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The identification of diagnostic and therapeutic biomarkers for Alzheimer’s Disease

(AD) remains a crucial area of research. In this study, utilizing the Weighted Gene

Co-expression Network Analysis (WGCNA) algorithm, we identified RHBDF2 and

TNFRSF10B as feature genes associated with AD pathogenesis. Analyzing data

from the GSE33000 dataset, we revealed significant upregulation of RHBDF2 and

TNFRSF10B in AD patients, with correlations to age and gender. Interestingly, their

expression profile in AD differs notably from that of other neurodegenerative

conditions. Functional analysis unveiled their involvement in immune response and

various signaling pathways implicated in AD pathogenesis. Furthermore, our study

demonstrated the potential of RHBDF2 and TNFRSF10B as diagnostic biomarkers,

exhibiting high discrimination power in distinguishing AD from control samples.

External validation across multiple datasets confirmed the robustness of the

diagnostic model. Moreover, utilizing molecular docking analysis, we identified

dinaciclib and tanespimycin as promising small molecule drugs targeting RHBDF2

and TNFRSF10B for potential AD treatment. Our findings highlight the diagnostic

and therapeutic potential of RHBDF2 and TNFRSF10B in AD management,

shedding light on novel strategies for precision medicine in AD.
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1 Introduction

Alzheimer’s disease (AD) is the most common form of age-

related dementia and is defined as a progressive neurodegenerative

disorder, which predominantly manifests as an impairment of

cognitive function, particularly anterograde episodic memory,

accompanied by declines in visuospatial, language, and executive

functions (1). Data from the World Alzheimer’s Disease Report

2023 suggests that the number of people with dementia worldwide

will increase from 55 million in 2019 to 139 million in 2050 (2).

Moreover, with rapidly aging populations throughout, the number

of dementia patients will further increase. As the leading cause of

dementia (accounting for 60–80% of all cases), AD prevalence is

also on the rise, posing an ever greater socioeconomic and

healthcare burden.

Genetic predisposition has been established as a major risk

factor for AD. Mutations in several genes, including amyloid

precursor protein, presenilin 1, presenilin 2, and the ϵ4 allele of

apolipoprotein E, have been implicated in AD pathogenesis (3).

Further, a number of immune-related genes have been identified as

strongly associated with AD (4). Genome-wide association studies

(GWAS) have also gained ground with increasing sample sizes and

inexpensive gene chip technology, which has expanded our

understanding of the genetic architecture of AD (5). Integration

of AD GWAS with tissue- and cell-type-specific epigenetic

annotations has suggested a modulatory role for various immune

components in AD susceptibility. In addition to microglia, which

have been at the center of AD research, the adaptive immune cells T

and B lymphocytes have been shown to play a key role in regulating

AD pathology (6–8), which influences AD progression and disease

severity. Therefore, understanding the intricate relationship

between immunity and AD would be a promising strategic

direction that could contribute to a deeper insight into the

pathogenesis of AD and facilitate the discovery of novel immune-

related biodiagnostic markers. Targeted modulation of the activities

of different immune components will also facilitate the

development of new therapeutic interventions.

The involvement of different cellular and molecular subtypes,

pathways and networks in the pathogenesis of AD has limited the

understanding of the heterogeneity and complexity of AD and has

significantly hindered progress in the diagnosis and treatment of AD.

In recent years, with the increasing development of multi-omics such

as genetics and genome projects, data mining research has shown its

importance in AD research. Bioinformatics analysis is a discipline

based on the combination of computer science and bioinformatics

tools, methods and techniques (9), where collected DNA, mRNA and

protein data can be analyzed and organized as required. It can reveal

potential modes of action and disease mechanisms at the molecular

level, depending on the research objectives. However, effective

integration of multi-omics data is particularly important due to

small sample sizes and redundant data. Machine learning (ML)

combined with bioinformatics data can overcome the limitations of

data set size and build predictive models for disease occurrence and

progression by effectively mining large amounts of data (10, 11).

Based on the manipulation of multi-omics data, ML uses different

algorithms to extract unique insights from the data to target different
Frontiers in Immunology 02
immune cells and immune-related genes, and successfully achieves

the precise analysis of the key functions of immune-related signature

genes in the pathogenesis of AD.

This study delves into the expression of novel immune-related

genes in AD, shedding light on their pivotal roles in immune

processes and pathways. By analyzing immune cell infiltration and

clinical correlations, the research uncovers valuable insights into AD

pathogenesis. Furthermore, the development of a diagnostic

nomogram based on these genes offers a promising tool for AD

diagnosis. The study also explores potential treatments by identifying

small molecule compounds through advanced technology. These

findings not only deepen our understanding of AD but also

provide new avenues for targeted interventions and future clinical

trials in the quest for effective AD therapies.
2 Materials and methods

2.1 Data acquisition and processing

The GEO database (12) is a public repository for expression

data, including microarrays, second-generation sequencing, and

high-throughput sequencing. We selected “Alzheimer’s disease”,

“Homo sapiens”, and “expression profiling by array” as MeSH

search terms. Datasets with significant age differences between

groups were excluded. The series matrix files for GSE33000 (310

AD brain samples and 157 normal brain samples) (13), GSE118553

(167 AD brain samples and 100 normal brain samples) (14),

GSE44772 (387 AD brain samples and 303 normal brain samples)

(15), and GSE122063 (24 AD brain samples and 22 normal brain

samples) (16) were selected and downloaded, with the probe names

converted to gene symbols using R software (17, 18). We then use

the “ComBat” function to batch correct the merged dataset

(GSE44772, GSE118553, GSE122063) (19). In cases where

datasets had missing values, we employed multiple imputation to

handle these missing values. This involved the use of weighted

average from k-nearest neighbors approach. The sample collection

for these datasets is shown in Supplementary Table S1. To identify

genes that are specifically expressed in AD patients, we downloaded

series matrix files from the GEO database for Parkinson’s disease

(GSE20168, GSE7621, GSE20291, and GSE20292), frontotemporal

dementia (GSE195872), dementia with Lewy bodies (GSE150696),

and Huntington’s disease (GSE33000). For our analysis, we

standardized the data using the “normalizeBetweenArrays”

function and “Log2”.
2.2 Identification of differentially expressed
genes (DEGs)

The DEGs analysis between AD patients and controls were

screened using the lmFit and eBayes functions in the limma R

package. DEGs were considered significant if the |log fold change

(FC)| was greater than log1.2 and the adjusted p-value was less than

0.01. To visualize the results, volcano plots and heatmap plots were

created using the R packages “ggplot” and “pheatmap”.
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2.3 Feature genes generated from machine
learning-based WGCNA algorithm

