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Multifaceted role of SARS-CoV-2
structural proteins in lung injury
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and Jianguo Xu1,2*

1Shaoxing Second Hospital, Shaoxing, Zhejiang, China, 2The Children’s Hospital of Zhejiang University
School of Medicine and National Clinical Research Center for Child Health, Hangzhou,
Zhejiang, China
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third

human coronavirus to cause acute respiratory distress syndrome (ARDS) and

contains four structural proteins: spike, envelope, membrane, and nucleocapsid.

An increasing number of studies have demonstrated that all four structural

proteins of SARS-CoV-2 are capable of causing lung injury, even without the

presence of intact virus. Therefore, the topic of SARS-CoV-2 structural protein-

evoked lung injury warrants more attention. In the current article, we first

synopsize the structural features of SARS-CoV-2 structural proteins. Second,

we discuss the mechanisms for structural protein-induced inflammatory

responses in vitro. Finally, we list the findings that indicate structural proteins

themselves are toxic and sufficient to induce lung injury in vivo. Recognizing

mechanisms of lung injury triggered by SARS-CoV-2 structural proteins may

facilitate the development of targeted modalities in treating COVID-19.
KEYWORDS
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Introduction

The genome of SARS-CoV-2 contains a single-stranded positive RNA approximately

30 kb in length (1). It encodes 4 structural proteins [spike (S), envelope (E), membrane (M),

and nucleocapsid (N)], 9 accessory proteins (open reading frames 3a, 3b, 6, 7a, 7b, 8, 9b, 9c,

and 10), and 16 non-structural proteins (NSP 1-16) (1). All four structural proteins are
Abbreviations: SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; ARDS, acute respiratory

distress syndrome; CARDS, COVID-19-associated ARDS; S, spike; E, envelope; M, membrane; N,

nucleocapsid; NSP, non-structural protein; ACE2, angiotensin converting enzyme 2; RAGE, receptor for

advanced glycation endproducts; NF-ĸB, nuclear factor kappa B; RBD, receptor-binding domain; TMPRSS2,

transmembrane protease serine 2; ERGIC, endoplasmic reticulum–Golgi intermediate compartment; NTD,

N-terminal domain; CTD, C terminal domain; LPS, lipopolysaccharide; TLR2, Toll-like receptor 2; NLRP3,

NLR family pyrin domain containing 3; TBK-1, TANK-binding kinase 1; BAL, bronchoalveolar lavage; BOK,

B cell lymphoma 2 (BCL-2) ovarian killer; MASP-2, MBL-associated serine protease-2.
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required to complete an infectious event, which includes entering

host cells, replication of the viral genome, packaging, assembly,

trafficking, and release of virus particles (2). The S protein mediates

viral attachment to the target cells via association with angiotensin-

converting enzyme 2 (ACE2). S protein is then cleaved by proteases

to cause fusion of viral and cellular membranes. Following cellular

entry, the viral RNA is replicated, translated, and packaged,

resulting in exocytosis of virions and activation of host immune

response (3).

COVID-19 initially presents with upper and lower respiratory

tract manifestations and later progresses to systemic diseases such

as gastrointestinal diseases, myocardial inflammation, and acute

respiratory distress syndrome (ARDS), which results from severe

acute lung injury (4). A global literature survey at the early phase of

global pandemic showed that the fatality ratio of COVID-19-

associated ARDS (CARDS) was almost 50%. Moreover, the

prevalence of CARDS in non-survivors was as high as 90% (5). In

the early stage of CARDS development, alveolar macrophages are

activated following viral infection and death of alveolar epithelial

cells. Activated alveolar macrophages generate inflammatory

cytokines and chemokines that recruit immune cells, including

but not limited to T cells, monocytes, and neutrophils, to the

alveolar space. In the meantime, the recruited cells augment the

production of proinflammatory mediators and culminate in a

cytokine storm (6). Concurrently, infection of SARS-CoV-2 elicits

direct as well as indirect activation of complement pathways (7).

Cytokine storm and complement activation disrupt the epithelial-

endothelial barrier and drive endothelialitis, causing elevated

permeability as well as accumulation of protein-rich fluid in

alveolar and interstitial spaces. Lung pathology and chest

computed tomography show evidence of pneumonitis (8).

Endothelialitis enhances procoagulant activity and represses

fibrinolytic activity, resulting in COVID-19-associated

coagulopathy (9). About 80% of patients with viral pneumonitis

improve with no specific interventions. Patients with old age,

hypertension, diabetes, and obesity are at increased risk of

exacerbation and development of CARDS 7-10 days after onset of

symptoms (3, 10).

The pathogenesis of CARDS is quite complex and remains to be

further explored. S protein of SARS-CoV-1 was reported to

aggravate acid-stimulated lung injury via binding with ACE2. In

addition, the injury was mitigated by an inhibitor for angiotensin II

receptor type 1 (11). Intranasal delivery of recombinant SARS-

CoV-1 N protein triggered progressive pulmonary edema in mice

(12). Many reports have found that structural proteins of SARS-

CoV-2 are sufficient to cause acute lung injury independent of viral

infection (13, 14). Our group documented that SARS-CoV-2 N

protein prompted acute lung injury in mice via binding with

receptor for advanced glycation endproducts (RAGE) and

activation of nuclear factor kappa B (NF-ĸB) pathway (15, 16).

