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One of major breakthroughs in immunotherapy against tumor is from blocking

immune checkpoint molecules on tumor and reactive T cells. The development of

CTLA-4 and PD-1 blockage antibodies has triggered to search for additional

effective therapeutic strategies. This causes recent findings that blocking the

interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in

tumors is effective in defensing tumors. Interestingly, gut microbiota also affects

this immune checkpoint immunotherapy against tumor. Gut microbiota such as

bacteria can contribute to the regulation of host immune response and

homeostasis. They not only promote the differentiation and function of

immunosuppressive cells but also the inflammatory cells through the

metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as

short chain fatty acids (SCFAs). These gutmicrobiotametabolites (GMMs) educated

immune cells can affect the differentiation and function of effective CD8 and NK

cells. Notably, these metabolites also directly affect the activity of CD8 and NK

cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or

their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated

immune factors. These findings offer new insights for the clinical application of gut

microbiota in precise and/or personalized treatments of tumors. In this review, we

will discuss the impacts of GMMs and GMM educated immune cells on the activity

of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells

and/or their ligand HLA-E in tumor cells.
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1 Introduction

One of the major breakthroughs in immunotherapy against

tumors is from blocking immune checkpoint molecules on tumor

and reactive T cells. The development of CTLA (cytotoxic T

lymphocyte associate protein)-4 and PD (programmed cell death

protein)-1 immunosuppressive antibodies has triggered to look for

additional effective therapeutic strategies against tumors.

Indeed, beyond CTLA-4 and PD-1, other immune check point

molecules such as NKG2A, TIM (T cell immunoglobulin domain

and mucin domain)-3, LAG (lymphocyte activation gene)-3, and

TIGIT (T-cell immune-receptor with Ig and ITIM domains), which

are expressed in CD8 and natural killer (NK) cells can also be

referred to tumor resistance to immune cells (1, 2). A key

mechanism of tumor resistance to immune cells is mediated by

expression of peptide-loaded HLA (human leukocyte antigen)-E in

tumor cells, which suppresses NK and CD8 cell activity via ligation

of the NK inhibitory receptor CD94/NKG2A. The large number of

human solid tumors such as colon, lung, pancreas, stomach, liver,

head and neck carcinomas, in which the overexpression of NKG2A

receptor and/or their ligand HLA-E has been often associated with a

poor prognosis (3–5). Recently, several studies have examined

targeting of the immune checkpoint NKG2A through either

combined with a tumor-targeting antibody or with a tumor-

specific vaccine, and demonstrated that blocking the interaction

of NKG2A on both NK cells and CD8+ T cells and HLA-E in the

tumor cells is effective in defensing tumor (6) through enhancing

effective functions of both NK and CD8+ T cells in mice and

humans (7–12).

Interestingly, gut microbiota such as bacteria, fungi and viruses

can directly and indirectly affect immune responses in HLA-E and

NKG2 blockage immunotherapy against tumors. The metabolites

from specific microorganisms in gut microbiota such as short chain

fatty acid (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites

may regulate the differentiation and function of immune cells

through genetic, epigenetic and metabolic regulation. These

immune cells include regulatory (suppressive) macrophages

(rMacs), regulatory dendritic cells (rDCs), myeloid-derived

suppressive cells (MDSCs), regulatory T cells (Tregs), regulatory

B cells (Breg) and effective or inflammatory cells such as CD4 T

helper (Th)1, TH2, TH17, NKT cells, NK cells, neutrophils and

innate lymphocytes (ILCs). They express different receptors such as

G-protein coupled receptor (GPR)43 for SCFAs, aryl hydrocarbon

receptor (AhR) for Trp metabolites, and farnesoid X receptor

(FXR), vitamin D receptor (VDR), liver-X-receptor (LXR),

pregnane X receptor (PXR), retinoid related orphan receptor

(RORgt) and constitutive androstane receptor (CAR) for BA

metabolites (13, 14). These GMM educated immunosuppressive

and inflammatory cells can influence the functions of effective CD8

and NK cells in HLA-E and NKG2 blockage immunotherapy

against tumors such as cytotoxic function. Notably, these

metabolites from gut microbiota also directly produce the effects

on the function of CD8 and NK cells. Furthermore, the expression

of immune checkpoint molecule CD94/NKG2A in the CD8 and NK

cells and/or their ligand HLA-E in the tumor cells is also regulated
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by immune factors such as cytokines. In this review, we will discuss

the direct and indirect impacts of GMMs on the activity of effective

CD8 and NK cells and on the expression of CD94/NKG2A in the

immune cells and/or their ligand HLA-E in the tumor cells.
2 HLA-E: NKG2A/CD94 blockage for
tumor immunotherapy

2.1 HLA-E (H2-T23)

Human leukocyte antigen HLA-E and its mouse ortholog H2-

T23 (Qa-1b) is lowly expressed on almost all cell surfaces. In tumor

cells (hematological as well as solid tumors), HLA-E is frequently

overexpressed as compared to their non-transformed counterparts,

such as lung, cervix and head/neck carcinoma to avoid killing. In

addition, other cells such as Macs, monocytes, and neutrophils also

contribute to the expression of HLA-E (11, 15). HLA-E and H2-T23

or Qa-1 displays limited polymorphism. Both HLA-E and H2-T23

are also conserved in the population and present signal peptides of

classical MHC class I molecules. Its stabilization at the cell surface is

dependent on the availability of peptide ligands and proper function

of the antigen processing machinery. HLA-E, which is primarily

loaded with VL9 that are derived from signal peptides (SPs) of

classical HLA class I allotype, can serve as a ligand for CD94/

NKG2A and CD94/NKG2C receptors expressed on NK and T cell

subsets. Notably, the expression of H2-T23 (HLA-E) molecules can

not only be regulated by genetic factors but also influenced by the

availability of conserved lead peptide, peptide transporter TAP and

proteolytic enzyme through post-translational regulation, which

affects the expression of H2-T23 (HLA-E) molecules. Human

cytomegalovirus (HCMV) can produce a nonamer peptides

bearing valine at position 1 and leucine at position 9 (VL9) that

are loaded onto HLA-E, allowing the infected cells to escape from

NK cell lysis through CD94/NKG2A: HLA-E-mediated inhibition.