Genes were screened for WGCNA analysis using thresholds of |

logFC| > 0.05 and adjusted p-value < 0.01 (20). To ensure a reliable

scale-free network, we set a threshold of scale-free fit R2 > 0.85. The

“blockwiseModules” function was utilized with the following

parameters: minModuleSize = 80, mergeCutHeight = 0.2, and

TOMType = “unsigned” for network construction and module

detection. The identification of the key module was based on the

criteria of the greatest gene significance (GS) and the highest

correlation coefficient between the module and the trait. In our

study, feature genes were defined as genes within a module

exhibiting high connectivity and regarded as functionally

significant (21). Specifically, for this analysis, feature genes were

characterized by having a GS and module membership (MM)

within the key module.
2.4 Functional enrichment and immune
cell infiltration analysis for AD patients and
feature genes

To investigate the biological functions related to AD patients,

we conducted gene set variation analysis (GSVA). The gene sets

u s e d i n t h i s s t u d y w e r e t h e h a l lm a r k g e n e s e t

(h.all.v2023.1.Hs.symbols) and Kyoto Encyclopedia for Genes and

Genomes (KEGG) gene set (c2.cp.kegg.v2023.1.Hs.symbols) from

the Molecular Signatures Database (MSigDB) V7.0 database. These

gene sets were converted to scores (z-scores) using the single-

sample gene set enrichment analysis (ssGSEA) method of the

GSVA function (22, 23). Additionally, given the strongest GS and

highest correlation coefficients between key modules and AD

patients, we focused on the genes within the key modules for

Gene Ontology (GO) and KEGG analyses. The GO method serves

as a fundamental bioinformatics tool for gene annotation,

classifying genes into categories such as biological process (BP),

molecular function (MF), and cellular component (CC). For these

analyses, we utilized the “clusterProfiler” R package (24, 25). To

gain knowledge about immune cell infiltration in AD patients, we

used the CIBERSORT algorithm (26) to assess the proportions of 22

subtypes of infiltrating immune cells. Simultaneously, the signatures

of 64 immune and stromal cells were converted into enrichment

scores using the “xCell” R package (27).

We categorized AD patients into high and low expression

groups based on the median expression levels of feature genes

(28). To explore the biological functions of these feature genes, we

performed GSVA analysis. We also used the CIBERSORT and xCell

algorithms to evaluate the immune cell infiltration patterns within

the high and low expression groups of these genes. In addition, we

employed the GeneMANIA database (29, 30) (http://

www.genemania.org/) to identify genes functionally related to the

feature genes and to predict their potential functions. Statistical

significance was set at p < 0.05.
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2.5 Multivariable classifier performance
assessment and validation

To evaluate the potential of feature genes in differentiating

between AD patients and controls, we calculated the highest area

under the receiver operating curve (AUROC) using the “pROC”

package (31). In order to enhance the diagnostic ability of

identifying AD patients, we constructed a multivariable classifier

by combining feature genes with clinical features. We randomly

divided the GSE33000 dataset into a training dataset and an internal

validation dataset in an 8:2 ratio. Furthermore, we performed

external validation to assess the accuracy of the diagnostic model.

To validate the diagnostic performance of the multivariate model,

we performed diagnostic prediction in GSE44772, GSE118553,

GSE122063, and meta-cohort (overall dataset).
2.6 Nomogram, calibration curve analysis,
decision curve analysis, and clinical impact
curve of multivariate diagnostic classifier

A nomogram, a graphical tool for efficient approximation of

complex calculations, was constructed in this study using the “rms”

R package (32). The nomogram model incorporated selected

signatures from a diagnostic multivariable classifier and aimed to

predict the occurrence of AD patients. To assess the nomogram’s

performance, the concordance index (C-index) was calculated using

a bootstrap method with 1000 resamples, providing a measure of

discrimination. Furthermore, CCA was plotted to compare the

prediction probabilities of the nomogram with observed rates.

The clinical utility of the model was assessed using DCA curves.

DCA takes into account the relative value of benefits and harms

associated with the prediction model, thereby surpassing the

limitations posed by traditional statistical metrics (33). The CIC is

a visual tool utilized to assess and present the performance of

diagnostic models or diagnostic genes across various threshold

probability ranges. The predictive value of the diagnostic model

was evaluated using the “rmda” R package in this study.
2.7 Drug screening and docking

We conducted a screening process to identify potential small

molecule drugs. Firstly, we searched for co-expressed genes that

showed a correlation greater than 0.85 with feature genes in the gene

expression matrices of AD patients. Next, we used the CMap database

(https://clue.io/) to identify drugs that displayed significant correlations

with these genes (34). We employed connectivity scores (CS) and FDR

to measure correlation and statistical significance, respectively. The CS

close to -1, on a scale ranging from +1 to -1, indicated potential

therapeutic value. For our selection criteria, we set a FDR threshold of <

0.05 and a CS threshold of < -0.8. To investigate the interaction

between small molecule compounds and feature genes, we employed

molecular docking. First, the 2D structures of small molecule ligands
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were obta ined from the PubChem database (ht tp : / /

pubchem.ncbi.nlm.nih.gov/) and converted to 3D structures using

Chem Office 20.0 software, and saved as mol2 files. Next, protein

targets with high-resolution crystal structures were selected from the

RCSB PDB database (http://www.rcsb.org/) for molecular docking, and

the proteins were prepared by removing water and phosphate groups

using PyMOL 2.6.0 software, and saved as PDB files. The compounds

were subjected to energy minimization using the Molecular Operating

Environment 2019 software, and the target proteins were preprocessed

to identify active pockets. Finally, molecular docking was performed

using MOE 2019. The binding activity of the compounds was assessed

based on the binding energy (BE), and the results were visually

analyzed using PyMOL 2.6.0 and Discovery Studio 2019 software.

Typically, docking energies less than -4.25 kcal/mol indicate some

degree of binding activity, less than -5.0 kcal/mol indicate good binding

activity, and less than -7.0 kcal/mol indicate strong binding activity.
2.8 Statistical analysis

All statistical analyses were performed using version 4.2.3 of the

R software. The lmFit and eBayes functions from the “limma” R

package were utilized for comparing gene differential expression.