This article discusses the structural characteristics of SARS-CoV-2

structural proteins, structural protein-provoked proinflammatory

responses in vitro, and structural protein-evoked lung injury.
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Structural insights into SARS-CoV-2
structural proteins

S protein

S protein mediates cell recognition, membrane fusion, and entry

of the SARS-CoV-2 virus. Variants of SARS-CoV-2 with S protein

mutations such as Alpha, Beta, Gamma, Delta, and Omicron

augment infectivity and immune escape (17). S protein is

comprised of two subunits, S1 and S2. The S1 subunit is

composed of a N-terminal domain (NTD) and a long C-terminal

receptor-binding domain (RBD), which binds with ACE2 in the

membrane of host cells (18). The S2 subunit carries a fusion peptide

for viral entry, two heptad repeats, a transmembrane domain, and a

C-terminal tail (19). ACE2 is highly expressed in type I and type II

alveolar epithelial cells. In contrast, ACE2 has low expression in

airway epithelial cells, endothelial cells, and macrophages (20, 21).

Single-cell transcriptomic analysis revealed that SARS-CoV-2

infected type I and type II alveolar epithelial cells, basal cells, club

cells, and alveolar macrophages (22, 23). After the binding of S1

subunit with cell surface ACE2, the S2 subunit is subjected to

proteolytic digestion by transmembrane serine protease 2

(TMPRSS2), resulting in virus-plasma membrane fusion (24).

SARS-CoV-2 virion can also gain entry to host cells via the

endosomal pathway, in which S2 subunit is cleaved by cathepsin

L (24). Upon cell entry, the viral genome is replicated and

transcribed by RNA-dependent RNA polymerase (RdRp), which

is composed of catalytic nsp12 subunit and nsp7-nsp8 cofactors in a

replication–transcription complex (RTC) (25). The RTC also

includes nsp13 helicase for RNA unwinding, nsp10/nsp14

exonuclease for proofreading to enhance replication fidelity, and

nsp10/nsp14/nsp16 methyltransferase for RNA capping (26). The

viral replication culminates in an exorbitant inflammatory

response, which is accompanied by systemic cytokine storm and

complement activation, as well as excessive activation of

macrophages in the lung. The cytokine storm and complement

activation cause endothelial dysfunction and elevated vascular

permeability. Activated macrophages in the lung also release

excessive proinflammatory chemokines, resulting in infiltration of

neutrophils and monocyte-derived macrophages (27).
E protein

E protein is the smallest SARS-CoV-2 structural protein and is

indispensable in viral assembly, release, and pathogenesis. E protein

is highly conserved during evolution, as evidenced by 96% similarity

between SARS-CoV-1 and SARS-CoV-2 (28). It contains three

domains: a negatively charged N-terminus, an uncharged

transmembrane domain, and a C-terminus containing diverse

motifs for posttranslational modification (28). A small percentage

of E protein is integrated into the virions, while the bulk of the

protein is localized at Golgi and endoplasmic reticulum–Golgi
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intermediate compartment (ERGIC), participating in viral assembly

and release (29). A recombinant SARS-CoV-1 virus without the E

protein gene replicated at a slower rate and caused milder lung

inflammation compared with the recombinant wild-type virus in a

hamster model (30). A SARS-CoV-2 variant with a 12 base pair

deletion at the E protein gene showed higher S protein levels in viral

culture, indicating the deletion may enhance viral replication (31). E

protein possesses two unique structural features. First, it can form

cation selective channels named viroporins via homo-

oligomerization, in which asparagine 15 (N15) and valine 25

(V25) are essential for the function (32). SARS-CoV-2 E protein

elevated the pH value in ERGIC and lysosomes via the viroporin

activity (33). A SARS-CoV-1 virus with E protein mutation for

viroporin activity showed reduced edema and production of

proinflammatory cytokines in mouse lung (34). Second, E protein

contains a C-terminal motif (DLLV) which mediates the binding

with PDZ proteins to disrupt epithelial barrier and promote viral

spread (35).
M protein

M protein is also essential in the assembly and release of SARS-

CoV-2 (36). It is comprised of a short NTD, three transmembrane

domains, and a C terminal domain (CTD) situated in the interior of

virion (37). The assembly of SARS-CoV-2 virion takes place inside

of ERGIC. M protein encompasses a trans-Golgi network

localization signal and is transported to the ERGIC a little earlier

than S and E, indicating its function in originating the assembly of

SARS-CoV-2 (38, 39). M protein itself binds weakly with N protein,

however the interaction is strongly elevated with the co-presence of

the N protein and RNA (40). It associates with E protein on the

membrane of virus like particles and mediates virion release. The

binding between M and E is enhanced by ubiquitinating M at

position K15 (41). M protein as well as E protein induce the

intracellular retention of S protein and ensure that SARS-CoV-2

viral particles are assembled (36).
N protein

SARS-CoV-2 N protein packages the viral genomic RNA to

form helical ribonucleoprotein complex encompassed within viral

capsid (42). In addition, N protein enhances viral RNA

transcription and replication via liquid–liquid phase separation

(43). N protein contains a NTD, a linker region with abundance

in serine and arginine residues, and a CTD. NTD forms a right‐

handed fist shape with a core of b‐sheet as well as a b‐hairpin
region, while CTD exhibits as tightly interlocked homodimer with a

rectangular slab shape (44). There is a positively charged RNA

binding groove on the surface of NTD (45). Both NTD and CTD

partic ipate in binding with the RNA genome, while

phosphorylation of the linker region impacts RNA binding (46).

