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Role of Treg cell subsets in
cardiovascular disease
pathogenesis and potential
therapeutic targets
Yuanliang Xia, Di Gao, Xu Wang, Bin Liu, Xue Shan,
Yunpeng Sun* and Dashi Ma*

Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
In the genesis and progression of cardiovascular diseases involving both innate

and adaptive immune responses, inflammation plays a pivotal and dual role.

Studies in experimental animals indicate that certain immune responses are

protective, while others exacerbate the disease. T-helper (Th) 1 cell immune

responses are recognized as key drivers of inflammatory progression in

cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T

cells (Tregs) are gaining increasing attention for their roles in inflammation and

immune regulation. Given the critical role of Tregs in maintaining immune-

inflammatory balance and homeostasis, abnormalities in their generation or

function might lead to aberrant immune responses, thereby initiating

pathological changes. Numerous preclinical studies and clinical trials have

unveiled the central role of Tregs in cardiovascular diseases, such as

atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in

cardiovascular conditions like atherosclerosis, hypertension, myocardial

infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart

failure. While the precise molecular mechanisms of Tregs in cardiac protection

remain elusive, therapeutic strategies targeting Tregs present a promising new

direction for the prevention and treatment of cardiovascular diseases.
KEYWORDS

cardiovascular disease, Treg cell, immunotherapy, immune microenvironment,
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1 Introduction

Cardiovascular diseases (CVD) stand as the leading global cause of mortality (1, 2).

Despite receiving state-of-the-art preventative medical interventions, patients with CVD

still face a significant risk of recurrent events. Much of this residual risk is attributed to

immune-inflammatory responses (2). T-cell mediated inflammatory reactions have been

identified as central in the pathogenesis of CVD (3, 4). Consequently, targeting infiltrating

T-cell subsets might offer innovative and promising therapeutic strategies for CVD (5).
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A specific subset of infiltrating T cells, the Treg cells, constitute

approximately 5-10% of all peripheral CD4+ T cells and play pivotal

roles in maintaining homeostasis, immunological balance, and

tolerance (6, 7). Aberrant accumulation or functional anomalies

of Treg cells are closely associated with autoimmune diseases,

chronic inflammation, infection progression, and tumor

development. CD4+CD25+Foxp3+ regulatory T (Treg) cells

evolve from immature T cells activated by antigens and cytokines

(8, 9). While primarily maturing in the thymus, they can also

transdifferentiate from peripheral naive CD4+ T cells (10). The

forkhead/winged-helix transcription factor (FOXP3) serves as a

hallmark for Treg cells, and the regulatory T cells expressing the

transcription factor Foxp3 belong to a predominantly suppressive

T-cell lineage of dual origin (11, 12). A deficiency in FOXP3 might

lead to Treg cell dysfunction (13, 14). The strategies Treg cells

employ to regulate T and B cell responses remain intricate and

largely elusive. However, certain experiments and studies suggest

that Treg cells, with their anti-inflammatory properties, might

counteract the development of CVD (15, 16).

Adaptive and innate immune responses exhibit a dual role in

CVD. While some immune reactions provide protective effects

during the early stages of the disease, others can turn detrimental

when rendered ineffective (17). Given this backdrop, the immune

system emerges as an enticing target for pioneering CVD preventive

therapies (18, 19). By selectively modulating this immune response

related to CVD, it’s plausible to devise novel treatments for the

disease (20). The reduction or functional impairment of regulatory

T cells (Tregs) may lead to an increase in the activity of pro-

inflammatory immune cells, such as Th1 and Th17 cells, thereby

enhancing the inflammatory response of the cardiovascular system.

In the context of atherosclerosis, dysfunction of Tregs may

exacerbate inflammation and endothelial dysfunction, accelerating

the formation and progression of plaques (21). After myocardial

infarction, the reduction in Tregs can lead to excessive cardiac

inflammation, affecting heart repair and functional recovery. The

decline in Tregs may also promote the process of cardiac fibrosis,

especially in the context of certain cardiomyopathies (22). However,

oxidative stress may lead to dysfunction of Tregs, particularly in

environments related to cardiovascular diseases. High cholesterol

levels can also affect the function and survival of Tregs. The

possibility of selectively modulating protective and deleterious

immune reactions in CVD may aid in a more personalized

prevention and treatment regimen. For instance, LDL (low-

density lipoprotein) accumulation in arterial walls is a key

autoantigen in atherosclerosis (23, 24). Studies aiming to validate

this concept by immunizing experimental animals with oxidized

LDL particles inadvertently triggered atherogenic immunity

involving regulatory T cells (25, 26).

In this review, we delve deep into the roles of Treg cells in

immune modulation, their underlying mechanisms, and further

investigate their impacts on atherosclerosis, myocarditis, and other

cardiovascular diseases. Moreover, we spotlight and discuss

experimental and clinical data on the potentiality of crafting

immunotherapies to reduce cardiovascular risk. We will also

recapitulate ongoing clinical studies and deliberate challenges

linked to the development of effective and safe vaccines for CVD.
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2 The pathogenesis of Treg cells in
cardiovascular diseases

One of the primary mechanisms by which regulatory T cells

(Tregs) participate in cardiovascular diseases is by modulating the

immune-inflammatory responses of target T cells and antigen-

presenting cells (APCs). This modulation limits T cell

proliferation and cytokine production (27, 28). Tregs can regulate

these immune-inflammatory responses through the release of

inhibitory cytokines, the consumption of IL-2 and ATP/ADP, or

through receptor-ligand interactions, such as inducing apoptosis or

altering the functionality of APCs (29, 30) (Figure 1).
2.1 Production of anti-inflammatory
cytokines by Tregs

Tregs play a pivotal role in the immune system by producing

anti-inflammatory cytokines, such as TGF-b and IL-10. These

cytokines can directly suppress other immune cells, including

antigen-presenting cells (APCs) like macrophages and CD8+

effector T cells, thereby reducing inflammation and preventing

excessive immune responses (31, 32).

Studies have highlighted the critical importance of TGF-b within

Tregs in vivo, as Tregs in mice with a T-cell-specific deficiency of

TGF-b failed to suppress inflammation (33, 34). Moreover, evidence

suggests that Tregs can transmit membrane-bound TGF-b to

corresponding receptors on effector T cells via direct cell-to-cell

contact, thereby suppressing their functionality ex vivo (35, 36).

Similarly, IL-10 has a crucial role in Treg-mediated immune

modulation, especially in response to pathogens or external stimuli-

induced inflammatory reactions (37, 38).IL-10 produced by Tregs

plays a key role in resisting atherosclerosis and modulating the

formation of atherosclerotic plaques (39). IL-10 can prevent

endothelial cell dysfunction and help maintain the health of

vascular endothelial cells, protecting them from damage by

inflammatory factors (40). Additionally, it reduces the expression

of adhesion molecules on endothelial cells: IL-10 can decrease the

expression of adhesion molecules on the surface of endothelial cells,

thereby reducing the adhesion and migration of inflammatory cells

(32). IL-35, another cytokine predominantly expressed in Tregs,

also has a significant role in the maximal immunoregulatory

functions of Tregs (41, 42).IL-35 released by Tregs promotes the

differentiation of naive Tregs into mature Tregs, while mice lacking

IL-35 exhibited diminished Treg suppressive functions (41).