Non-parametric tests were used for comparison of immune cell

distributions and functional gene set conversion z-scores between

groups. Spearman or pearson correlation was used to assess the

correlation. A probability level of 0.05 was considered statistically

significant for all analyses.
3 Results

3.1 Feature genes selected using
WGCNA algorithm

The overall design of this study was shown in Supplementary

Figure S1. After comparing AD samples with control samples in the

GSE33000 dataset, we successfully identified 590 DEGs. Among these

DEGs, 342 were upregulated, and 248 were downregulated. The DEGs

were visualized in a volcano plot (Figure 1A), and the top 100

significantly upregulated and downregulated DEGs were displayed in

a heatmap (Figure 1B). Constructing the weighted correlation network

with the genes screened from the GSE33000 dataset, we selected a soft

threshold power of 10 when a scale-free fit R2 of 0.85 was applied

(Figure 1C). Subsequently, we constructed 9 co-expression modules

(Figures 1D, E), with the largest module (turquoise) containing 4,424

genes and the smallest module (pink) containing 136 genes. To identify

key modules, we calculated the correlation between modules and AD

(Figure 1F). The blue module displayed the highest GS and exhibited a

strong correlation with AD (r = 0.72, p-value = 2e-74). MM in the blue

module (r = 0.85, p < 1e-200) exhibited a significant correlation with

GS for AD (Figure 1G). In the blue module, a total of 1191 genes were

found. By applying cut-off criteria of GS > 0.70 and MM > 0.92, we

identified RHBDF2 and TNFRSF10B as feature genes. These two genes

are also DEGs, as shown in Figure 1H.
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3.2 Functional analysis of feature genes

To delve further into the potential biological mechanisms of

AD, we conducted GSVA using hallmark and KEGG gene sets from

MSigDB. We observed that in the high expression groups of

RHBDF2 (Figure 2B) and TNFRSF10B (Figure 2C), oxidative

phosphorylation was inhibited, while hallmark biological

functions such as apoptosis, hypoxia, TNFa signaling via NF-kB,
P53 pathway, TGF-b signaling, IL6-JAK-STAT3 signaling, and

inflammatory response were upregulated, aligning with changes

seen in AD (Figure 2A). Similarly, in our study utilizing KEGG gene

sets, we found that oxidative phosphorylation, citrate cycle (TCA

cycle), Alzheimer’s disease, and selenoamino acid metabolism were

inhibited in the high expression groups of RHBDF2 (Figure 2F) and

TNFRSF10B (Figure 2G). Meanwhile, TGF-b signaling, B cell

receptor signaling pathway, P53 signaling pathway, leukocyte

transendothelial migration, apoptosis, cytokine-cytokine receptor

interaction, and VEGF signaling pathway were upregulated,

consistent with changes in AD (Figure 2E). GeneMANIA analysis

revealed that RHBDF2 is involved in epidermal growth factor

receptor and ERBB signaling pathways, interacting with RHBDF1,

ADAM17, and EGF (Supplementary Figure S2, Supplementary

Table S2), suggesting RHBDF2’s potential involvement in

multiple immune response pathways related to AD. TNFRSF10B,

on the other hand, is mainly involved in extrinsic apoptosis

signaling pathways, interacting with TNFSF10, FAS, FADD, and

CASP8 to form the death-inducing signaling complex

(Supplementary Figure S2, Supplementary Table S2), potentially

exacerbating immune cascade reactions in AD through inducing

cell apoptosis. Our findings indicate a strong correlation between

the expression of RHBDF2 and TNFRSF10B with immune-related

biological functions (Figures 2D, H), suggesting their involvement

in immune processes closely linked to AD. Furthermore, functional

enrichment analysis of the blue module significantly associated with

AD in WGCNA corroborated our hypothesis (Supplementary

Figure S3), verifying the implications of our observations.
3.3 Association of feature genes expression
with immune infiltration

To elucidate the link between RHBDF2 and TNFRSF10B with

infiltrating immune cells in AD, we utilized CIBERSORT

(Supplementary Figure S4) and xCell (Supplementary Figure S5)

algorithms to assess immune cell profiles across various cohorts:

AD patients versus controls, high versus low RHBDF2 expression,

and high versus low TNFRSF10B expression. Our analysis revealed

significant changes in five immune cell types - monocytes,

neutrophils, M1 macrophages, plasma cells, and CD8+ T cells

(Figure 3A). Specifically, CD8+ T cells and plasma cells exhibited

decreased proportions in the AD, high RHBDF2 expression, and

high TNFRSF10B expression groups as per CIBERSORT analysis,

while neutrophils, M1 macrophages, and monocytes showed

increased proportions in these groups (Figures 3C-E). These

trends were consistently observed using the xCell algorithm
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(Figures 3F-H). Additionally, correlation analysis illustrated a

negative correlation between CD8+ T cells, plasma cells, and

RHBDF2/TNFRSF10B expression, and a positive correlation

between neutrophils, M1 macrophages, monocytes, and RHBDF2/

TNFRSF10B expression (Figure 3B). These findings underscore the

significant association of RHBDF2 and TNFRSF10B with innate

and adaptive immune cells, offering valuable insights into their

immunomodulatory roles.
3.4 Expression of RHBDF2 and TNFRSF10B
association with age and gender

In the GSE33000 dataset, a comparative analysis disclosed a

significant upregulation of RHBDF2 and TNFRSF10B expression

levels in AD patients, as opposed to controls (all p < 0.001,
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Figure 4A). This upregulation trend was further affirmed in the

merged dataset comprising GSE44772, GSE118553, and GSE122063

(Supplementary Figure S6A). To delve deeper into the potential

influence of age and gender on the expression of RHBDF2 and

TNFRSF10B in healthy brains, a meticulous stratified analysis was

executed on the control samples. The control group was categorized

into three distinct age subgroups: <65 years, 65–75 years, and >75

years. This analysis unveiled statistically significant distinctions in

the expression levels of RHBDF2 and TNFRSF10B among these

subgroups. Noteworthy, the expression levels in the subgroup aged

<65 years were significantly lower compared to the other two

subgroups. While the expression levels in the 65–75 years

subgroup were lower than those in the >75 years subgroup, the

variance was not statistically significant (Figure 4B).

These age-specific trends in RHBDF2 and TNFRSF10B

expression levels in GSE33000 were further validated in the
A B

C D E

F G H

FIGURE 1

Feature genes selected using WGCNA algorithm in GSE33000 dataset. (A) Volcano plot for DEGs between AD patients and controls. (B) Heatmap of
the 100 significantly upregulated and downregulated genes. (C) Analysis of the scale-free topology model fit index for soft threshold powers (left)
and the mean connectivity for soft threshold powers (right). (D) The cluster dendrogram of genes in GSE33000 dataset. (E) The bar chart of gene
significance for each module. (F) Heatmap of modules correlating with clinical traits. (G) Identification of feature genes (GS>0.70, MM>0.92). (H)
Venn diagrams of feature genes and DEGs.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1333666
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1333666
merged dataset (Supplementary Figure S6B). Additional correlation

analysis indicated a positive correlation between the expression

levels of RHBDF2 and TNFRSF10B with age (r = 0.35, p = 9.4e-06; r

= 0.43, p = 2.3e-08; Figure 4C). Similarly, a positive correlation

between the expression levels of both genes and age was observed in

the control samples of the merged dataset (r = 0.20, p = 2.4e-05; r =

0.19, p = 4e-05; Supplementary Figure S6C). These outcomes

propose an increment in the expression of both genes with age.