The linker region is indispensable for anchoring the

ribonucleoprotein to the viral membrane (45). There is a

phosphorylation-dependent association between N protein at the
Frontiers in Immunology 03
linker region and human 14-3-3 family proteins, which may

regulate nucleocytoplasmic shuttling of N protein (47). Binding

between N protein and ubiquitin-like domain 1 of NSP3 of SARS-

CoV-2 induces ribonucleoprotein dissociation (48). N protein also

triggers humoral and cellular immune response, suggesting the

potential benefits of future COVID-19 vaccine formation

containing N component (49, 50).
Structural protein-induced
inflammatory responses in vitro

S protein

Both ACE2 shedding and downregulation of ACE2 play a role

in S protein-induced inflammatory response. ACE2 is a

transmembrane protein and can be cleaved into soluble but

enzymatically active ACE2 through a process called shedding.

Binding of S protein to ACE2 induced ectodomain shedding of

ACE2 by tumor necrosis factor-alpha convertase (ADAM17) for

SARS-CoV-1 (51) and membrane-type 1 matrix metalloproteinase

for SARS-CoV-2 (52). Soluble ACE2 interacted with S protein to

promote receptor-mediated endocytosis of SARS-CoV-2 (53).

Inhibition of the generation of soluble ACE2 reduced the

production of TNF-a in vitro (54). Soluble ACE2 occurred early

in COVID-19 patients and was reported as a predictor of disease

severity (55). In terms of ACE2 downregulation, Gao et al. reported

that S protein downregulated ACE2 via enhancing the degradation

mRNA of ACE2 (56). ACE2 countered the effect of angiotensin II

(Ang II) by converting Ang II into Ang 1-7. Reduced ACE2

enhanced the activation of Ang II/Ang II type 1 receptor

pa thway , l ead ing to pro inflammat ion response and

vasoconstriction (57). Higher levels of Ang II were detected in

COVID-19 patients (56). In contrast, Lu et al. found that S protein

downregulated ACE2 expression via clathrin and AP-2-mediated

endocytosis. S protein-primed cells presented with a gene

expression pattern of activated cytokine signaling (58).

Additionally, downregulation of ACE2 induced by S protein was

responsible for endothelial dysfunction, resulting in oxidative stress

and inflammation (59).

Several studies have demonstrated that S protein has

proinflammatory activity in vitro. Villacampa et al. reported that

S protein triggered the activation of NF-kB and NLR family pyrin

domain containing 3 (NLRP3) inflammasome in endothelial and

immune cells (60). NLRP3 inflammasome activated caspase-1,

which enhanced the generation of proinflammatory and

proapoptotic IL-1b and IL-18 (61). Petruk et al. discovered that S

protein bound lipopolysaccharide (LPS) with high affinity and

induced NF-kB activation and cytokine responses in several cell

types (62). Khan et al. found that S protein was recognized by Toll-

like receptor 2 (TLR2), which dimerized with TLR1 or TLR6, to

trigger the activation of NF-kB and induce proinflammatory

cytokines such as IL-6, TNF-a, and IL-1b (63). Umar et al.

revealed that production of S protein-induced proinflammatory

cytokines was blocked by TLR2 or TLR7 knockdown in

macrophages, indicating the involvement of both TLR2 and TLR7
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in S protein signaling (64). However, Zhao et al. showed that S

protein bound and activated TLR4 (65). Patra et al. demonstrated

that S protein promoted Ang II type 1 receptor signaling, which

activated MAPK/NF-kB pathway and induced IL-6 release in

epithelial cells (66). Barhoumi et al. uncovered that S protein

promoted M1 macrophage polarization, leading to apoptosis,

product ion of react ive oxygen species , and elevated

proinflammatory cytokines. These effects were partially blocked

by an ACE inhibitor (67). Li et al. showed that S protein promoted

autophagy via PI3K/AKT/mTOR pathway in ACE2 expressing cells

and enhanced inflammation and apoptotic responses (68). In

addition, Olajide et al. reported that recombinant S1 protein

stimulated the release of proinflammatory cytokines from

peripheral blood mononuclear cells through activation of NF-kB,
p38 MAPK, and NLRP3 inflammasome (69).
E protein

Ion-channeling viroporins formed by E protein promoted the

activity of NLRP3 inflammasome, which controlled activation and

release of IL-1b and IL-18 (70). E protein interacted with PDZ

domain 2 of human zona occludens-1 and caused damages to tight

junction and epithelial barrier, contributing to virus spread and

accumulation of water in the lungs (71). Equilibrium and kinetic

analysis indicated that E protein bound with the tight junction-

associated PALS1 with high affinity, resulting in epithelial barrier

disruption and amplified tissue remodeling (72). E protein induced

the dysfunction of the blood-brain barrier and triggered

inflammatory response in a blood-brain barrier model (73). In

macrophages primed with LPS and stimulated with an analogue of

viral double-stranded RNA (poly I:C), E protein elevated NLRP3

inflammasome activation (74). E protein was recognized by TLR2 to

trigger the release of inflammatory mediators including TNF-a and

IFN-g (75). Additionally, intracisternal injection of E protein

prompted depression-like symptoms and dysosmia via TLR2-

dependent neuroinflammation (76). Furthermore, E protein was

documented to trigger the production of high-mobility group box 1

(HMGB1), which elicited proinflammatory response via TGF-b1/
SMAD2/3 pathway, resulting in renal fibrosis (77).
M protein

