A, B) (*p < 0.05, **p < 0.01, ***p < 0.001).
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3 signature genes associated with the immune microenvironment in

each cell cluster (Figure 6C). The 3 signature genes were highly

expressed in both macrophage clusters and dendritic cell clusters. To

further explore the expression of signature genes in specific

macrophage subtypes, we extracted the macrophage cluster and

annotated two subpopulations of M1 and M2 macrophages

(Supplementary Figures 3A, B). The 3 signature genes were all

expressed in M1 macrophages (Supplementary Figure 3C),

implying that M1 macrophages through the expression of signature

genes may promote the advancement of inflammation in OA. Cell-

cell interactions between 9 distinct cell types showed that significant

interaction occurred amongst SSFs, SIFs, ECs, and immune cell

clusters such as macrophages, DCs, and ProICs (Figure 6D).

Cellchat analysis inferred that the HLA-DMB and HLA-DPA1

acted as ligands to mediate intercellular communication through

the MHC-II signaling pathway. Through the analysis of the MHC-II
Frontiers in Immunology 08
signaling pathway between cells, it was observed that macrophages

and DCs served as both senders and receivers in the OA immune

microenvironment (Figure 6E). Notably, DCs primarily assumed the

role of the main senders, while macrophages predominantly acted as

the main receivers. Specifically, DCs expressed HLA-DMB and HLA-

DPA1 and communicated with macrophages via the CD4 receptor

(Figures 6F, G). In conclusion, the above results indicated that

macrophages and DCs play crucial roles through the MHC-II

signaling pathway in OA.
3.7 Causal effect of biomarkers on OA

Using the cis-eQTL instruments in IVW analysis, FCER1G (OR =

1.118, 95% CI 1.031-1.212, P = 0.041), HLA-DMB (OR = 1.057, 95%

CI 1.045 -1.069, P = 1.11E-21) and HLA-DPA1 (OR = 1.030, 95% CI
B

C

D

E

A

FIGURE 5

Gene set enrichment analysis of the 3 signature genes associated with the OA immune microenvironment. (A-C) GSEA displaying FCER1G (A), HLA-
DMB (B), and HLA-DPA1 (C) enriched KEGG pathways, respectively. (D) Correlation analysis between the 3 signature genes and OA related genes.
(E) Correlation analysis between the 3 signature genes and inflammatory genes. Normal (n = 31), OA (n = 27). Statistical comparisons obtained by the
Wilcoxon test in B (*p < 0.05, **p < 0.01).
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1.005-1.056, P = 0.017) were all positively causally associated with OA

(Figure 7). MR results of theWMmethod were consistent with those of

IVW. Using MR-Egger analysis, we did not observe evidence of causal

relationships between the 3 biomarkers and OA. To test the stability of

the above results, the sensitivity analyses including Cochran’s Q test,

MR-Egger intercept test were conducted (Table 1). The P values of

MR-Egger intercept analysis for all 3 biomarkers were greater than

0.05, implying that there was no horizontal pleiotropy in theMR study.

The P value of Cochran’s Q-test for HLA-DPA1 was less than 0.05,

suggesting heterogeneity in MR studies of HLA-DPA1. However, MR-

Egger intercept analysis did not detect any horizontal pleiotropy,

suggesting that MR estimations did not introduce horizontal

pleiotropy in the presence of heterogeneity of this biomarker. There

was no heterogeneity in the results (P > 0.05) of Cochran’s Q test for

HLA-DMB and FCER1G. Moreover, IVs with no potential effects were

identified through the leave-one-out analysis (Supplementary Figure

S4). Steiger filtering test ensured directional accuracy of the associations
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between biomarkers and OA (Supplementary Table 3). Thus, the

increased expression levels of HLA-DPA1, HLA-DMB, and FCER1G

are associated with an increased risk of OA.
4 Discussion

Due to the aging and obesity epidemic, the prevalence of OA has

increased dramatically, producing a significant impact on health and

quality of life (3). Recent studies have shown that the OA immune

microenvironment is closely related to synovial inflammation, cartilage

damage, and repair (47). However, there is a lack of comprehensive

studies on the immune microenvironment in OA. Consequently, this

study systematically explored immune-related biomarkers for OA by

bioinformatics approaches using genomics and transcriptomics data.