Therefore, IL-35 is also a potential target for targeting Treg cells

to inhibit immune-inflammatory damage.
2.2 Depletion of IL-2 by Treg cells
stimulates pro-inflammatory cytokines

IL-2 is a pivotal growth factor, crucial for T cell proliferation.

Although IL-2 itself does not directly produce anti-inflammatory

effects, by promoting the activity of Tregs, IL-2 can indirectly
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promote the formation of an anti-inflammatory environment. The

increase in Tregs helps regulate the immune response within

atherosclerotic plaques, potentially aiding in reducing plaque

formation and progression (43). Furthermore, by supporting the

survival of Tregs, IL-2 helps maintain the balance of the immune

system and immune tolerance, preventing excessive immune

responses. This can help regulate the immune response within

atherosclerotic plaques, potentially aiding in reducing plaque

formation and progression (44). regulatory (Treg) cells possess

high-affinity IL-2 receptors. By efficiently consuming IL-2, Treg

cells “deplete” IL-2 from their surroundings, consequently

inhibiting their own proliferation. This indirectly suppresses T

cell-mediated inflammation (45, 46). IL-2 plays a critical role in
Frontiers in Immunology 03
the balance and development between Treg cells and effector T cells.

Immune suppressive regulatory T lymphocytes expressing the

transcription factor Foxp3 play an essential role in maintaining

immune tolerance to self and benign non-self antigens (47). For

most Tregs, differentiation requires antigenic signals from T cell

receptors, costimulatory molecules, and signals from cytokine

receptors like IL-2 (48, 49). Thus, by competitively utilizing IL-2,

Treg cells interfere with the maturation of responsive T cells,

leading to T cell apoptosis and suppression (47, 50).

Treg cells can absorb ATP and release ADP. The depletion and

conversion of ATP/ADP can induce cytotoxicity and suppress the

activities of nearby antigen-presenting cells (APCs) and CD8+ effector

T cells (51, 52). The ectoenzyme CD39 expressed by Treg cells can
FIGURE 1

Role of Treg Cells in the Pathogenesis of Cardiovascular Diseases.Upon stimulation by antigens and cytokines, Treg cells differentiate into CD4
+CD25+Foxp3+ Treg cells. These cells exert their immunosuppressive effects through the production of anti-inflammatory cytokines TGF-b and IL-
10, subsequently inhibiting the functions of mature immune cells, including dendritic cells (DCs), macrophages, and effector T cells. Additionally,
they suppress B cell antibody production, mitigating the immune-inflammatory response. They also inhibit the secretion of Matrix Metalloproteinases
(MMPs) by smooth muscle cells (SMCs), restraining abnormal cardiovascular matrix remodeling and fibrosis. Moreover, CD4+CD25+Foxp3+ Treg
cells facilitate the differentiation of pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages, thereby suppressing the production
of inflammatory cytokines and reactive oxygen species (ROS). These Treg cells, with a high expression of the IL-2 receptor, competitively utilize IL-2,
hindering the maturation of responding T cells and promoting their suppression and apoptosis. Certain inhibitory receptors expressed on Treg cells,
such as CTLA-4, interact with ligands on antigen-presenting cells, inhibiting the latter’s function and inducing their apoptosis. Lastly, the ectoenzyme
CD39 expressed by Treg cells hydrolyzes ATP or ADP to AMP, reinforcing the Treg-mediated suppression of ATP-driven dendritic cell maturation.
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hydrolyze ATP or ADP to AMP, enhancing Treg suppression of ATP-

driven dendritic cell maturation (53, 54). Additionally, the co-

expression of CD39 and CD73 on Tregs can convert extracellular

ADP to adenosine. Adenosine can further bind to its A2A receptor,

thereby inhibiting effector T cell activities (55, 56). Notably, activation

of the adenosine A2A receptor not only suppresses effector T cells but

also enhances Treg function by downregulating IL-6 expression and

increasing TGF-b production (57, 58).
2.3 Treg cells mediate contact inhibition of
antigen-presenting cells

Certain inhibitory receptors expressed on Treg cells, such as

CTLA-4, can interact with ligands on antigen-presenting cells,

inhibiting their function (59, 60).

Through regulation of antigen-presenting cells, particularly

dendritic cells, and macrophages, Treg cells indirectly restrict

effector T cell activity (61, 62). Tregs can inhibit dendritic cell

function and maturation and induce them to produce TGF-b,
further suppressing effector T cell activation and differentiation

(63, 64). Studies have demonstrated that, in both humans and mice,

Tregs can reduce the expression of the co-stimulatory molecules

CD80 and CD86 on dendritic cells (63, 65). Highly expressed

cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) in Tregs

plays a crucial role in this process, enhancing the regulation of

dendritic cells. Some studies further indicate that Foxp3-expressing

CD4^+CD25^+ regulatory T cells (Tregs) that highly express the

immune checkpoint receptor CTLA-4 exhibit defects specific to

Tregs, leading to severe immune inflammatory responses (63) As a

critical mechanism of Treg-mediated suppression, CTLA-4

expressed by Tregs downregulates the expression of CD80/CD86

co-stimulatory molecules on antigen-presenting cells (APCs)

(66, 67). Inflammation is a key factor leading to plaque instability

and rupture; therefore, CTLA-4-mediated immune regulation may

help increase plaque stability (68). Reducing inflammatory

responses can protect vascular endothelium, preventing

endothelial cell dysfunction, which is a key factor in the

development of atherosclerosis and cardiovascular diseases.

CTLA-4-mediated immune regulation helps control chronic

inflammation, thereby aiding in the prevention of atherosclerosis

progression and the occurrence of cardiovascular events (69).

Another molecule expressed in Treg cells that impacts dendritic

cell function is lymphocyte-activation gene 3 (LAG3). It has a high

affinity to class II molecules of the major histocompatibility

complex (MHC) (70, 71). When LAG3 binds to MHC class II

molecules, it activates the immunoreceptor tyrosine-based

inhibitory signaling pathway, thereby reducing dendritic cell

maturation and their capacity to activate T cells (72, 73).
2.4 Cytotoxic role in T-cell suppression

In T-cell suppression, cytotoxicity stands as a pivotal potential

mechanism. For instance, CD8+ T cells and NK cells can directly

target and kill cells through the Granzyme B and Perforin pathways
Frontiers in Immunology 04
(74, 75). Studies have identified that Treg cells lacking Granzyme B

exhibit weakened suppressive functions. Granzyme B also plays a

crucial role in the suppression of immunity by Treg cells, as it aids

in the killing of NK cells and CD8+ T cells (76, 77). Granzyme B can

induce apoptosis in cells within atherosclerotic plaques, such as

macrophages and smooth muscle cells. An increase in cell apoptosis

may lead to an increase in the cellular mass at the plaque core,

affecting plaque stability. Imbalance in cell apoptosis may cause

plaques to rupture more easily, thereby increasing the risk of acute

cardiovascular events (76). Granzyme B-induced apoptosis of

smooth muscle cells may affect the remodeling process of blood

vessels, potentially impacting vascular stability and elasticity.
2.5 Treg cell-mediated suppression of
B cells