Interferons (IFNs) type I (IFN-a and IFN-b) and type III (IFN-

l) are cytokines with inherent antiviral activity, which impairs viral

replication in infected cells (78). Galani et al. reported that reduced

production of type I and III IFNs, as evidenced by enhanced

proinflammatory responses, were present in peripheral blood

mononuclear cells in a group of severe COVID-19 patients (79).

M protein was found to modulate type I IFN generation via binding

with TANK-binding kinase 1 (TBK1) and enhancing its

degradation via ubiquitination. The reduced TBK1 blocked the

activation of interferon regulation factor 3 (IRF3), resulting in

diminished production of type I IFN (80). Lei et al. documented

that SARS-CoV-2 infection triggered overt but delayed IFN-b
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production, while M protein inhibited virus-induced IFN-b
promoter activation (81). Zheng et al. revealed that M protein

functioned to reduce the release of IFN-b and IFN-l via interacting

with proteins in RIG-I/MDA-5 signaling, which recognized

cytosolic double-stranded viral RNA and mediated the generation

of IFNs. M protein bound with RIG-I, MAVS, and TBK1 and

subsequently reduced the binding between MAVS and TBK1,

resulting in diminished phosphorylation of IRF3 (82). Ren et al.

found that M protein induced cell apoptosis via binding with

phosphoinositide-dependent protein kinase-1 (PDK1) and

blocking the activation of PKB/Akt pathway, while N protein

served as a scaffold for the function of M protein (83).
N protein

Chen et al. discovered that N protein bound with SMAD3,

which suppressed the expression of cystic fibrosis transmembrane

conductance regulator (CFTR), leading to increased intracellular

Cl− concentration in airway epithelial cells. Subsequently, serum/

glucocorticoid regulated kinase 1 sensed the elevated Cl−

concentration and triggered an inflammatory response (84).

Another study showed that SARS-CoV-2 N protein had the most

dramatic effect in stimulating antiviral cytokines and

proinflammatory chemokines in comparison to the other six N

proteins from coronaviruses. N protein promoted endocytosis of

nucleic acids, which was enhanced by RANTES and lactate.

Moreover, wild-type SARS-CoV-2 N protein prompted more

prominent endocytosis of nucleic acid compared with Omicron

counterpart (85). Lopez-Munoz et al. discovered that N protein

bound to heparan sulfate in cell surface with high affinity. N protein

had high affinity to 11 chemokines and impaired chemokine

functions, which may facilitate viral replication and transmission

(86). Karwaciak et al. found that N protein induced production of

IL-6 from human monocytes and macrophages (87), while the effect

was blocked by chlorpromazine via impairing MEK/ERK signaling

(88). Qian et al. revealed that N protein elevated the expression of

proinflammatory TNF-a, IL-1b, and MCP-1 in addition to ICAM-1

and VCAM-1 in endothelial cells. Endothelial cells were activated

by the N protein via TLR2/NF-kB and TLR2/MAPK signal

pathways (89). Wu et al. showed that viral RNA triggered liquid-

liquid phase separation of N protein. As a result, N protein

associated with and activated the TAK1 and IKK enzyme

complex, which promoted NF-kB activation and inflammatory

response (90).

N protein has also been reported to participate in the

suppression of innate immune response. Savellini et al. uncovered

that N protein bound with TRIM25, an E3 ubiquitin ligase enzyme,

and blocked TRIM25-facilitated RIG-I activation and IFN-b
production (91). Zheng et al. documented that N protein subdued

expression of ISG56, CXCL10, IFN-b, and IFN-l, induced by poly

(I:C). N protein bound with Ras GTPase-activating protein-binding

protein 1 (G3BP1) to reduce the formation of antiviral stress

granule and block the activation of RIG-1 by double-stranded

RNA (92). Another group identified that CTD of N protein was

crucial in the liquid-liquid phase separation of N protein. This
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separation blocked ubiquitination and aggregation of mitochondrial

antiviral signaling protein and inhibited innate immunity (93).
Structural protein-evoked lung injury