In this study, we identified five key immune cell types including

central memory CD8 T cells, effector memory CD8 T cells, immature
B

C D

E F G

A

FIGURE 6

Single-cell transcriptome profiling of 3 OA synovial samples. (A) UMAP plot of all cells from 3 OA synovial samples. (B) The dot plot shows the
average expression level (color scale) and percentage of cells expressing the marker genes (dot size) for each cluster. (C) Expression of characteristic
genes in each cell cluster. (D) The number of interactions between 10 distinct cell types. (E) Heatmap of MHC-II signaling contributing
predominantly to the sending or receiving of signaling of certain cell groups. (F, G) HLA-DMB ligand and HLA-DPA1 ligand for cell-cell
communication with the CD4 receptor, respectively.
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dendritic cells, macrophages, and Th1 cells which were significantly

increased in OA. Furthermore, our study identified 3 signature genes

(FCER1G, HLA-DMB, and HLA-DPA1) associated with the OA

immune microenvironment, which can be used as immune-related

biomarkers for OA. FCER1G, a component of the high-affinity

immunoglobulin E (IgE) receptor, may be involved in IgE-mediated

mast cell activation promoting synovitis and cartilage destruction in OA

following mechanical injury in mice (48). Moreover, the IgE antibody

was found to effectively bloc IgE-induced M1 macrophage polarization

activity and reverse IgE-decreased M2 macrophage polarization,

revealing that IgE regulated macrophage polarization towards a pro-

inflammatory M1 phenotype (49). Compared with healthy controls, the

expression of FCER1Gwas increased in cartilage fromOA patients (50).

HLA-DMB and HLA-DPA1, as major histocompatibility complex class

II (MHC II) genes, may be involved in the regulation of OA by

presenting antigens through MHC II molecules. Type II collagen-

specific T regulatory cells were activated upon interacting with Col II

(type II collagen) presented on MHC II of antigen-presenting cells

(APCs), such as macrophages and DCs, at the OA synovium (51, 52).

Cytokines secreted by activated T regulatory cells could inhibit Th1 cells

and M1 macrophages in OA joints, thus reducing local inflammation

(53). The Th1 cells played a role in OA synovial inflammation and

cartilage degeneration by secreting inflammatory cytokines (8). Resolvin

D, a pro-resolving lipid mediator, was reported to reduce synovial

thickening by modifying macrophages from a high to a low MHC II
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phenotype and reducing the number of macrophages in the synovium

(54). Moreover, upon analyzing single-cell data, FCER1G, HLA-DMB,

and HLA-DPA1 were primarily highly expressed in DCs and

macrophages in our study. The study conducted by Pinto et al. also

revealed that the cells expressing MHC class II genes were macrophages

and DCs (55). In the cell-cell interaction network, we found that HLA-

DMB and HLA-DPA1 interacted as ligands with the CD4 receptor

through theMHC-II signaling pathway. MHC II-like peptide complexes

in lipid microdomains of dendritic cells induced the synthesis of IL-12,

which initiated the CD4 Th1 phenotype (56). To date, no experiments

have been performed to investigate the specific mechanisms of 3

signature genes in the OA synovium, suggesting that the 3 signature

genes may be potential therapeutic targets for future OA research.