Treg cells’ modulation of B cell responses showcases their vital

impact. Experimental evidence suggests that when Treg cells are

depleted, autoantibody production increases in autoimmune mice;

conversely, supplementation of Treg cells results in decreased

autoantibody concentrations (78, 79). An early hypothesis

postulated that Treg cells primarily modulate B cell responses by

suppressing the helper T cells that assist in antibody production

(80, 81). However, subsequent research indicates that Treg cells

might inhibit B cells’ class-switch recombination and induce

apoptosis using perforin and granzymes, directly constraining

antibody production (82, 83). B cells can produce pro-

inflammatory antibodies, such as antibodies against oxidized low-

density lipoprotein (oxLDL). These antibodies may promote

inflammatory responses and the formation of atherosclerotic

plaques. By inhibiting these B cells or reducing the pro-

inflammatory antibodies they produce, inflammation and the

progression of atherosclerosis can be mitigated (84).
2.6 Treg cells and endothelial
cell interaction

Endothelial dysfunction is a key factor in the development of

various cardiovascular diseases. Treg cells, by secreting anti-

inflammatory cytokines such as TGF-b, can promote the integrity

of the endothelial layer of blood vessels. Endothelial cells, through

their membrane-bound TGFb, convert some CD8(+) T cell

populations into Treg cells. Treg cells induced by endothelial cells

produce the soluble form of TGFb1, but not TGFb2, and they also

acquire a regulatory phenotype expressing high levels of CD25 and

Foxp3 (85). Vascular Endothelial Growth Factor A (VEGF-A),

Interleukin 10 (IL-10), and Prostaglandin E2 (PGE2)

synergistically induce the expression of FasL in endothelial cells.

Due to the high expression levels of c-FLIP in Treg cells, they

acquire the ability to kill effector CD8(+) T cells rather than Treg

cells (86). Treg cells can reduce the expression of adhesion

molecules on the surface of endothelial cells, decreasing the

interaction between leukocytes and endothelial cells, thereby

reducing vascular inflammation (87). Furthermore, studies have
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shown that the recognition of self-antigens expressed by endothelial

cells in target tissues helps in the effective recruitment of Treg cells

in vivo. This Treg recruitment depends on the induction of MHC

class II molecule expression in endothelial cells mediated by IFN-g,
and requires the activation of the T cell receptor PI3K p110d (88).

Therefore, endothelial cells and self-recognition enable the

transportation of Treg cells, expanding the understanding of

immune regulation dynamics, and making the interaction

between vascular endothelial cells and Treg cells a potential

therapeutic target for treating cardiovascular diseases.

In summary, Treg cells maintain immune homeostasis through

various mechanisms, ensuring that immune responses do not

exceed the necessary thresholds. Within the context of

cardiovascular diseases, Treg cell function might be compromised

or insufficient, leading to intensified inflammatory responses, which

can accelerate the progression of ailments like atherosclerosis. As

such, modulating the function and number of Treg cells might

emerge as a promising strategy in treating cardiovascular diseases.
3 Pathogenic mechanisms of Treg
cells in cardiovascular diseases and
potential therapeutic targets:

Inflammation plays a key role in the onset and exacerbation of

cardiovascular diseases (89). When inflammatory cells aggregate and

release inflammatory cytokines, the progression of diseases like

atherosclerosis, hypertension, and myocardial infarction can be

accelerated (90, 91). Regulatory T cells (Tregs) play a pivotal role

in controlling and suppressing inflammatory reactions, preserving

the balance of the immune system, and preventing excessive immune

responses (31, 92). A significant enhancement in inflammatory

reactions is observed in the absence of Treg cells, hinting at the

crucial role of Treg cells in maintaining cardiovascular health and

suggesting their functionality might be influenced by their

surrounding environment (93, 94). Treg cells can inhibit the

aggregation of pro-inflammatory cells and the subsequent release

of associated inflammatory cytokines, critical processes in

cardiovascular diseases such as atherosclerosis (95). Therefore,

amplifying or enhancing the function of Treg cells could present

new strategies for treating cardiovascular diseases. Recognizing the

role of Treg cells in cardiovascular ailments, researchers and

clinicians are increasingly focusing on their potential as

therapeutic targets. Modulating the number or function of Treg

cells might offer novel approaches for preventing or treating

inflammation-associated cardiovascular diseases (Figure 2).
3.1 Atherosclerosis

T regulatory cells (Tregs) play an indispensable role in the

prevention and prognosis of atherosclerosis (96, 97). The role of

regulatory T cells (Tregs) in atherosclerosis is highly diverse,

including anti-inflammatory effects, maintaining immune balance,

protecting vascular endothelium, and potential metabolic
Frontiers in Immunology 05
regulatory functions. Recent studies indicate that Tregs may also

be involved in regulating metabolic pathways, such as lipid

metabolism, which could significantly impact the progression of

atherosclerosis (98). The ApoE-/- mouse model is extensively used

in atherosclerosis research. Due to the absence of Apolipoprotein E

(ApoE), these mice are prone to develop hypercholesterolemia and

atherosclerosis (99, 100). Compared to normal mice, ApoE-/- mice

exhibit a significant reduction in the number of Tregs (101, 102).

Researchers have observed a reduced abundance of CD4+CD25

+FOXP3+ Tregs in coronary artery atherosclerotic plaques, and this

decrease correlates positively with the vulnerability of carotid artery

plaques (103, 104) Tregs help protect vascular endothelial cells by

reducing inflammation, thus preventing endothelial dysfunction. By

decreasing the infiltration and activation of inflammatory cells,

Tregs contribute to the stability of atherosclerotic plaques, reducing

the risk of plaque rupture (105). further highlighting the protective

role of Tregs further highlighting the protective role of Tregs.

Tregs are known to attenuate the accumulation of inflammatory

cells, inhibit the secretion of inflammatory cytokines, and promote

the transition of M1 macrophages to M2 phenotype. Consequently,

this leads to a marked decrease in inflammatory cytokines and

foam cells in atherosclerotic lesions (106). Anti-inflammatory

cytokines released by Tregs, such as TGF-b, IL-10, and

IL-35, not only enhance plaque stability but are also key in

inhibiting atherosclerosis.