S protein

In transgenic mice overexpressing human ACE2, intratracheal

instillation of recombinant S1 subunit of S protein elevated cell

infiltration and protein concentration in the bronchoalveolar lavage

(BAL) at 72 h after exposure. It also upregulated inflammatory

cytokines in BAL/serum and induced histological characteristics of

acute lung injury. Mechanistically, S protein activated the NF-kB and

STAT3 pathways in the lungs (94) (Table 1) (Figure 1). The same

group also reported that S1 subunit of S protein exacerbated lung injury

in human ACE2 transgenic mice on an alcohol diet in comparison with

mice on a control diet. Concurrently, the S1 subunit activated NF-kB,
STAT3, and NLRP3 (95). Cao et al. found that lentivirus expressing S

protein targeted type II alveolar cells and M1 macrophages and

induced acute lung inflammation in mice at 24 h. Lentiviral S

protein also elevated proinflammatory cytokines in the lungs as well

as in the RAW264.7 macrophage cell line (96). Using NF-kB reporter

mice, Puthia et al. demonstrated that co-administration of S protein

and LPS via aerosol synergistically increased NF-kB induction

compared with LPS alone. Co-administration of S protein and LPS

significantly elevated infiltration of macrophages and neutrophils as

well as proinflammatory cytokines in the BAL at 24 h compared with

LPS alone. Mice treated with S protein and LPS also had a higher lung

injury score in histological analysis. The coadministration model

mimicked lung injury observed in COVID-19 (97). In Syrian

hamsters, Lei et al. showed that intratracheal administration of

pseudovirus expressing S protein induced lung damage with

thickened alveolar septa and elevated infiltration of mononuclear

cells at day 5. There were decreased levels of phospho-AMP-

activated protein kinase, phosphor-ACE2, and ACE2 in the damaged

lungs. The alterations in the protein expression were recapitulated in

pulmonary arterial endothelial cells infected with pseudovirus

expressing S protein (59). Zhang et al. discovered that intraperitoneal

injection of recombinant RBD of S protein aggravated LPS-induced

acute lung injury in mice at day 3. RBD of S protein bound with ACE2

and downregulated its expression, resulting in an elevation in Ang II.

Ang II activated its receptor and downstream NF-kB-NOX1/2
signaling pathway, leading to oxidative stress and redox imbalance as

well as proinflammatory response in the lung. In addition,

recombinant ACE2 blocked lung injury induced by RBD of S

protein (98). In transgenic C57BL/6 mice expressing human ACE2,

Liang et al. revealed that intratracheal administration of recombinant

RBD of S or S1 protein for 10 days elevated IL-18 mRNA expression in

the blood. The treatment augmented infiltration of neutrophils in the

lung and lung injury scores. S protein administration also elevated

expression of NLRP3-dependent IL-18 in the lung, while IkBa levels

were decreased. In addition, S protein increased IL-18 expression via

reducing mitophagy and enhancing mitochondrial reactive

oxygenation species in vitro and in vivo (99). Elevated IL-18 levels

have been correlated with disease severity and clinical outcomes of
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COVID-19 patients (99, 102). Satta et al. revealed that intravenous

injection of lentivirus expressing S protein increased proinflammatory

cytokines in the BAL and macrophages in the lung, which were

abolished by liposome-human ACE2 (100). In BALB/c mice

expressing human ACE2, Gu et al. found that co-administration of

recombinant extracellular domain of S protein and poly (I:C)

aggregated lung injury in histology compared with poly (I:C) alone

at 24 h. The co-administration also increased neutrophil infiltration

and proinflammatory cytokines in the BAL, while S protein or poly (I:

C) alone lacked the effect (101). These findings contradicted some other

reports cited in this review and indicate that S protein itself does not

directly induce significant lung injury but requires coadministration of

a pathogen-associated molecular pattern (PAMP). Furthermore, S

protein was able to induce lung injury in an ACE2-independent

manner. Biering et al. found that S protein triggered endothelial

hyperpermeability in cells that do not express ACE2 in vitro.

Intranasal administration of recombinant S protein triggered vascular

leak in the lungs of mice that do not express human ACE2. In vitro

studies revealed that glycosaminoglycans, integrins, and the TGF-b
signaling pathways were all essential for S-mediated barrier

dysfunction (13).

S protein also causes injuries in other systems. Nasal inoculation of

adenovirus vector expression S1 protein caused olfactory bulb damage

and brain inflammation in mice via elevating calcium and decreasing

intracerebral acetylcholine production (103). In mice with collagen-

induced arthritis, Lee et al. showed that injection of a plasmid encoding

S protein exacerbated arthritis via inducing inflammation,

autoantibody, and thrombosis (104). Liang et al. documented that

intratracheal delivery of S1 and RBD of S protein prompted cardiac

dysfunction and elevated expression of IL-18 and NLRP3 in the heart.

IL-18 inhibition alleviated S protein-induced cardiac dysfunction (99).

Robles et al. discovered that S protein bound with integrin a5b1 in

endothelial cells via RGD motif in the RBD domain. The binding

activated NF-kB in endothelial cells, resulting in elevated expression of

adhesion molecules (VCAM1 and ICAM1) and proinflammatory

cytokines, as well as the hyperpermeability of the endothelial cells in

vitro and in vivo (105). Another study observed that S protein elevated

VEGF levels in enterocytes via Ras‐Raf‐MEK‐ERK pathway, enhancing

vascular hyperpermeability and inflammation. S protein-induced

intestinal inflammation was alleviated by both ERK and VEGF

inhibitors in vivo (106).
E protein

Intratracheal administration of recombinant E protein induced the

accumulation of inflammatory cells and cell death in the lungs of wild-

type (WT) mice at 24 h, which was not present in the TLR2–/– mice. E

protein also elevated proinflammatory cytokines in the BAL of WT

mice. Blockage of TLR2 reduced SARS-CoV-2 virus-induced mortality

and elevation in proinflammatory cytokines in mice (75) (Table 2)

(Figure 2). Another group found that E protein formed pH-sensitive

cation channels in an environment of lipid bilayer. Intravenous

administration of recombinant E protein produced the hallmarks of

acute lung injury with infiltration of inflammatory cells, pulmonary

hemorrhage and edema, and interstitial hyperemia in mice at 72 h.
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TABLE 1 Studies demonstrating the effects of SARS-CoV-2 structural proteins on acute lung injury in animal models.