Genetic variants associated with biomarkers in the MR study can

be used as instrumental variables to infer causal relationships between

biomarkers and disease (57). Therefore, we conducted in-depth

analyses of the causal associations between biomarkers and OA

through the MR study. Using eQTL and GWAS data, the main

purpose of the two-sample MR was to test whether eQTL variants as

instrumental variables mediate their effects on disease by affecting gene

expression (58). Previous studies have used the MR method to identify

valuable therapeutic targets for OA. For example, based on aMR study,

activity-reduced ADAMTS5 was identified as a therapeutic target to

reduce the risk of OA (59). In this study, the IVW results showed a

significant association between HLA-DMB and the risk of developing

OA, and nominally significant associations between FCER1G and

HLA-DPA1 and the risk of developing OA. Compared to the IVW

results, the MR-Egger results with lower statistical power were not

significant. Despite the heterogeneity in the causal estimate of HLA-

DPA1 on OA (P heterogeneity < 0.001), the causal effect estimated

using the random-effects IVW method remained significant in the

absence of horizontal pleiotropy, which might balance the pooled

heterogeneity. In addition, the causal effect of the MR study of HLA-

DPA1 was supported by the consistent results of WM and IVW. Thus,

we observed that the expression of FCER1G, HLA-DMB and HLA-

DPA1 was positively associated with OA by a two-sample MR study,

demonstrating the therapeutic potential of the 3 biomarkers for OA.

Our study comprehensively elucidated the immune

microenvironment of OA. However, there are some limitations in

our study, and although more advanced sequencing data were used,

the sample size obtained was not large enough, and further

expansion of the sample size is needed. Due to the lack of

synovial tissue-specific eQTLs, we chose to use whole blood and

fibroblast eQTLs as a feasible alternative to explore the potential

causal relationships between the expression of the three biomarkers
TABLE 1 Heterogeneity (Cochran’s Q test) and horizontal pleiotropy (MR-Egger intercept test) tests for causal relationships between biomarkers
and OA.

Exposure Outcome Cochran’s Q test MR-Egger

Q value P Intercept P

FCER1G OA 1.212 0.876 0.018 0.570

HLA-DMB OA 12.519 0.768 0.005 0.683

HLA-DPA1 OA 54.700 < 0.05 0.023 0.319
FIGURE 7

The causal effects between the biomarkers and OA were inferred by
MR analysis. Forest plot showing causal estimates of biomarkers and
risk of developing OA. The odds ratio (OR) was estimated using the
IVW method. Horizontal bars represented 95% confidence
intervals (CI).
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and OA. Although these eQTLs may not perfectly represent eQTLs

in synovial tissue, they still provide a valuable avenue for

investigating the potential associations between biomarkers and

OA in the absence of synovial tissue-specific eQTL data.

Furthermore, although the 3 signature genes have been validated

by two independent validation datasets, experiments are still needed

to verify their mechanisms of action in further studies.

In summary, we identified three promising biomarkers of OA

(FCER1G, HLA-DMB, and HLA-DPA1) using multi-omics data

combined with bioinformatics and MR approaches. The MR study

using large-scale GWAS summary data demonstrated that three

biomarkers had causal effects on OA. These findings can provide

guidance for future work in uncovering the molecular mechanisms

responsible for OA.
Data availability statement

The datasets presented in this study can be available in the Gene

Expression Omnibus database (Accession number: “GSE89408”,

“GSE143514”, “GSE55235”, “GSE46750”, and “GSE152805”).

Immune-related genes can be obtained from the ImmPort database.
Author contributions

W-WP: Conceptualization, Methodology, Visualization, Writing –

original draft, Writing – review & editing. Y-SC: Methodology, Writing

– review & editing. CC: Methodology, Writing – review & editing. F-

RZ: Software, Writing – review & editing. QZ: Software, Writing –

review & editing. D-YL: Software, Writing – review & editing. NW:

Software, Writing – review & editing. X-CQ: Supervision, Writing –

review & editing. X-DC: Supervision, Writing – review & editing. H-

WD: Conceptualization, Supervision, Writing – review & editing. L-JT:

Conceptualization, Supervision, Writing – review & editing.
Frontiers in Immunology 11
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