For instance, in the context of atherosclerosis, TGF-b exerts

anti-inflammatory effects by inhibiting inflammatory cell activity,

thereby preventing plaque formation and progression. Additionally,

collagen, a crucial component for plaque stability, can degrade,

increasing plaque vulnerability. TGF-b positively regulates collagen

synthesis and deposition, aiding in maintaining vascular wall

integrity (107, 108). Similarly, IL-10 also offers protection against

atherosclerosis development. Absence of IL-10 exacerbates

infiltration of inflammatory cells, reduces collagen content, and

renders plaques more fragile. Overexpression of IL-10, on the other

hand, counters these inflammatory responses and plaque formation

(109, 110). In a study, induction of CD4+Foxp3+ Tregs in the

spleens and aortas of ApoE-/- mice was frequently associated with

significant elevations in plasma IL-35 levels (41). Further

observations noted that CCR5+ Tregs in ApoE-/- exhibited a

diminished AKT-mTOR signaling, elevated expression of

inhibitory checkpoint receptors TIGIT and PD-1, enhanced

TIGIT and PD-1 signaling, and increased IL-10 expression, all

aiding in retaining the Treg immunosuppressive function (41).

Therefore, IL-35 promotes the induction and differentiation of

CD4+Foxp3+ Tregs, and by sustaining the suppressive

mechanisms of CCR5 expanded Tregs, inhibits atherosclerosis.

B cells, pivotal cells in the immune system, primarily produce

antibodies. A decrease in B cells in both ApoE-/- and LDLR-/- mice

is associated with halting the progression of atherosclerosis,

providing evidence of a probable pro-inflammatory role of B cells

in atherosclerosis (111, 112). The exacerbation of the disease upon

reintroduction of B cells further bolsters this perspective. Tregs are

believed to suppress B cell activation, a suppression potentially

mediated by cytokines produced by Tregs, such as IL-10 or TGF-b,
or through direct cell-cell interactions (113, 114). Considering the
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regulatory effects of Tregs on B cells, enhancing the function or

number of Tregs might also be an effective therapeutic strategy

(115, 116). While current evidence has elucidated the critical roles

of B cells and Tregs in atherosclerosis, more experiments are

necessary to comprehensively understand their precise roles in

the disease and how to best harness this information for new

therapeutic approaches.
3.2 Myocarditis and cardiomyopathy

Myocarditis, characterized by inflammation, is a cardiac disease.

Following viral myocarditis, autoimmune responses may lead to

sustained myocardial damage. This could be pivotal in the

transition of viral myocarditis to dilated cardiomyopathy (DCM)

(117, 118) . When Coxsackievirus B3 (CVB3) infects

cardiomyocytes, it directly damages these cells, resulting in cell
Frontiers in Immunology 06
death and tissue injury, an effect attributed to its direct cytotoxicity

(119, 120). Moreover, the body’s immune response targets the

infecting virus; however, this response can occasionally be

“overactive,” exacerbating myocardial damage. This phenomenon

is referred to as post-viral pathogenic immune responses (121, 122).

While the precise etiology of myocarditis remains to be fully

elucidated, current studies speculate that autoimmune responses

play a crucial role in disease onset and progression.

3.2.1 Myocarditis and the role of Treg cells
Treg cells occupy a central protective role in the development of

myocarditis (123).In animal models, experimental findings

consistently show that natural Treg cells play a proactive role in

suppressing virus-induced immunopathological responses and in

preventing virus-induced tissue damage. Studies have identified a

negative correlation between Treg cell abundance and the severity

of myocarditis (124, 125). Thus far, numerous investigations have
FIGURE 2

Treg Cells in the Pathogenesis of Various Cardiovascular Diseases and Potential Therapeutic Targets. (A) Atherosclerosis: Within atherosclerotic
plaques, the abundance of CD4+CD25+Foxp3+ Treg cells diminishes, leading to a decreased release of anti-inflammatory cytokines such as TGF-b
and IL-10. This results in increased engulfment of LDL by M1 macrophages and heightened foam cell formation, thus increasing plaque vulnerability.
(B) Myocarditis: In myocarditis, CD4+CD25+Foxp3+ Treg cells release anti-inflammatory cytokines like TGF-b and IL-10, inhibiting the function of
M1 macrophages, curbing immune-inflammatory reactions, and preserving myocardial tissue. (C) Myocardiopathy: In cardiomyopathies, there’s a
decrease in CD4+CD25+Foxp3+ Treg cells and secretion levels of TGF-b and IL-10, weakening their inhibitory effects on inflammatory cells. This
culminates in augmented secretion of pro-inflammatory cytokines like TNF-a, exacerbating dilated cardiomyopathy (DCM). (D) Myocardial Infarction
and Post-Infarction Remodeling: Post-myocardial infarction, CD4+CD25+Foxp3+ Treg cells aid recovery by modulating the differentiation of
monocytes and macrophages into reparative M2 macrophages. They also limit post-infarction inflammation and excessive matrix degradation,
thereby slowing adverse morphological changes. (E) Rheumatic Heart and Valvular Disease: In rheumatic heart and valvular diseases, CD4+CD25
+Foxp3+ Treg cells inhibit effector T cells and curtail sustained inflammatory responses, reducing valvular injury. (F) Hypertension: CD4+CD25
+Foxp3+ Treg cells, through the secretion of TGF-b and IL-10, inhibit NADPH oxidase, restoring the vasodilatory function of SMCs and decreasing
endothelial cell apoptosis to preserve endothelial functionality. Additionally, they suppress the secretion of MMPs and ROS by SMCs, preventing
abnormal vascular remodeling and ultimately reducing systolic blood pressure (SBP).
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highlighted the critical protective function of Treg cells in

myocarditis. Prior to viral infection, Treg cells can inhibit

myocarditis induced by CVB3 by suppressing pathogenic immune

responses and ensuring anti-viral cardiac responses via the TGF-b-
Coxsackie adenovirus receptor pathway (125, 126). Tregs suppress

cardiac inflammation by secreting anti-inflammatory cytokines,

such as IL-10 and TGF-b. In the context of myocarditis, this

suppression helps to reduce damage to cardiac tissues (32).

Additionally, the suppressive functions of Treg cells have been

displayed in multiple studies, suggesting that enhancing Treg cell

activity can effectively alleviate myocarditis inflammation, reduce

cardiac damage, and positively influence the progression of

cardiomyopathy (127, 128).

However, the relationship between immune mechanisms and

cardiomyopathy may not be linear or singular. Some findings

regarding the role of Treg cells in myocarditis are contradictory.

Tregs maintain the balance of the immune system by inhibiting

excessive immune responses, which is particularly important in

preventing the development of autoimmune cardiomyopathy. In

the EAM (experimental autoimmune myocarditis) model, reducing

Treg cells indeed exacerbates myocarditis, consistent with traditional

understandings of Treg cells (129). If Treg cells suppress the immune

response against the virus, they might indirectly promote viral

replication and persistence, indicating a complex negative feedback

mechanism (126). For instance, in EAMmodel studies, reducing the

number of Treg cells within the heart resulted in aggravated

myocarditis in mice (130). This seems to suggest that Treg cell

activation might inhibit anti-viral immune responses, facilitating

viral replication and persistence, further worsening myocardial

changes. Such complexity underscores the need for a holistic

perspective when understanding disease mechanisms. Within the

context of myocarditis and DCM, it is essential to consider not just

the interactions between the virus and the host but also the interplay

among various cells within the immune system.