Furthermore, an examination of the expression of these two genes
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concerning age in the AD group also exhibited a similar increase

with age (r = 0.15, p = 0.008; r = 0.12, p = 0.036; Figure 4D).

Notably, RHBDF2 and TNFRSF10B expression levels were higher

in the AD group compared to the control group, regardless of age

(Figure 4E). These findings were replicated in the merged dataset

(Supplementary Figures S6D, E), implying a plausible involvement

of these genes in the pathophysiology of AD.

Gender analysis unveiled significantly elevated expression levels

of RHBDF2 and TNFRSF10B in the female control group compared
A B

C D

E F

G H

FIGURE 2

Differential analysis of the z-values for the conversion of hallmark and KEGG gene sets based on GSVA. (A) Heatmap for differential analysis of z-
scores (hallmark) in AD patients and controls. (B, C) Heatmap for differential analysis of z-scores (hallmark) with high and low expression of RHBDF2,
TNFRSF10B in AD patients. (D) Heatmap of correlation between feature genes and z-scores (hallmark). (E) Heatmap for differential analysis of z-
scores (KEGG) in AD patients and controls. (F, G) Heatmap for differential analysis of z-scores (KEGG) with high and low expression of RHBDF2,
TNFRSF10B in AD patients. (H) Heatmap of correlation between feature genes and z-scores (KEGG).
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to the male control group (p = 0.0026, p = 0.0015, respectively,

Figure 4F). A similar pattern was noted in the AD group, with

female patients showing higher expression levels than males (p

<0.01, p < 0.05, respectively, Figure 4G). However, regardless of

gender, the AD group consistently manifested significantly higher

expression levels compared to the control group (all p <0.001,

Figure 4H). These results were further confirmed in the merged

dataset (Supplementary Figures S6F-H), underscoring a plausible

association of RHBDF2 and TNFRSF10B in AD, with notable

implications for age and gender.
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3.5 Expression of RHBDF2 and TNFRSF10B
in different brain regions

The analysis in the GSE33000 dataset, limited to the frontal

cortex data, prompted an evaluation of the brain region specificity

of RHBDF2 and TNFRSF10B expression. This assessment was

conducted using a merged dataset encompassing data from five

brain regions: entorhinal cortex, cerebellum, temporal cortex, visual

cortex, and frontal cortex. Upon scrutiny of the control group data,

it was observed that the expression levels of RHBDF2 and
A B

i ii

iii iv

C D E

F G H

FIGURE 3

Immune cell infiltration analysis using CIBERSORT and xCell algorithms. (A) Five significantly altered immune cell types were identified using the
CIBERSORT and xCell algorithms comparing AD patients to controls and to groups with high and low RHBDF2 and TNFRSF10B expression. (B)
Correlation analysis of RHBDF2 and TNFRSF10B expression with five immune cell types. Correlation analysis based on CIBERSORT algorithm (i, ii) and
correlation analysis based on xCell algorithm (iii, iv). The proportions of the five immune cell types were compared between AD patients and controls (C,
F) and between groups with high and low expression of RHBDF2 (D, G) and TNFRSF10B (E, H) using the CIBERSORT (C-E) and xCell (F-H) algorithms.
The purple numbers in the (B) indicate the correlation coefficients. *p < 0.05, **p < 0.01, and ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1333666
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1333666
TNFRSF10B varied significantly across brain regions, with the most

pronounced expression observed in the entorhinal cortex

(Figure 5A). This brain region specificity was similarly evident in

the AD group, with the entorhinal cortex displaying the highest

expression of these genes (Figure 5B).

Further comparison of RHBDF2 and TNFRSF10B expression

levels between AD patients and controls (Figure 5C) revealed

elevated expression levels in the AD group across multiple brain

regions. Specifically, in the frontal cortex, temporal cortex,
Frontiers in Immunology 08
cerebellum, and visual cortex, RHBDF2 exhibited significantly

higher expression in the AD group compared to the control

group. While the difference in the entorhinal cortex did not reach

statistical significance, there was a discernible increasing trend in

expression in the AD group. Moreover, TNFRSF10B expression in

the frontal cortex, temporal cortex, entorhinal cortex, and visual

cortex of the AD group was significantly higher than in the control

group, with a similar increasing trend observed in the cerebellum,

albeit without statistical significance.
A B

C D

E F
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FIGURE 4

The expression of RHBDF2 and TNFRSF10B in the GSE33000 dataset was associated with age and gender. (A) Differential analysis of RHBDF2 and
TNFRSF10B expression between the AD group and the control group. (B) Differential analysis of RHBDF2 and TNFRSF10B expression across different
age groups in the control group. Correlation analysis of RHBDF2 and TNFRSF10B expression with age in the control group (C) and the AD group (D).
(E) Differential analysis of RHBDF2 and TNFRSF10B expression between the AD group and the control group across different age groups. Differential
analysis of RHBDF2 and TNFRSF10B expression between genders in the control group (F) and the AD group (G). (H) Differential analysis of RHBDF2
and TNFRSF10B expression between AD group and control group by gender. *p < 0.05, **p < 0.01, ***p < 0.001, and ns indicates no
statistical significance.
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3.6 Expression characteristics of RHBDF2
and TNFRSF10B in multiple
neurodegenerative diseases

To ascertain the specificity of the heightened expression of

RHBDF2 and TNFRSF10B in AD, our study extended to examining

the expression profiles of these genes in various other

neurodegenerative disorders, including Parkinson’s disease (PD),

frontotemporal dementia (FTD), dementia with Lewy bodies (DLB),

and Huntington’s disease (HD). As outlined in Table 1, our results

demonstrate that in PD, the expression of RHBDF2 and TNFRSF10B

in brain regions such as the prefrontal cortex, substantia nigra, and

thalamus shows no significant deviation from normal controls,

indicating that they may not serve as specific markers for PD.

Similarly, we detected no noteworthy disparities in the expression of

these genes in the prefrontal cortex of FTD and DLB patients in

comparison to controls, further underscoring their specificity for AD.

Contrastingly, in HD, a distinct expression profile was observed; the

expression of RHBDF2 and TNFRSF10B was notably diminished in

the prefrontal cortex of HD patients when juxtaposed with

normal controls.
3.7 Performance of diagnosis for AD using
selected feature genes

In evaluating the biomarker potential of each identified gene, we

assessed their performance as classifiers for AD diagnosis in the
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training dataset. RHBDF2 and TNFRSF10B exhibited AUROC

values of 0.905 (Figure 6A) and 0.902 (Figure 6B), respectively,

effectively distinguishing between the control and AD groups.