References Animal model Structural
protein
format

Delivery dose,
route, and time of
sample collection

Major findings Mechanisms

Colunga
Biancatelli,
et al., 2021 (94)

Transgenic C57BL/6 mice
expressing human ACE2

Recombinant S1
subunit of
S protein

400 µg/kg, intratracheally,
72 h

↑White blood cell infiltration
↑Protein concentrations in
BAL
↑Proinflammatory cytokines in
BAL and serum
↑Features of lung injury in
histology
↑Activation of NF-kB
and STAT3

S protein activates NF-kB and
STAT3 pathways in the lungs.

Solopov et al.,
2022 (95)

Transgenic C57BL/6 mice
expressing human ACE2
on alcohol diet

Recombinant S1
subunit of
S protein

400 µg/kg, intratracheally,
72 h

↑White blood cell infiltration
↑Proinflammatory cytokines in
BAL
↑Features of lung injury in
histology
↑Activation of NF-kB, STAT3,
and NLRP3
↑Expression of lung ACE2 in
mice with alcohol diet

Alcohol elevates expression of
ACE2 in the lung.
S protein activates NF-kB,
STAT3, and
NLRP3 pathways.

Cao et al.,
2021 (96)

C57BL/6 mice Lentivirus
expressing
S protein

8 × 10^8 viral particles,
intravenous injection, 24 h

↑Inflammatory cell infiltration
↑Alveolar wall thickness
↑Proinflammatory cytokines in
the lung

S protein induces
inflammatory response in
lung macrophages.

Puthia et al.,
2022 (97)

NF-kB reporter and wild-
type C57BL/6 mice

Recombinant
S protein

5 mg, aerosol delivery along
with LPS, 24 h

↑Macrophages and neutrophils
in BAL
↑Proinflammatory cytokines in
BAL
↑Lung injury score
↑NF-kB activation

S protein activates NF-kB
synergistically with LPS in
the lung.

Lei et al.,
2021 (59)

Syrian hamsters Pseudovirus
expressing
S protein

1 × 10^8 PFU,
intratracheally, 5 days

↑Mononuclear cell infiltration
↑Alveolar septal thickness
↓Expression of phopho-ACE2
and ACE2

S protein decreases ACE2 to
impair endothelial function.

Zhang et al.,
2022 (98)

C57BL/6 mice Recombinant
RBD domain of
S protein

5.5 nmol/kg,
intraperitoneally, 3 days

↑Lung injury score and edema
↑Cell counts and protein
concentrations in BAL
↑Proinflammatory cytokines in
BAL
↓Level of ACE2 in the lung

RBD of S protein induces
lung injury via
reducing ACE2.

Liang et al.,
2023 (99)

Transgenic C57BL/6 mice
expressing human ACE2

Recombinant
RBD of S protein
or S1 protein

5 mg daily, intratracheally,
10 days

↑Lung injury score
↑Neutrophil infiltration
↑Proinflammatory IL-18 in the
lung
↓Mitophagy

RBD or S1 protein raises IL-
18-mediated lung injury via
reducing mitophagy.

Satta et al.,
2022 (100)

C57BL/6 mice injected
with/without liposome-
human ACE2

Lentivirus
expressing
S protein

1 x 10^5 pfu,
intravenously, 24 h

↑Proinflammatory cytokines in
BAL
↑Macrophages and IL-6 in
the lung

Liposome human ACE2
neutralizes S protein-evoked
lung inflammation.

Gu et al.,
2021 (101)

BALB/c mice expressing
human ACE2 via
adenovirus infection

Recombinant
extracellular
domain of
S protein

15 mg, intratracheally, 24 h ↑Lung injury in histology
↑Neutrophil infiltration
↑Proinflammatory cytokines
in BAL

Extracellular domain of S
protein triggers cytokine
storm and lung injury.

Biering et al.,
2022 (13)

C57BL/6 mice without
expressing human ACE2

Recombinant
S protein

50 mg, intranasally, 24 h ↑Vascular leak in the lungs S protein promotes signaling
of integrins and TGF-b
F
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ACE2, angiotensin-converting enzyme 2; S protein, spike protein; BAL, bronchoalveolar lavage; NF-kB, nuclear factor kappa B; STAT3, Signal transducer and activator of transcription 3; NLRP3,
NLR family pyrin domain containing 3; RBD, receptor binding domain. ↑ indicates increase and ↓ indicates decrease.
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FIGURE 1