3.2.2 Cardiomyopathy
Dilated cardiomyopathy (DCM) is a prevalent myocardial

disorder characterized by ventricular dilation and diminished

myocardial contractile function, which can potentially lead to heart

failure (131, 132). In dilated cardiomyopathy, a major pathological

feature is myocardial fibrosis. Tregs may help slow the progression of

myocardial fibrosis by reducing the release of pro-fibrotic factors and

inhibiting inflammation (133). Viral infections can instigate

inflammatory and autoimmune responses in the myocardium, and

persistent inflammation might lead to DCM (131, 134).

The TNF mouse model offers a tool to explore the relationship

between immune mechanisms and DCM. TNF-a is a pro-

inflammatory cytokine expressed in many inflammatory diseases

(135). In the TNF mouse model, there is a heightened cardiac

expression of TNF-a, leading to DCM characteristics like cardiac

inflammation, ventricular dilation, and reduced ejection fraction

(136, 137).

These findings suggest a potential link between immune

mechanisms and the etiology and progression of DCM. Tregs may

protect cardiac myocytes from damage by reducing inflammation

and oxidative stress. Further research might unveil more about this
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disease’s mechanisms and provide insights for novel therapeutic

strategies. Tregs may also play a role in the neovascularization and

repair of the heart, which is crucial for the recovery and functional

restoration of cardiomyopathies (125). Regulatory T (Treg) cells

might play a role in inhibiting the progression of myocardial

inflammation in DCM (125, 138). Moreover, when CD4+T cells

are depleted in mice, their myocarditis symptoms are alleviated,

further confirming the pivotal role of immune mechanisms in DCM

pathogenesis (139, 140).

Compared to healthy individuals, DCM patients exhibit a

decline in the number and function of Treg cells. Furthermore,

serum levels of TGF-b and IL-10, both associated with immune

suppression, are also reduced in DCM patients. This suggests that

increasing the number and enhancing the function of circulating

Treg cells might be therapeutic strategies for DCM (141, 142).

In conclusion, these experimental results provide insights into

the intricate relationship between dilated cardiomyopathy and

immune mechanisms. Modulating immune responses, especially

by enhancing the function of Treg cells, could be a promising

strategy for DCM treatment. However, translating these findings to

clinical applications necessitates further research. The role of Tregs

in myocarditis and cardiomyopathy is vital, primarily through

immune regulation, anti-fibrotic effects, protecting cardiac

myocytes and vascular functions, and regulating specific immune

responses. These findings offer a new perspective and potential

strategies for treating heart diseases, especially in treatments

targeting the immune system (138).
3.3 Myocardial infarction and post-
infarction cardiac remodeling

During myocardial ischemia and subsequent myocardial

infarction (MI), immune responses play a crucial role in both

injury and repair (15). Cell death induced by ischemia and

infarction triggers an acute inflammatory response, drawing

various immune cells to the injured myocardium (143). After

myocardial infarction, the heart experiences an acute

inflammatory response, and Tregs alleviate inflammation-

mediated damage by secreting anti-inflammatory cytokines such

as IL-10 and TGF-b (144). Tregs help control the immune response

following myocardial infarction, preventing additional damage

caused by excessive inflammation (64). Treg cells play a pivotal

role in myocardial ischemia, MI, and post-infarction cardiac

remodeling (16, 145).

Activated Treg cells soon after myocardial injury, due to their

anti-inflammatory properties, maintain immune-inflammatory

homeostasis, aiding tissue repair. In rat MI models, elevating Treg

cell numbers can prevent adverse ventricular morphological

changes by reducing inflammation and directly protecting

cardiomyocytes, thereby enhancing post-ischemic cardiac

function (146, 147). Tregs may slow down the process of cardiac

fibrosis by inhibiting the release of pro-fibrotic factors, which is

crucial for the recovery of cardiac muscle function and structure

(148, 149). Additionally, Treg cells support post-MI recovery by

regulating the differentiation of monocytes and macrophages into
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1331609
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xia et al. 10.3389/fimmu.2024.1331609
reparative M2 macrophages, diminishing post-infarction

inflammation, restraining excessive matrix degradation, and thus

slowing adverse morphological changes (64, 150).Accumulating

Treg cells in the injured murine heart participate in regulating

fibroblast behavior and function, inhibiting post-MI fibrosis, and

alleviating cardiac stiffening and dysfunction (151). One study

showed that Ccl17 deficiency leads to reduced left ventricular

remodeling post-MI and after angiotensin II and norepinephrine

administration. This was associated with diminished myocardial

fibrosis, cardiomyocyte hypertrophy, and improved left ventricular

contractile function (152). The evidence demonstrated that Tregs

mediated the protective effects of Ccl17 deficiency against

myocardial inflammation and adverse left ventricular remodeling

(153). Thus, inhibiting CCL17 might be an effective strategy to

promote Treg recruitment and suppress myocardial inflammation.

Research has shown that MI patients have reduced Treg cell

numbers, and lower circulating TREG cells correlate with increased

MI risk (154).In murine MI models, externally administered Treg

cells can reduce infarct size and ischemia-induced cardiac

morphological changes. Furthermore, in mice undergoing

coronary artery ligation and reperfusion, the selective depletion of

Treg cells exacerbates ischemia-reperfusion injury (155, 156).

Furthermore, in mice undergoing coronary artery ligation and

reperfusion, the selective depletion of Treg cells exacerbates

ischemia-reperfusion injury (157, 158). Treg cells might play a

key protective role in myocardial ischemia, MI, and post-MI cardiac

remodeling by protecting the heart, inhibiting excessive

inflammatory responses, promoting repair, and improving

function. Hence, modulating Treg cell numbers and function

might offer novel strategies for the treatment of myocardial

ischemia and infarction.
3.4 Rheumatic heart disease and
valvular disorders

Rheumatic Heart Disease (RHD) is a sequelae of untreated

rheumatic fever, predominantly affecting the heart valves

(159, 160). RHD remains a significant cause of heart failure in

developing countries, especially in areas lacking timely treatment

for rheumatic fever (161, 162).

After a myocardial infarction, the heart needs to restore its

blood supply, and Tregs may support this process by promoting

angiogenesis. Treg cells play a pivotal role in immune modulation.

A decline in the number of Treg cells in the peripheral blood of

patients has been observed, and this decline is more pronounced

when multiple valves are affected concurrently (163, 164).In RHD,

the reduction in Treg cell count might signify a compromised

immunoregulatory capacity, leading to persistent inflammatory

responses and valvular damage, potentially exacerbating the

progression of valvular diseases (165). The simultaneous

impairment of multiple valves reflects heightened inflammatory

reactions or disease severity. As the disease intensifies, the

immunomodulatory function of Treg cells might further diminish.