Subsequently, a logistic regression diagnostic model (F = 149.2, p

< 0.001) was developed by merging these genes with clinical data

(age and gender), with the regression coefficients detailed in Table 2,

highlighting the substantial diagnostic contribution of RHBDF2

and TNFRSF10B in the model. Evaluation of variance inflation

factors for each variable indicated values below 5, signifying absence

of multicollinearity. The AUC of this comprehensive model

increased to 0.947 (Figure 6C) in the training dataset and 0.920

(Figure 6D) in the internal validation dataset, demonstrating

statistically significant predictive power (DeLong test p < 0.001)

compared to individual genes (Figure 6E). Analysis of the

multivariate model in the internal validation dataset revealed

strong specificity identification capabilities, with recall and f1

scores exceeding 90% (Table 3), further affirming the efficacy of

the multivariate model in accurately identifying cases.
3.8 Validation of diagnosis for AD by
external datasets

The diagnostic model’s predictive performance underwent

rigorous evaluation using three independent external validation

datasets: GSE44772, GSE118553, and GSE122063 covering diverse

brain regions for a comprehensive assessment of its predictive

capabilities. In the frontal cortex dataset, the model exhibited
A B C

FIGURE 5

Expression of RHBDF2 and TNFRSF10B in different brain regions in the merged dataset. (A) Expression of RHBDF2 (top) and TNFRSF10B (bottom) in
different brain regions in the control group. (B) Expression of RHBDF2 (top) and TNFRSF10B (bottom) in different brain regions in the AD group. (C)
Differential analysis of RHBDF2 (top) and TNFRSF10B (bottom) expression in different brain regions between AD and control groups. *p < 0.05, **p <
0.01, and ***p < 0.001.
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FIGURE 6

Performance of the prediction to diagnose AD in GSE33000 dataset. (A, B) AUROC for RHBDF2 and TNFRSF10B. (C, D) AUROC of multivariate
model in the training set and internal validation set. (E) AUROC analysis between multivariate model and feature genes. Statistic tests: DeLong test.
Data are presented as AUC ± 95% confidence interval [CI]. ***p < 0.001.
TABLE 1 Expression characteristics of RHBDF2 and TNFRSF10B in multiple neurodegenerative diseases.

datasets brain region disease genes logFC
adjusted
p-value

GSE20168 prefrontal cortex PD
RHBDF2 0.329 0.206

TNFRSF10B 0.54 0.182

GSE7621 substantia nigra PD
RHBDF2 0.493 0.491

TNFRSF10B 0.509 0.422

GSE20291 putamen PD
RHBDF2 -1.193 0.064

TNFRSF10B -1.146 0.066

GSE20292 substantia nigra PD
RHBDF2 0.348 0.372

TNFRSF10B 0.243 0.533

GSE195872 prefrontal cortex FTD
RHBDF2 -0.177 0.681

TNFRSF10B -0.324 0.63

GSE150696 prefrontal cortex DLB
RHBDF2 0.106 0.941

TNFRSF10B 0.257 0.93

GSE33000 prefrontal cortex HD
RHBDF2 -0.379 8.808E-42

TNFRSF10B -0.231 5.893E-33
F
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The dataset was downloaded from the GEO database, and gene difference analysis was based on the “limma” R software package.
PD, Parkinson’s disease; FTD, Frontotemporal dementia; DLB, dementia with Lewy bodies; HD, Huntington’s disease.
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medium-high accuracy with AUROC values of 0.950 (GSE44772),

0.797 (GSE118553), 0.862 (GSE122063), and 0.874 in the meta-cohort

(Figures 7A-D). For the cerebellum dataset, the model showed

moderate accuracy with AUROC values of 0.912 (GSE44772), 0.648

(GSE118553), and 0.751 in the meta-cohort (Figures 7E-G). In the

entorhinal cortex dataset, the model performed with medium-high

accuracy with an AUROC value of 0.868 (GSE118553, Figure 7H).

Additionally, in the temporal cortex dataset, the model displayed

medium-high accuracy with AUROC values of 0.827 (GSE118553),

0.809 (GSE122063), and 0.862 in the meta-cohort (Figures 7I-K).

Notably, in the visual cortex dataset, the model showcased high

accuracy, achieving an AUROC value of 0.939 (GSE44772)

(Figure 7L). The AUROC values for GSE44772, GSE118553,

GSE122063, and the merged datasets were 0.935, 0.752, 0.845, and

0.836, respectively (Figures 7M-P). These impressive findings affirm

the model’s stable and reliable predictive ability across various brain

regions, including mixed regions, for AD diagnosis.
3.9 Visualization of the diagnostic model
for AD

Gender was found not to significantly contribute to the

diagnosis of AD. Consequently, the model was readjusted by

excluding the gender variable. Interestingly, all regression

coefficients in the new model were found to be highly significant

(p < 0.05). Subsequent comparison using the “anova” function

indicated that the new model performed just as well as the model

with all four predictor variables included (p = 0.448). A risk

nomogram was then created based on this model to serve as a

multivariate diagnostic classifier. Each factor (TNFRSF10B,

RHBDF2, and age) was assigned specific values on the
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corresponding scale axis, and their scores were calculated by

drawing a line. The sum of these scores gave a total score, from

which a probability of AD diagnosis for each patient could be

determined by drawing another line on the risk axis (Figure 8A).

The CCA for the incidence of AD displayed a noticeable overlap

between the actual and predicted incidence rates, highlighting the

nomogram’s exceptional predictive value (mean absolute error =

0.009) (Figure 8C). Additionally, a DCA curve was employed to

evaluate the performance of TNFRSF10B, RHBDF2, and age, along

with the multivariate diagnostic classifier model (Figure 8B). The

DCA illustrated that utilizing the diagnostic model for predicting

AD occurrence provided more substantial benefits compared to

diagnosing all or none of the patients, particularly when the

threshold probability ranged from 10% to 80%. Although the net

benefit within this interval was comparable, the multivariate

diagnostic classifier exhibited a superior net benefit over

individual diagnostic genes. Furthermore, to assess the clinical

utility of the nomogram, a CIC was plotted based on the DCA

results, visually showcasing the superiority of the nomogram within

a broad and practical range of threshold probabilities. This positive

impact on diagnosis underscored the excellent predictive value of

the diagnostic model (Figure 8D). Similarly, the CIC for the

individual diagnostic genes yielded comparable results

(Supplementary Figure S7).
3.10 Small molecular drugs docking of
feature genes

RHBDF2 and TNFRSF10B have been identified as potential

characteristic genes associated with AD. Therefore, small molecule

drugs developed targeting these proteins may represent a promising

therapeutic option for AD. 15 genes exhibiting a co-expression

correlation coefficient > 0.85 with RHBDF2 and TNFRSF10B were

identified from the GSE33000 dataset (Supplementary Figure S8A).