We express our gratitude to the providers of the data used in

this study. We would also like to thank the GEO, ImmPort,

Metascape, STRING, DisGeNet, and MSigDB databases.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1334479/full#supplementary-material
References
1. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. (2019) 393:1745–59.
doi: 10.1016/S0140-6736(19)30417-9

2. Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee
osteoarthritis: A review. Jama. (2021) 325:568–78. doi: 10.1001/jama.2020.22171

3. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of
osteoarthritis. Nat Rev Rheumatol. (2014) 10:437–41. doi: 10.1038/nrrheum.2014.44

4. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not
osteoarthrosis!). Osteoarthritis Cartilage. (2013) 21:16–21. doi: 10.1016/
j.joca.2012.11.012

5. Saito I, Koshino T, Nakashima K, Uesugi M, Saito T. Increased cellular infiltrate in
inflammatory synovia of osteoarthritic knees. Osteoarthritis Cartilage. (2002) 10:156–
62. doi: 10.1053/joca.2001.0494

6. Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, et al. The immune microenvironment in
cartilage injury and repair. Acta Biomater. (2022) 140:23–42. doi: 10.1016/
j.actbio.2021.12.006

7. Di Francesco M, Fragassi A, Pannuzzo M, Ferreira M, Brahmachari S, Decuzzi P.
Management of osteoarthritis: From drug molecules to nano/micromedicines. Wiley
Interdiscip Rev Nanomed Nanobiotechnol. (2022) 14:e1780. doi: 10.1002/wnan.1780

8. Ishii H, Tanaka H, Katoh K, Nakamura H, Nagashima M, Yoshino S.
Characterization of infiltrating T cells and Th1/Th2-type cytokines in the synovium
of patients with osteoarthritis. Osteoarthritis Cartilage. (2002) 10:277–81. doi: 10.1053/
joca.2001.0509

9. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and
anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators
Inflammation. (2014) 2014:561459. doi: 10.1155/2014/561459

10. Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis.
Osteoarthritis Cartilage. (2020) 28:555–61. doi: 10.1016/j.joca.2020.01.007

11. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of
apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J
Clin Invest. (2002) 109:41–50. doi: 10.1172/JCI11638

12. Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis
mediated by squid type II collagen via immunomodulating activation of M2
macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials.
(2018) 180:91–103. doi: 10.1016/j.biomaterials.2018.07.011

13. Yang D, Zhang Z. The role of helper T cell in the pathogenesis of osteoarthritis.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. (2020) 34:932–8. doi: 10.7507/1002-
1892.201910063

14. Van Bezooijen RL, van der Wee-Pals L, Papapoulos SE, Löwik CW. Interleukin
17 synergises with tumour necrosis factor alpha to induce cartilage destruction. vitro.
Ann Rheum Dis. (2002) 61:870–6. doi: 10.1136/ard.61.10.870
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1334479/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1334479/full#supplementary-material
https://doi.org/10.1016/S0140-6736(19)30417-9
https://doi.org/10.1001/jama.2020.22171
https://doi.org/10.1038/nrrheum.2014.44
https://doi.org/10.1016/j.joca.2012.11.012
https://doi.org/10.1016/j.joca.2012.11.012
https://doi.org/10.1053/joca.2001.0494
https://doi.org/10.1016/j.actbio.2021.12.006
https://doi.org/10.1016/j.actbio.2021.12.006
https://doi.org/10.1002/wnan.1780
https://doi.org/10.1053/joca.2001.0509
https://doi.org/10.1053/joca.2001.0509
https://doi.org/10.1155/2014/561459
https://doi.org/10.1016/j.joca.2020.01.007
https://doi.org/10.1172/JCI11638
https://doi.org/10.1016/j.biomaterials.2018.07.011
https://doi.org/10.7507/1002-1892.201910063
https://doi.org/10.7507/1002-1892.201910063
https://doi.org/10.1136/ard.61.10.870
https://doi.org/10.3389/fimmu.2024.1334479
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pang et al. 10.3389/fimmu.2024.1334479
15. E X, Cao Y, Meng H, Qi Y, Du G, Xu J, et al. Dendritic cells of synovium in
experimental model of osteoarthritis of rabbits. Cell Physiol Biochem. (2012) 30:23–32.
doi: 10.1159/000339046