By regulating inflammation and fibrosis, Tregs may help reduce

the risk of recurrence of heart disease after myocardial infarction
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(166). While the proportion of Treg cells may vary in RHD, there

isn’t a direct correlation with echocardiographically determined

valvular thickness or hemodynamic alterations (164, 167). This

suggests that structural and functional damages to the valves might

not have a linear relationship with Treg cell quantity or proportion,

implying potential interference from other factors. Treg cells

possibly play a crucial role in the progression of RHD. In

rheumatic heart disease, inflammation is a key factor leading to

damage and dysfunction of the heart valves. Tregs can reduce

inflammation of the heart valves through their anti-inflammatory

action. Research and understanding of Treg cells may help us better

understand the pathogenesis of rheumatic heart disease and provide

new ideas and strategies for treatment (166). Tregs play an

important role in the development of rheumatic heart disease and

valvular diseases, especially through their immune-regulatory and

anti-inflammatory functions. By controlling the inflammatory

response and reducing tissue damage, Tregs help slow the

progression of the disease (165). These findings offer a new

perspective for the treatment of valvular diseases, especially in

terms of immune-regulatory therapy.
3.5 Hypertension

Although hypertension has long been perceived as a “non-

inflammatory” disease, mounting evidence highlights the central

roles of the immune system and inflammation in its pathogenesis

(168, 169). Chronic inflammation is considered an important factor

in the development of hypertension, and Tregs may help reduce the

risk of hypertension by suppressing chronic inflammatory

responses (170). Chronic inflammation is considered an

important factor in the development of hypertension, and Tregs

may help reduce the risk of hypertension by suppressing chronic

inflammatory responses (171). Activation and infiltration of T

lymphocytes can be observed in numerous hypertension models,

particularly within the kidneys and vessels (172). Studies suggest

that T lymphocytes get activated and infiltrate target organs as

blood pressure starts rising. Tregs can inhibit autoimmune

reactions against vascular and renal tissues, reducing immune-

mediated damage to these organs (173). The kidneys play a

central role in regulating blood pressure, and Tregs may protect

renal function by reducing renal inflammation and fibrosis, thereby

combating hypertension (174). Cytokines and other inflammatory

mediators released by these cells might promote vasoconstriction

and cell proliferation, exacerbating hypertension (175).

Transplantation of TREG cells can restore endothelial function.

Endothelial cells are fundamental regulators of vasoconstriction

and vasodilation, and endothelial dysfunction is considered an early

indicator and a trigger for hypertension, atherosclerosis, and

vasculitis (176, 177).In experiments, after mice were administered

aldosterone, their vascular endothelial function was compromised,

evident as adverse vascular remodeling and elevated systolic blood

pressure (SBP) (178). However, pre-injecting mice with TREG cells

before aldosterone administration mitigated the SBP increase,

thereby shielding vessels from damage (179).TREG cells might

counteract vascular damage induced by angiotensin II;
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transplantation of TREG cells can rejuvenate endothelial function

and slow the consistent rise of SBP (180). Tregs’ anti-inflammatory

action may help maintain the health of the vascular endothelium

and reduce endothelial dysfunction, which is crucial for the

prevention of hypertension (181). The anti-inflammatory ability

of Tregs can reduce inflammation of the blood vessel walls, helping

to maintain normal vascular tone and blood pressure (182, 183).

Research indicates that Tregs can promote nitric oxide (NO)

production, an essential endothelial relaxant crucial for appropriate

vascular dilation (184). Tregs, by secreting anti-inflammatory

cytokines like IL-10 and TGF-b, can inhibit the activity of other

inflammatory cells, thereby conserving endothelial function (185).

Additionally, studies report that TREG cells might release IL-10 to

optimize microvascular endothelial function in hypertensive

patients (173).IL-10 itself can reduce NADPH oxidase activity,

thereby enhancing endothelial relaxation function (186). Upon

transferring normal mice TREG cells into angiotensin II-treated

IL-10 deficient mice, restoration of endothelial function and a

decrease in SBP were observed (187).

Nevertheless, some studies present contradictory findings,

suggesting that the immunosuppressive effects of transferred Treg

cells ameliorate cardiac damage and improve electrical remodeling,

yet the transplantation of TREG cells does not significantly influence

blood pressure itself (188). The role of Tregs in hypertension and

endothelial dysfunction remains under investigation, but they have

been recognized as potential therapeutic targets.
3.6 Heart failure

The imbalance of the immune-inflammatory response plays a

significant role in the progression of Chronic Heart Failure (CHF)

(189). Immune activation and inflammation are involved in the

progression of CHF, and an imbalance of Th17/Treg in CHF

patients suggests that this imbalance plays a role in the pathogenesis

(190). Balancing Th17/Treg may be a promising therapeutic approach

for CHF patients (191). Studies have shown that catechins improve

cardiac dysfunction in rats with chronic heart failure by regulating the

balance between Th17 and Treg cells. Further results indicate that

catechins can significantly inhibit immune activation and regulate the

imbalance of IL-17/IL-10 levels (192). Therefore, catechins can reverse

the abnormal polarization of TH17 and Treg in peripheral blood and

spleen, improving the progression of chronic heart failure.

Additionally, a key process in heart failure is cardiac fibrosis, and

Treg cells slow down this process by regulating the expression of

fibrosis-related cytokines (193). Anti-inflammatory cytokines

produced by Treg cells, such as TGF-b and IL-10, can directly or

indirectly inhibit the production of pro-fibrotic cytokines (194).

4 Potential therapeutic strategies
targeting Treg cells in
cardiovascular disease

In both in vitro and in vivo studies, the adoptive transfer or

effective expansion of exogenous Treg cells has shown the potential
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As a result, this method is emerging as a potential therapeutic

approach to cardiovascular diseases. Preliminary clinical data has

reported on the efficacy and safety of targeting Treg cells through

the expansion of human Treg cells ex vivo.
4.1 Immunomodulatory treatments:

The pro-inflammatory role of IL-1b in cardiovascular events

and its interaction with the anti-inflammatory and immune-

regulatory functions of Tregs constitute an important mechanism

in the development of cardiovascular diseases (195). Tregs, by

regulating the activity of IL-1b, can alleviate cardiac inflammation

and promote healthier cardiac repair. These findings offer a new

perspective for immune-regulatory treatment strategies in

cardiovascular diseases (196). A randomized, double-blind trial

investigated canakinumab (a therapeutic monoclonal antibody

targeting IL-1b). The study, which encompassed 10,061 patients

with a history of myocardial infarction, demonstrated that anti-

inflammatory treatment targeting the IL-1b innate immune

pathway using canakinumab significantly reduced the recurrence

of cardiovascular events. When compared to the placebo group, the

levels of high-sensitivity C-reactive protein in the 50mg

canakinumab group showed a median reduction of 26 percentage

points from baseline, 37 percentage points in the 150mg group, and

41 percentage points in the 300mg group1 (197). IL-1bmay directly

or indirectly affect the function and number of Tregs. For example,

high levels of IL-1bmay inhibit the activity of Tregs or promote the

activation of inflammatory T cells, thereby impacting the

inflammatory response (198). Consequently, immunomodulation

targeting IL-1b offers significant protective effects against

cardiovascular diseases.