Subsequently, using the criteria of FDR < 0.05 and connectivity

score < -0.8, two small molecule drugs, dinaciclib and tanespimycin,

were selected from the CMap database (Supplementary Figure S8B).

The perturbation expression profiles of these drugs were inversely

correlated with AD-related perturbation expression profiles,

suggesting their potential for improving AD. To further

investigate the interactions between dinaciclib, tanespimycin, and

the target proteins RHBDF2 and TNFRSF10B, molecular docking

studies were conducted using MOE 2019 software. The docking

results indicated that dinaciclib and tanespimycin are capable of

binding to the binding domains of RHBDF2 and TNFRSF10B, with

molecular docking energies ranging from -6.3296 to -6.8735 kcal/

mol. Based on the molecular docking results, it is evident that

dinaciclib and tanespimycin exhibit strong binding energy with

RHBDF2 and TNFRSF10B. Specifically, in the RHBDF2 receptor,

the residues Lys686 and Lys365 interact with dinaciclib through

hydrogen bonding, while the residues Asp683 and Ser399 interact

with dinaciclib through carbon-hydrogen interactions.

Additionally, Val373, Arg401, and Lys365 residues engage in

hydrophobic interactions with dinaciclib, and the residue Lys686

forms an electrostatic interaction with the compound (Figure 9A,
TABLE 3 Evaluation indicators for prediction models.

accuracy 0.882

error rate 0.118

precision 0.883

specificity 0.806

recall rate 0.930

f1 score 0.906
The classification threshold is 0.5.
TABLE 2 Relationships of group with feature genes and other indicators.

coefficients SE p

Group ~ RHBDF2 + TNFRSF10B + Age + Gender

RHBDF2 0.521 0.114 <0.001

TNFRSF10B 0.508 0.155 0.001

age 0.013 0.002 <0.001

gender -0.019 0.033 0.566
Data were derived from clinical and RNA sequencing samples from the GSE33000 dataset.
SE, Standard Error.
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Supplementary Figure S9A). Within the RHBDF2 receptor, the

residues Lys236, Phe623, and Ser239 form hydrogen bonds with

tanespimycin, while Arg237 and His242 interact with tanespimycin

through carbon-hydrogen interactions. Furthermore, the residues

His468, Phe196, and Lys638 engage in hydrophobic interactions

with tanespimycin, with Lys638 also binding to the compound

through electrostatic interactions (Figure 9B; Supplementary Figure

S9B). On the TNFRSF10B receptor, the residue Glu36 interacts with

dinaciclib via hydrogen bonding, while the residues Leu58, Ser43,

and Asp49 interact with dinaciclib through carbon-hydrogen

interactions. Additionally, the residues Ile42, Cys60, and Phe59
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participate in hydrophobic interactions with dinaciclib, and the

residue Asp49 engages in electrostatic interactions with the

compound (Figure 9C; Supplementary Figure S9C). The residues

Cys84, Arg92, Glu70, Asn81, Thr82, and Arg80 on the TNFRSF10B

receptor form hydrogen bonds with tanespimycin, while Cys84,

Arg92, and Asn81 interact with tanespimycin through carbon-

hydrogen bonding. Furthermore, Trp120 and Val83 residues

interact with tanespimycin through hydrophobic interactions

(Figure 9D; Supplementary Figure S9D). In conclusion, according

to the CMap database and molecular docking results, dinaciclib and

tanespimycin may represent potential options for treating AD.
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FIGURE 7

Verify performance of predictive models for diagnosing AD. (A-D) AUROC for multivariate modeling of frontal cortex in GSE44772, GSE118553,
GSE122063, and meta-cohort (frontal cortex). (E-G) AUROC for multivariate modeling of cerebellum in GSE44772, GSE118553, and meta-cohort
(cerebellum). (H) AUROC for multivariate modeling of entorhinal cortex in GSE118553. (I-K) AUROC for multivariate modeling of temporal cortex in
GSE118553, GSE122063, and meta-cohort (temporal cortex). (L) AUROC for multivariate modeling of visual cortex in GSE44772. (M-P) AUROC for
multivariate modeling in GSE44772, GSE118553, GSE122063, and meta-cohort (overall cortex).
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4 Discussion

AD, a chronic neurodegenerative disease and the top cause of

dementia, is influenced by a range of genetic, environmental, and

lifestyle factors (35). Despite extensive research, a comprehensive

understanding of AD’s pathogenesis is still lacking, and no effective

treatment has been developed thus far. Given the significant

variation in pathogenesis among AD patients, further

investigation is necessary to explore biodiagnostic markers.

ML offers a unique approach to efficiently process

multidimensional data, integrate data from various sources, and

discover novel biomarkers. The application of ML in disease

management and the development of therapeutic options has

proven invaluable (36). In our study, we aimed to further explore

the genomic characteristics of AD by utilizing theWGCNA algorithm

to construct co-expression networks. Our analysis revealed the blue

module as a significant gene module positively associated with AD.

Functional enrichment analysis showed that the feature genes within

the blue module were predominantly enriched in immune response-

related functions and pathways. By employing a cut-off criteria of GS >

0.70 andMM> 0.92, we identified two feature genes, namely RHBDF2

and TNFRSF10B, that were associated with AD.

Among the immune-related genes linked to AD, RHBDF2 and

TNFRSF10B show promising diagnostic potential (4). Our

comparative analysis of RHBDF2 and TNFRSF10B expression in

various neurodegenerative diseases has revealed that their

heightened expression is distinctive to AD, contrasting conditions

like PD, FTD, DLB, and HD. This observation underscores the
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diagnostic value of these markers in AD and their potential for

clinical application. Although current research primarily relies on

post-mortem brain tissue, the absence of evidence for detecting

RHBDF2 and TNFRSF10B in body fluids such as peripheral blood

or cerebrospinal fluid does not rule out potential future

advancements. As technology progresses and research intensifies,

novel methods for detecting these molecules in body fluids may

emerge. More sensitive assays or advanced biomarker detection

technologies, including single-molecule sequencing, could facilitate

their detection in body fluid samples. Additionally, our finding that

RHBDF2 and TNFRSF10B are significantly expressed in multiple

brain regions - including the frontal cortex, temporal cortex, and

visual cortex - provides flexibility in selecting a safe and accessible

site for brain biopsy sampling. As minimally invasive techniques

improve, physicians may conduct more precise and safer brain

surgeries for tissue sampling, further advancing our knowledge and

treatment of neurodegenerative diseases.