Schematic diagram of mechanisms for S protein-induced lung injury. (A) S protein binds with ACE2, leading to ACE2 shedding and downregulation.
Reduced ACE2 promotes the activation of Ang II/angiotensin II type 1 receptor (AT1R)/NF-kB/NOX1/2 pathway, leading to generation of reactive
oxygen species (ROS). ROS enhances apoptosis of alveolar epithelial cells and endothelial cells, resulting in barrier dysfunction and edema. Activated
AT1R also activates NLR family pyrin domain containing 3 (NLRP3) inflammasome in alveolar macrophages and triggers cell apoptosis and cytokine
storm. (B) S protein activates Toll-like receptors such as TLR4 through binding of lipopolysaccharide (LPS) and enhances NF-kB activity, resulting in
activation of NLRP3 inflammasome and cytokine storm. (C) S protein promotes M1 polarization of alveolar macrophages through binding to ACE2,
which enhances the proinflammatory response. (D) S protein reduces mitophagy through binding to ACE2, resulting in activation of NLRP3
inflammasome and cell apoptosis. (E) S protein binds to ACE2 and triggers activation of STAT3, MAP kinases (MAPK), and NF-kB via other
unidentified mechanisms, leading to cytokine storm and neutrophil infiltration. (F) S protein triggers vascular leak and edema independent of ACE2
binding. S protein binds with glycosaminoglycans and integrins, which leads to the activation of TGF-b signaling pathway and barrier dysfunction.
TABLE 2 Studies demonstrating the effects of SARS-CoV-2 structural proteins on acute lung injury in animal models.

References Animal model Structural
protein
format

Delivery dose, route,
and time of
sample collection

Major findings Mechanisms

Zheng et al.,
2021 (75)

WT and TLR2–/– mice Recombinant
E protein

25 mg, intratracheal, 24 h ↑Inflammatory cell infiltration
↑Apoptosis
↑BAL proinflammatory cytokines

E protein binds and
activates TLR2.

Xia et al.,
2021 (107)

C57BL/6 mice Recombinant
E protein

25 mg/kg, tail vein injection,
6 and 72 h

↑Inflammatory cell infiltration
↑Pulmonary hemorrhage and edema
↑Pulmonary interstitial hyperemia
↑Serum proinflammatory cytokines

E protein forms pH-
sensitive cation channels.

Yang et al.,
2022 (14)

C57BL/6 mice Lentivirus
expressing
M protein

5 × 107 TU/kg, intratracheal,
3 days

↑Pulmonary permeability
↑Apoptosis of lung cells

M protein binds with BOK
and promotes
mitochondrial apoptosis.

Gao et al.,
2022 (108)

C57BL/6 WT and
MASP2−/− mice as
well as BALB/c mice

Adenovirus
expressing
N protein

1 × 10^8–9 PFU, tail vein,
24 h after LPS treatment

↑Mortality
↑Lung tissue inflammation

N protein triggers MASP-2-
mediated
complement activation.

Pan et al.,
2021 (109)

WT and NLRP3−/−

C57BL/6 mice
Adeno-associated
virus expressing
N protein

5 × 1011 vg, tail veil, 3 weeks ↑Inflammation in histology
↑LPS-induced animal death
↑IL-1b and IL-6

N protein binds and
activates NLRP3.

Xia et al.,
2021 (15)

WT and TLR4–/–

C57BL/6 mice
Recombinant
N protein

75 mg, intratracheal, 24 h ↑Protein permeability
↑Total cell count in BAL
↑Neutrophil infiltration
↑Proinflammatory cytokines

N protein induces lung
injury via activation of NF-
ĸB. N protein induced lung
injury is TLR4 independent.

Xia et al.,
2023 (16)

WT and RAGE–/–

C57BL/6 mice
Recombinant
N protein

75 mg, intratracheal, 24 h ↓Lung injury in RAGE–/– mice
↓Lung injury in mice received
RAGE antagonist

N protein binds with RAGE
and activates RAGE-ERK1/
2-NF-ĸB pathway.
F
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WT, wild-type; TLR2, Toll-like receptor 2; BAL, bronchoalveolar lavage; BOK, B cell lymphoma 2 (BCL-2) ovarian killer; MASP-2, MBL-associated serine protease-2; NLRP3, NLR family pyrin
domain containing 3; NF-kB, nuclear factor kappa B; RAGE, receptor for advanced glycation endproducts. ↑ indicates increase and ↓ indicates decrease.
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There was also an upregulation of proinflammatory cytokines in the

serum. In SARS-CoV-2-infected transgenic mice, administration of

inhibitors for the channels decreased the viral load, extent of injury, and

proinflammatory cytokines in the lungs (107).
M protein

Yang et al. reported that M protein bound to BH2 region of B

cell lymphoma 2 (BCL-2) ovarian killer (BOK), blocked the

ubiquitination of BOK, elevated BOK levels, and promoted

mitochondrial apoptosis in vitro. Lentiviral expression of M

protein elevated pulmonary permeability and prompted apoptosis

of lung cells in vivo. Knockdown of BOK ameliorated alveolar-

capillary permeability and pulmonary edema induced by M protein

(14) (Table 2) (Figure 3).
N protein

Gao et al. revealed that N protein bound and activated MBL-

associated serine protease-2 (MASP-2), leading to activation of

complements 3 and 5b-9. Adenovirus expressing N protein

aggravated LPS-induced mortality and lung tissue inflammation

in mice. The impact of N protein in vivo was blocked by an inhibitor

of MASP-2 and antibodies for N protein and MASP-2 (108)

(Table 2) (Figure 4). Pan et al. discovered that N protein bound

with NLRP3 to enhance the assembly of NLRP3 inflammasome.