16. Alahdal M, Zhang H, Huang R, Sun W, Deng Z, Duan L, et al. Potential efficacy
of dendritic cell immunomodulation in the treatment of osteoarthritis. Rheumatol
(Oxford). (2021) 60:507–17. doi: 10.1093/rheumatology/keaa745

17. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for
causal inference in epidemiological studies. Hum Mol Genet. (2014) 23:R89–98.
doi: 10.1093/hmg/ddu328

18. van der Graaf A, Claringbould A, Rimbert A, Westra HJ, Li Y, Wijmenga C, et al.
Mendelian randomization while jointly modeling cis genetics identifies causal
relationships between gene expression and lipids. Nat Commun. (2020) 11:4930.
doi: 10.1038/s41467-020-18716-x

19. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of
summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat
Genet. (2016) 48:481–7. doi: 10.1038/ng.3538

20. Liao S, Yang M, Li D, Wu Y, Sun H, Lu J, et al. Comprehensive bulk and single-
cell transcriptome profiling give useful insights into the characteristics of osteoarthritis
associated synovial macrophages. Front Immunol. (2022) 13:1078414. doi: 10.3389/
fimmu.2022.1078414

21. Yuan WH, Xie QQ, Wang KP, Shen W, Feng XF, Liu Z, et al. Screening of
osteoarthritis diagnostic markers based on immune-related genes and immune
infiltration. Sci Rep. (2021) 11:7032. doi: 10.1038/s41598-021-86319-7

22. Guo Y, Walsh AM, Fearon U, Smith MD, Wechalekar MD, Yin X, et al. CD40L-
dependent pathway is active at various stages of rheumatoid arthritis disease
progression. J Immunol. (2017) 198:4490–501. doi: 10.4049/jimmunol.1601988

23. Zhao Y, Lv J, Zhang H, Xie J, Dai H, Zhang X. Gene expression profiles analyzed
using integrating RNA sequencing, and microarray reveals increased inflammatory
response, proliferation, and osteoclastogenesis in pigmented villonodular synovitis.
Front Immunol. (2021) 12:665442. doi: 10.3389/fimmu.2021.665442

24. Woetzel D, Huber R, Kupfer P, Pohlers D, Pfaff M, Driesch D, et al.
Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-
based rule set generation. Arthritis Res Ther. (2014) 16:R84. doi: 10.1186/ar4526

25. Lambert C, Dubuc JE, Montell E, Vergés J, Munaut C, Noël A, et al. Gene
expression pattern of cells from inflamed and normal areas of osteoarthritis synovial
membrane. Arthritis Rheumatol. (2014) 66:960–8. doi: 10.1002/art.38315

26. Chou CH, Jain V, Gibson J, Attarian DE, Haraden CA, Yohn CB, et al. Synovial
cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci
Rep. (2020) 10:10868. doi: 10.1038/s41598-020-67730-y

27. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

28. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification
using support vector machines. Mach Learn. (2002) 46:389–422. doi: 10.1023/
A:1012487302797

29. Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable
importance measures: illustrations, sources and a solution. BMC Bioinf. (2007) 8:25.
doi: 10.1186/1471-2105-8-25

30. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf. (2008) 9:559. doi: 10.1186/1471-2105-9-559

31. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al.
ImmPort, toward repurposing of open access immunological assay data for
translational and clinical research. Sci Data. (2018) 5:180015. doi: 10.1038/sdata.2018.15

32. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat Commun. (2019) 10:1523. doi: 10.1038/s41467-019-09234-6

33. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw. (2010) 33:1–22. doi: 10.18637/jss.v033.i01
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