Considering the age-related nature of AD and the observed

gender disparities in its incidence, prevalence, and biomarker

profiles (37), we analyzed the expression patterns of RHBDF2 and

TNFRSF10B concerning age and gender. Our findings

demonstrated a consistent increase in the expression of both

genes among individuals aged 65 years and older, particularly

those with AD. Notably, the expression levels were significantly

higher in AD patients than in controls, irrespective of age.

Furthermore, we observed higher expression levels in females

compared to males, a trend also evident among AD patients.

These results suggest that RHBDF2 and TNFRSF10B may play a
A B

C D

FIGURE 8

Nomogram, CCA, DCA and CIC of the multivariate diagnostic classifier. (A) Nomogram for evaluating the risk of AD occurrence. (B) DCA of the
RHBDF2, TNFRSF10B, age and the multivariate diagnostic classifiers. (C) CCA for the relationship between the predicted probability of AD
occurrence and the actual probability. (D) CIC of the multivariate diagnostic classifiers *p < 0.05, and ***p < 0.001.
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critical role in the pathogenesis of AD and are influenced by both

age and gender.

To further explore the potential of RHBDF2 and TNFRSF10B as

biomarkers, we integrated these genes with variables such as age and

gender, employing a multivariate logistic regression model to

evaluate their effectiveness in distinguishing between the control

group and AD patients. The model exhibited impressive results,

demonstrating outstanding performance in both the training set

and internal validation set, with AUC values exceeding 0.9,

indicating strong diagnostic accuracy. To further validate the

diagnostic utility of these genes, we meticulously developed
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diagnostic nomograms and assessed the model’s predictive

capacity from various perspectives using CCA, DCA, and CIC

analyses. The findings from these extensive validations confirm

the reliability and precision of the model, highlighting the potential

of RHBDF2 and TNFRSF10B as robust biomarkers for AD.

Through comprehensive bioinformatic analysis, we observed

significant upregulation of RHBDF2 in the AD patient group.

RHBDF2, also known as iRhom2, belongs to the rhomboid

family, which is an evolutionarily conserved family of

intramembrane serine proteases (38, 39). Although structurally

similar to rhomboid, RHBDF2 lacks the essential catalytic
A

B
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D

FIGURE 9

The docking results of feature genes encoded proteins with small molecular drugs. (A) The docking result of RHBDF2 with dinaciclib. (B) The
docking result of RHBDF2 with tanespimycin. (C) The docking result of TNFRSF10B with dinaciclib. (D) The docking result of TNFRSF10B
with tanespimycin.
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residues, earning it the classification of a pseudoprotease (38).

Mammals possess two forms of iRhom, RHBDF1 (also known as

iRhom1) and RHBDF2. RHBDF2 acts as a cargo receptor for a

disintegrin and metalloprotease 17 (ADAM17), facilitating its

trafficking from the endoplasmic reticulum to the Golgi

apparatus. Within the Golgi apparatus, ADAM17 matures

through furin-mediated cleavage, which removes its inhibitory

structural domain. Ultimately, RHBDF2 aids in ADAM17

translocation to the plasma membrane, facilitating the shedding

of TNF and epidermal growth factor receptor (EGFR) ligands (38,

40, 41). Previous studies have highlighted the diverse functions of

RHBDF2 in immune-mediated diseases, specifically its regulation of

pathways such as TNF, EGFR, and stimulator of interferon genes

signaling (41). Our GeneMANIA analysis further supported the

involvement of RHBDF2 in the EGFR and ERBB signaling

pathways, where it interacts with RHBDF1, ADAM17, and EGF

within the GeneMANIA network. Immune dysregulation is

recognized as a significant contributor to AD pathogenesis.

Epigenome-wide association studies focused on AD have

identified an association between DNA methylation at RHBDF2

loci and AD risk (42–45). However, the precise mechanism by

which RHBDF2 contributes to AD remains unclear. Notably,

RHBDF2 operates within the same protein interaction network as

PTK2B (43), a known AD risk gene that plays a crucial role in the

signaling cascade governing microglia and infiltrating macrophage

activation (46). Furthermore, RHBDF2 exhibits expression in a

specific subset of immune cells, including microglia. This suggests

that RHDBF2 might aggravate AD pathology through microglia-

driven inflammatory responses (38, 47, 48). In line with this,

Bennett et al. reported an increase in RHBDF2 expression in the

context of AD (42). Consistently, our study’s violin diagram

displayed significantly elevated gene expression levels of RHBDF2

in the AD group compared to the control group. Therefore,

targeting RHBDF2 holds potential for exploring novel therapeutic

interventions for AD.

We also discovered TNFSR10B as another risk gene showing

upregulation in the AD group. TNFSR10B, also known as death

receptor 5 (DR5) or TRAIL-R2, acts as a receptor for TNF-related

apoptosis-inducing ligand (TRAIL), which is also referred to as

Apo-2 ligand (Apo2L), and TNFSF10 (49, 50). The initial report by

Rauch et al. (51). in 1997 introduced TRAIL as a potent pro-

apoptotic cytokine that induces apoptosis during peripheral and

central inflammation through complex interactions between ligands

and receptors (49, 50, 52). The TNF superfamily includes five

distinct TRAIL receptors: DR4 (TRAIL-R1, TNFRSF10A), DR5

(TNFRSF10B), DcR1 (TRAIL-R3, TNFRSF10C), DcR2 (TRAIL-

R4, TNFRSF10D), and osteoprotegerin (49, 52). Notably, DR4 and

DR5 activate the extrinsic apoptosis pathway through their

intracellular death domains, while DcR1 and DcR2 function as

decoy receptors (49, 50, 52). Consistent with these findings, our

GeneMANIA analysis indicated that TNFRSF10B is primarily

involved in the extrinsic apoptotic signaling pathway, interacting

with TNFSF10, FAS, FADD, and CASP8 to form the death-

inducing signaling complex. Numerous in vivo and in vitro
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studies have reported the involvement of TNFSF10/TNFRSF10B

in amyloid b peptide (Ab)-induced neurotoxicity (50, 53–55).

Immunoneutralization of TNFSF10 or blockade of TNFRSF10B

has been shown to prevent Ab-mediated neurotoxicity and suppress

the immune/inflammatory response, as confirmed in both in vivo

and in vitro experiments (50, 53–55). Thus, the interaction between

TNFSF10 and TNFRSF10B holds promise as a potential therapeutic

target for AD.