IL-2 is a key factor for the survival and function of Tregs. IL-2 not

only promotes the proliferation of Tregs but also maintains their

suppressive function. IL-2 enhances the suppressive function of Tregs

by activating specific signaling pathways, such as the STAT5 pathway

(199). A randomized, double-blind, placebo-controlled phase I/II

clinical trial treated patients with stable ischemic heart disease and

acute coronary syndrome (LILACS) using low-dose IL-2. This trial

employed Aldesleukin (a recombinant form of IL-2) to determine its

safety, tolerability, and the dosage required to increase the average

circulating Treg levels by at least 75% (200). Aldesleukin offers an

intriguing alternative approach to achieving atheroprotective

immunomodulation. The trial aimed to investigate the effects of

low-dose IL treatment in augmenting Tregs. By supporting the

function of Tregs, IL-2 helps reduce the inflammatory response in

cardiovascular diseases, especially in conditions like atherosclerosis

andmyocardial infarction. Tregs, by alleviating inflammation, protect

vascular endothelial function and reduce the formation of

atherosclerotic plaques, thus contributing to cardiovascular

health (201).

Experimental and epidemiological studies have backed the

protective effects associated with various LDL-targeted antibodies

(202). Apolipoprotein (apoB) is a specific lipoprotein, serving as the

primary carrier of various lipids (like cholesterol) in the
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bloodstream (203). It can be found in two main lipoproteins: LDL

and very low-density lipoprotein (VLDL). Elevated apoB levels are

correlated with an increased risk of cardiovascular disease (97, 204).

ApoB may affect the function of Tregs directly or indirectly. For

instance, oxidized LDL may negatively impact Tregs, reducing their

suppressive ability. ApoB, by affecting Tregs, can lead to an

imbalance in immune regulation, potentially exacerbating

cardiovascular inflammation and the progress ion of

atherosclerosis (97, 205). Given that each LDL and VLDL particle

contains just one apoB protein, the concentration of apoB in the

blood can be regarded as a representative of lipoprotein particles

with potential atherogenic properties (206, 207). Building on these

promising observations, Lehrer et al. tested a monoclonal antibody

targeting oxidized LDL (oxLDL), MLDL1278A, for its potential to

reduce inflammation in atherosclerosis (208).In the study, 147

atherosclerotic patients with inflammation in the carotid or aorta

plaques were randomly divided into three groups. Results indicated

that while the MLDL1278A-treated groups had higher serum

concentrations, there wasn’t a significant reduction in arteritis

compared to the placebo group. MLDL1278A was well-tolerated,

with no immunogenicity observed. In multiple dosing groups, levels

of tumor necrosis factor-a and interleukin-6 showed a slight

increase by the fourth week.

CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) is a

crucial molecule on the surface of Treg cells. By binding to the B7

family molecules on antigen-presenting cells, CTLA-4 dependent

downregulation can inhibit T-cell activation. CTLA-4 blockade

triggers an over-proliferation of CD28-dependent Treg cells, and

a concurrent inactivation of Treg cells is necessary for tumor

rejection responses (209). Therefore, Treg cells self-regulate

through a CTLA-4 and CD28-dependent feedback loop. The

disruption of this loop by CTLA-4 blockade could counteract the

damage caused by an overly activated immune-inflammatory

response to cardiac and vascular tissues, making it a potential

target for the treatment of certain types of cardiovascular diseases.

Ipilimumab, an antibody drug targeting CTLA-4, is commonly used

for certain types of cancer treatment, but its role in modulating Treg

cells also shows potential. Treatment with Ipilimumab leads to a

reduction in Treg cells mediated by macrophage ADCC, while also

shifting TAM polarization from M2 to M1, subsequently attracting

CD8 cells and increasing the anti-tumor response (210). GITR

(Glucocorticoid-Induced TNFR-Related protein) also plays a role in

the regulation of Treg cells and can influence immune responses.

Some studies are exploring therapies targeting to modulate Treg cell

functions (211).
4.2 Active immunotherapy using vaccines

The therapeutic use of PCSK9 antibodies has been shown to

effectively lower LDL cholesterol levels, and when combined with

statins, it has been proven to further reduce the risk of

cardiovascular diseases (212). However, the high cost of this

treatment has limited its widespread use among patients.

Therefore, the potential to induce similar antibodies through

vaccination is being explored as a more cost-effective approach.
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the autoimmune response against LDL-related antigens has been

tested in clinical trials. This vaccine may activate or increase the

number of Tregs, thereby enhancing their regulatory role in

cardiovascular inflammation (99). By modulating the activity of

Tregs, the vaccine could alter the immune response to LDL or

oxidized LDL (oxLDL), reducing the development of

atherosclerosis (213). According to experimental evidence, the

primary mode of action of such vaccines is to inhibit the Th1-

dependent pro-inflammatory immune response against antigens

formed in modified LDL particles (110). This inhibition is

mediated by antigen-specific regulatory T cells, which are activated

when macrophages and other antigen-presenting cells in

atherosclerotic plaques are exposed to their homologous antigens

(214). Theoretically, these antigen-specific Tregs not only suppress

the activity of Th1 T cells with corresponding antigen specificity but

also inhibit plaque inflammation by releasing anti-inflammatory

cytokines, such as IL-10 and TGF-b. The advantage of this mode

of action is a lower risk of adverse side effects associated with systemic

anti-inflammatory treatments. Therefore, it is expected not to lead to

the slight increase in fatal infection frequency observed in the

CANTOS trial (215). It has been proven in experimental models

that atherosclerosis can be suppressed by activating Tregs. In the long

term, a vaccine specifically inducing LDL tolerance in atherosclerotic

plaques is still considered the best alternative treatment option.

A novel anti-PCSK9 vaccine formulation, termed L-IFPTA, was

developed to induce the host to produce anti-PCSK9 antibodies,

thereby lowering LDL-C levels in mice. This vaccine induces

functional anti-PCSK9 antibodies, effectively blocking the

interaction between PCSK9 and LDLR, increasing the expression

of LDLR on hepatocyte surfaces, and enhancing cholesterol

clearance from the bloodstream (216).The L-FPTA vaccine can

also modulate the balance of the immune system, reducing levels of

the pro-inflammatory factor IFN-c, and increasing levels of anti-

inflammatory factors L-4 and L-10. The L-FPTA vaccine may

indirectly enhance the function of Tregs by raising levels of L-10,

thereby more effectively suppressing inflammation related to

cardiovascular diseases. Adjusting the immune environment may

impact the number and activity of Tregs, thereby altering the

progression of cardiovascular diseases. The L-IFPTA vaccine

significantly reduced TC, LDL-C, and VLDL-C levels in mice,

diminishing the formation and severity of atherosclerotic plaques.