Adeno-associated virus expressing N protein induced lung

inflammation in histology, aggravated LPS-induced animal death,

and elevated the expression of IL-1b and IL-6 in serum as well as in

the lung. N protein-evoked lung injury was hindered by inhibitors
Frontiers in Immunology 08
for caspase-1 and NLRP3 (109). Our group showed that

administration of recombinant N protein to C57BL/6 mice

prompted acute lung injury, as reflected by increased protein

permeability, proinflammatory cytokines, and infiltration of

neutrophils in the BAL. N protein also induced M1 macrophage

polarization of alveolar macrophages and phosphorylation of NF-

ĸB p65 (15). Our group recently revealed that N protein is a ligand

for RAGE. N protein triggered proinflammatory response via

RAGE-ERK1/2-NF-ĸB pathway. In mice, RAGE knockout and

inhibition partially alleviated N-protein-evoked lung injury (16).

Wick et al. demonstrated that N protein levels of plasma samples

harvested within 72 h of hospital admission were strongly

associated with RAGE and correlated with ICU admission as well

as mechanical ventilation at 28 days (110). Furthermore, Matthay

et al. found that high levels of N protein and RAGE at admission

were significantly correlated with the development of severe

COVID-19 (111).
Conclusions

Up to the present, there have been three zoonotic coronaviruses

(SARS-CoV-1, MERS-CoV, and SARS-CoV-2) that cause human

ARDS. With the ever-increasing intrusion of natural habits, it is

foreseeable that novel coronavirus diseases will emerge and spread

via the respiratory system. All four structural proteins of SARS-

CoV-2 are essential in assembly and release of the virion. The N

protein binds to the genomic RNA of SARS-CoV-2, while S is

indispensable in viral attachment and entry to target cells. Existing

findings have demonstrated that all four structural proteins of

SARS-CoV-2 are able to trigger lung injury independent of viral

infection. Much work remains to be performed to decipher the
A
B

C

FIGURE 2

Schematic diagram of mechanisms for E protein-induced lung injury. (A) E protein forms ion-channeling viroporins for cations and activates NLRP3
inflammasome in alveolar macrophages, leading to caspase 1 activation and elevated levels of Il-1b and IL-18. IL-1b and IL-18 are the sources of
cytokine storm. They also trigger apoptosis of alveolar epithelial cells and endothelial cells, resulting in barrier dysfunction and edema. (B) E protein
binds with proteins associated with tight junctions such as zona occludens-1 (ZO-1) and PALS-1, leading to barrier dysfunction in epithelial and
endothelial cells. (C) E protein binds with TLR2 and activates NF-kB and MAPK through activation of the IRAK/TAK1 pathway, resulting in
cytokine storm.
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molecular mechanisms of structural protein-evoked lung injury and

the implications for the injury in humans. Antibody cocktail of

structural proteins may represent a new therapeutic tool for treating

COVID-19.
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FIGURE 4

Schematic diagram of mechanisms for N protein-induced lung injury. (A) N protein binds and activates NLRP3 inflammasome in alveolar
macrophages, leading to activation of caspase 1 and elevated levels of Il-1b and IL-18. These cytokines induce a cytokine storm and neutrophil
infiltration. They also trigger apoptosis of alveolar epithelial cells and endothelial cells, resulting in barrier dysfunction and edema. (B) N protein binds
with RAGE and subsequently activates ERK1/2 in alveolar macrophages. ERK1/2 triggers the activation of NF-kB, leading to cytokine storm. (C) N
protein binds with SMAD3 and subsequently decreases the expression of cystic fibrosis transmembrane conductance regulator (CFTR), resulting in
elevated intracellular Cl− concentration in airway epithelial cells. An increase in concentrations of Cl− causes phosphorylation of serum/
glucocorticoid-regulated kinase 1 (SGK1) and activation of NF-kB. (D) N protein binds and activates the MBL-associated serine protease-2 (MASP-2),
leading to activation of complement cascade via cleavage of C2 and C4 into C3/C5 convertases (C4bC2b). Complement activation leads to cytokine
storm and activation of NLRP3 inflammasome.
ABDC

FIGURE 3

Schematic diagram of mechanisms for M protein-induced lung injury. (A) M protein binds with B cell lymphoma 2 (BCL-2) ovarian killer (BOK). The
association inhibits the ubiquitination of BOK and increases BOK levels. BOK induces apoptosis of alveolar epithelial cells and endothelial cells,
resulting in barrier dysfunction and edema. (B) M protein binds with phosphoinositide-dependent protein kinase-1 (PDK1) and downregulates the
activity of AKT, leading to cell apoptosis. (C) M protein binds with TANK-binding kinase 1 (TBK1) and promotes its degradation via ubiquitination.
Reduced levels of TBK1 cause decreased activity of interferon regulation factor 3 (IRF3), leading to low production of type I and type III IFNs. Low
type I and type III IFNs contribute to unchecked viral replication and inflammation. (D) M protein binds with RIG-1, MAVS, and TBK1 and decreases
the phosphorylation of IRF3 via blocking the association between MAVS and TBK1.
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