While previous research has suggested the pathological roles of

RHBDF2 and TNFRSF10B in the progression of AD, there has been

a lack of in-depth exploration into their specific connections with

immune cells or immune responses. Particularly regarding the role

of RHBDF2 in AD, current studies are relatively limited. Existing

clues suggest that RHBDF2 may exacerbate the pathology of AD

through inflammation driven by microglia, as indicated by its

extension through the same protein interaction network as

PTK2B. Our research further confirms the detrimental impacts of

elevated levels of RHBDF2 and TNFRSF10B in the development of

AD, linking them to immune cells, especially microglia, providing a

new research direction for these factors in exacerbating AD

pathology through mediating immune dysregulation. Notably, our

study also reveals a close association of RHBDF2 and TNFRSF10B

with immune cell infiltration in AD progression. Within AD

patients, levels of monocytes, neutrophils, M1 macrophages are

significantly increased, while levels of plasma cells and CD8+ T cells

are decreased. Correlation analyses indicate that the expression

levels of RHBDF2 and TNFRSF10B are positively correlated with

monocytes, neutrophils, and M1 macrophages, and negatively

correlated with CD8+ T cells and plasma cells. Overall, these

findings suggest that the dysregulation or dysfunction of RHBDF2

and TNFRSF10B may be pathogenic factors in AD, likely

exacerbating the pathological process of AD through immune and

inflammatory reactions mediated by microglia or peripheral

infiltrating immune cells.

Our study paves the way for unravelling the molecular

mechanisms of immune dysregulation in AD. Ultimately, our aim

is to develop personalized neuroimmune therapeutic strategies that

actively impact the treatment outcomes of AD by targeting the

interactions between RHBDF2, TNFRSF10B, and immune cells. To

align with the development of novel therapeutic approaches, we

screened 17 specific genes, including RHBDF2 and TNFRSF10B, in

the CMap database to identify potential AD therapeutic drugs.

Notably, we identified dinaciclib, a cyclin-dependent kinase (CDK)

inhibitor, and tanespimycin, a heat shock protein (HSP) inhibitor,

as potential candidate drugs for treating AD targeting RHBDF2 and

TNFRSF10B. In addition, molecular docking results showed that

dinaciclib and tanespimycin had better binding activity with

RHBDF2 and TNFRSF10B.

CDKs are key regulators of the eukaryotic cell cycle and are

involved in essential biological processes such as transcription,

metabolism, communication, and apoptosis (56). Recent studies

have reported the association between cell cycle dysregulation and

key pathological features of AD, including the accumulation of

amyloid-beta (Ab) deposits and hyperphosphorylated tau (57). It
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has been proposed that cell cycle re-entry contributes to neuronal

death in AD (58), thereby suggesting CDKs as potential therapeutic

targets (57). The potential use of dinaciclib, a multi-CDK inhibitor

targeting CDK1, 2, 5, and 9, in the treatment of AD is yet to

be evaluated.

HSPs, a family of highly conserved molecular chaperones, play a

crucial role in maintaining intracellular protein homeostasis. They

accomplish this by ensuring proper folding, assisting in the

refolding of denatured proteins, and promoting the degradation

of damaged proteins (59). Among the HSPs, HSP90 stands out as

the most abundant molecular chaperone in cells. It is involved in a

wide range of cellular processes, including diverse signaling and

regulatory pathways (60). As a result, HSP90 has become an

attractive target for drug development. One of the key functions

of HSP90 is its strict regulation of heat shock factor 1 (HSF-1)

activation. Normally, HSF-1 binds to HSP90 under normal

conditions. However, when cells are subjected to stress, HSF-1

dissociates from HSP90. Once released, phosphorylated HSF-1

translocates to the nucleus where it regulates the transcriptional

activation of various heat shock proteins, including HSP27, HSP40,

HSP70, and HSP90 (61). Geldanamycin, an inhibitor of HSP90,

facilitates the dissociation of the HSF-1-HSP90 complex, leading to

the activation of the heat shock response. This activation is achieved

through the upregulation of HSP40, HSP70, and HSP90 (62).

Tane sp imyc in , a l s o known as 17 - ( a l l y l am ino ) -17 -

demethoxygeldanamycin, is a semi-synthetic derivative of

geldanamycin that has attracted considerable attention for the

treatment of various diseases, including AD. Tanespimycin

possesses superior pharmacokinetics and is associated with lower

toxicity. Animal studies investigating the effectiveness of

tanespimycin in AD models have yielded positive results, further

supporting its potential as a therapeutic agent (63–65).

In summary, the objective of this study was to delve into the

molecular mechanisms underlying the pathogenesis of AD through

bioinformatics and ML analysis. Our findings indicate that

RHBDF2 and TNFRSF10B could play a crucial role in AD

pathogenesis by disrupting the immune homeostasis of the

intracerebral microenvironment via central immune cells or

immune cells infiltrating from peripheral sources. These genes

offer promising avenues for therapeutic research in AD and could

potentially serve as diagnostic biomarkers. However, it is imperative

to acknowledge the limitations of our study. Firstly, detection of

RHBDF2 and TNFRSF10B expression levels in peripheral blood

samples, as well as confirmation in cellular or animal models, has

not yet been achieved. Furthermore, the therapeutic effects of small

molecule drugs on AD have not been validated through cellular

experiments. In future research, we aim to thoroughly investigate

the mRNA and protein levels of these feature genes using

techniques such as qPCR and western blotting. By employing

gene interference methods like siRNA, we intend to elucidate the

precise mechanisms of these genes in AD pathogenesis.

Additionally, visualizing the binding of small molecule drugs to

the target genes and their therapeutic impact on AD will necessitate

conducting relevant cellular experiments to enhance the depth and
Frontiers in Immunology 16
comprehensiveness of our research findings. Secondly, there exist

challenges in comprehending immune cell infiltration in AD brain

tissue and its association with these feature genes. Future studies

could validate our experimental results by performing scRNAseq/

snRNAseq on physical samples. Lastly, the absence of mild

cognitive impairment samples hinders the determination of

whether these genes can be utilized as early diagnostic biomarkers

for AD. Consequently, further basic and clinical research is

imperative to validate our current understanding of the

relationship between these genes and the immune system in the

context of AD pathophysiology.
5 Conclusions

Our analysis comprehensively elucidates the intricate

connection between immune dysregulation and the pathogenesis

of AD. Notably, our study identifies two pivotal diagnostic effector

genes, RHBDF2 and TNFRSF10B, which are intricately linked to

diverse immune responses and distinct immune cell populations.

Furthermore, we have successfully constructed a diagnostic model

for enhanced AD diagnosis based on RHBDF2 and TNFRSF10B.

Ultimately, the identification of these diagnostic genes is anticipated

to propel the advancement of innovative therapeutic strategies and

pave the way for targeted AD therapy, forging new frontiers in

the field.
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