In a preclinical study on healthy non-human primates to determine

the immunogenicity and safety of the “liposomal immunogenic

fusion PCSK9-tetanus toxoid adjuvant” (L-IFPTA) nanoliposome

anti-PCSK9 vaccine, the data suggested that the L-IFPTA vaccine

potently and safely induced these primates to produce functional

anti-PCSK9 antibodies (217). This vaccine effectively stimulates a

humoral immune response, generating inhibitory antibodies against

plasma PCSK9, without causing systemic inflammation or adverse

effects on organ functions. It also modulates the immune system

balance by decreasing pro-inflammatory IFN-c levels and

increasing anti-inflammatory IL-4 and IL-10 levels. The L-IFPTA

vaccine demonstrates good safety and tolerability (218).

Currently, the safety of PCSK9 peptide vaccines, the ability of

PCSK9 antibodies to respond and reduce LDL, has been tested in
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phase I trials. Randomized placebo-controlled clinical trials

evaluating anti-inflammatory drugs elucidate whether targeting

inflammation itself would reduce cardiovascular events and risks.

AT04A and AT06A are two AFFITOPE® peptide candidate

vaccines under development, aiming to treat hypercholesterolemia

by inducing specific antibodies against proprotein convertase

subtilisin/kexin type 9. This phase I, single-blind, randomized,

placebo-controlled study was conducted among 72 healthy

participants with baseline fasting LDLc levels averaging 117.1 mg/

d. Throughout the study period, the AT04A group exhibited an

average reduction of -7.2% in LDL levels compared to the placebo

group (219). Such antibodies help clear pathogenic particles from

circulation. They can also neutralize pathogenic particles in the

extracellular space, preventing their binding to pattern recognition

receptors, reducing intracellular cholesterol accumulation, and

inhibiting the induction of pro-inflammatory signals in

macrophages. High levels of cholesterol within cells can impair

the function and stability of Tregs. By reducing intracellular

cholesterol accumulation, Tregs can maintain their functionality

and ability to regulate the immune system effectively (99).

Cholesterol metabolism is crucial for cell membrane integrity and

signaling. By regulating cholesterol levels within Tregs, it’s possible

to influence their survival, proliferation, and capacity to suppress

pro-inflammatory responses (220). Reducing cholesterol

accumulation in Tregs can improve their ability to control the

inflammatory processes that contribute to plaque development and

stability (221).
4.3 Immune adsorption therapy

Transgenic mice expressing the Tumor Necrosis Factor-a
(TNF-a) gene under the cardiomyocyte promoter (TNF1.6 mice)

develop dilated cardiomyopathy (DCM). These transgenic mice

exhibit widespread cardiac inflammation, suggesting that an

immunopathogenic mechanism might promote cardiomyopathy.

Compared to control TNF1.6 mice, TNF1.6 mice treated with

monoclonal anti-CD3 or anti-CD4 antibodies displayed

significant reductions in heart size and plasma troponin I

concentrations due to T cell depletion. Adoptive transfer of CD4

(+)CD25(+) cells from H310A1-infected mice into uninfected

TNF1.6 recipients eliminated cardiomyopathy. Administration of

recombinant TNF-a exogenously to H310A1-infected mice for 4

days abrogated immune suppression (222). After six months of

immune adsorption therapy, the left ventricular ejection fraction in

DCM patients significantly improved, correlating closely with an

increase in peripheral Treg cell numbers. Experimental evidence

suggests that direct transfer of Treg cells into TNF transgenic mice

can reduce their heart weight and plasma levels of troponin I,

alleviating DCM symptoms. Compared to healthy individuals, the

number of Treg cells in the myocardium of DCM patients is notably

reduced (140).In this study, induced glucocorticoid tumor necrosis

factor R-related protein was used as a marker for Treg cells rather

than the more specific FOXP3 transcription factor. In summary,

autoimmunity modulation might be beneficial in preventing

myocarditis and subsequent DCM, and manipulating the number
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and function of Treg cells could be a promising strategy against

these challenging diseases.
5 Conclusion and prospective

While certain cardiovascular diseases such as atherosclerosis,

hypertension, and myocardial infarction are not considered

classical autoimmune diseases, immune responses related to self-

antigens indeed play significant roles in their development (223).

Specifically, T cells, especially Treg cells, occupy a central position

in the pathophysiology of these diseases (224). Studies indicate that

defects in the number and function of Treg cells are associated with

a variety of cardiovascular diseases, and enhancing the function or

number of Treg cells can effectively slow down disease progression

(225). Hence, Treg cells are viewed as potential therapeutic targets.

Ample experimental and clinical research suggests that a reduced

number and impaired function of Treg cells might be present in

multiple cardiovascular diseases (15). Adoptive transfer of

exogenous Treg cells or expansion of endogenous Treg cells

effectively inhibited the progression of many cardiovascular

diseases (97). Although the therapeutic mechanisms of Treg cells

for cardiovascular diseases remain not fully elucidated, they provide

a promising research direction, potentially revealing immune-

regulatory mechanisms in cardiovascular diseases.

Experimental studies have granted us many new insights into

cardiovascular diseases. However, transitioning from these

experimental findings to actual clinical applications often requires

considerable time, given that clinical studies must consider

numerous variables and complexities. In an inflammatory

environment, Tregs may lose their suppressive function or

transform into other types of T cells. Tregs must precisely target

inflammation related to cardiovascular diseases, avoiding

widespread suppression of the immune system, which could lead

to infections and other adverse consequences (226). Effectively

expanding and maintaining the function of Tregs in vitro and

efficiently delivering Tregs to specific areas of cardiovascular disease

present additional technical challenges. Most experimental research

on cardiovascular disease vaccines focuses on early prevention. Yet,

for patients in advanced stages exhibiting clinical symptoms, these

study results might not be applicable. Developing methods for

selectively activating or enhancing the function of Tregs,

especially at sites of inflammation related to cardiovascular

diseases, is important (227). Utilizing CRISPR or other gene-

editing tools to enhance the stability and specificity of Tregs is

another approach. Improving in vitro culture conditions to increase

the quantity and quality of Tregs, including the use of specific

cytokines and culture media, is also crucial (228). Developing new

delivery systems, such as biocompatible materials and

nanoparticles, can improve the stability and targeting of Tregs

within the body. Combining Treg therapy with other treatment

methods, such as lipid-lowering drugs or anti-inflammatory

therapies, can enhance the effectiveness of the treatment (229). To

translate into stable treatment regimens for cardiovascular diseases,

comprehensive clinical trials are needed to understand the vaccine’s

mechanism of action, monitor vaccine responses, evaluate efficacy
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in advanced cardiovascular diseases, and assess potential

safety concerns.
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PARP2 downregulation in T cells ameliorates lipopolysaccharide-induced
inflammation of the large intestine. Front Immunol. (2023) 14:1135410. doi: 10.3389/
fimmu.2023.1135410

55. NohMY, LeeWM, Lee SJ, Kim HY, Kim SH, Kim YS. Regulatory T cells increase
after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke
patients. Int Immunopharmacol. (2018) 60:104–10. doi: 10.1016/j.intimp.2018.04.043

56. Bastid J, Regairaz A, Bonnefoy N, Déjou C, Giustiniani J, Laheurte C, et al.
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