However, HLA-E can also bind peptides from viral, bacterial or

stress protein origin (6).
2.2 CD94/NKG2A

NKG2A, a member of the NKG2 seven receptors, namely A, B,

C, D, E, F and H, dimerizes with CD94 to form CD94/NKG2A

receptor (16). Almost 50% of NK cells in the peripheral blood

express CD94/NKG2A. NKG2A can also mark a special CD8+ T cell

subset with tissue-resident and terminally exhausted features. The

frequency of CD8+ ab T cells expressing NKG2A is significantly

higher in tumor such as colorectal carcinomas than in paired

normal mucosa. Single-cell transcriptomics of human tumor-

infiltrating lymphocytes (TILs) show indeed that these receptors

are often co-expressed by the CD8 T cell cluster (17, 18). NKG2A

belongs to the C-type lectin family of receptors that recognizes non-

classical HLA-E molecule. The cytoplasmic tail of NKG2A receptor

contains two immune-receptor tyrosine-based inhibition motifs

(ITIM) capable of recruiting both SHP (src homology-2
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containing protein tyrosine phosphatase)-1 and SHP-2

phosphatases, but not the inositol phosphatase SHIP (SH2-

containing inositol phosphatase 1) (19) (Figure 1). Both ITIMs

can mediate maximal inhibitory signal (20). The partner CD94

lacks ITIMs, and has only seven cytoplasmic amino acids, which has

no role in downstream signaling. Other CD94 comprising

heterodimers, such as NKG2C, can also bind to HLA-E

complexes, but with much lower affinity.
2.3 Blocking HLA-E with NKG2A/CD94 for
tumor immunotherapy

HLA-E, which is expressed on the tumors, can serve as a ligand

for CD94/NKG2A receptor expressed on NK and CD8 cell subsets.

Upon binding ligands, CD94/NKG2A receptors deliver signals to

suppress NK cell functions. Similar to its function in NK cells,

CD94/NKG2A receptors also deliver inhibitory signals to CD8+ T

cells (6, 8, 11, 21, 22). However, disrupting interaction of CD94/

NKG2A with H2-T23 (Qa-1) or HLA-E can activate the cytotoxic

activity of CD8+ and NK cells (23–25). Clinical trials have

demonstrated that monalizumab, a humanized anti-NKG2A

antibody, can enhance NK cell activity against various tumor cells

and rescue CD8+ T cell function in combination with PD-1

blockade (7). A phase II trial of monalizumab with cetuximab in

treated squamous cell carcinoma of the head and neck shows a

higher response rate to treatment (7). NKG2A+ CD8+ T cells

inhibited by tumors through HLA-E can partly restore upon

NKG2A blockade in an HLA-E-dependent manner in the bladder

tumors (8). In human pancreatic ductal adenocarcinoma,

disruption of this interaction by blockade of NKG2A enhances

NK and CD8-mediated tumor cell killing in vitro, and also prevents

tumor metastasis in vivo (26). Thus, immune checkpoint blockages

(ICBs) of NKG2A and HLA-E (HLA-E: NKG2A/CD94) is effective

in defensing tumors.

Notably, CD8+ T cells and NK cells in immune checkpoint

blockages (ICBs) of HLA-E: NKG2A/CD94 against tumors can be

regulated by other immune cells. For example, CD8+ T cells have
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positive cross-talking with macrophages, CD4+ T cells, and

dendritic cells (DCs); Whereas there also has a negative cross-

talking in CD8+ T cells with immunosuppressive cells such as

Tregs (27).
3 Education of GMMs on the
immune cells

There have many metabolites derived from gut microbiota.

Because of widely effects of Trp metabolites, BA metabolites and

SCFAs on the immune cells, especially immunosuppressive cells, we

here mainly discuss the roles of these metabolites in regulating

immune cells (Figure 2).
3.1 GMMs

3.1.1 Trp metabolites
Trp metabolism in gut microbiota has been reviewed by us (14)

and other multiple papers (28–30). Trp metabolites such as indole

(29), indole-3-acid-acetic (IAA) (31–33), indole-3-propionic acid (IPA)

(31–33), indoleacrylic acid (IA) (34), indole-3-propionic acid (IPA)

(34), indole-3-aldehyde (IAld) (35), skatole (33, 36) and tryptamine can

be generated by bacteria in gut microbiota. In addition, gut microbiota

bacteria also encode enzymes homologous to those of eukaryotic

kynurenine (Kyn) pathway to generate Kyn and downstream

metabolites such as 3-hydroxyanthranilic acid (3-HAA) (37).

3.1.2 BA metabolites
Two primary BAs cholic acid (CA) and chenodeoxycholic acid

(CDCA) are generated in liver, and then conjugated, deconjugated and

transformed into other metabolites in gut microbiota. Gut microbiota

bacteria can conjugate glycine to DCA, CDCA or CA in vitro (38) or

one or more other amino acids such as alanine, arginine and aspartate

to CDCA, DCA or CA (38). Four distinct ways, including

deconjugation, dehydroxylation, oxidation, and epimerization are
FIGURE 1

Expression of HLA-E in tumor cells and NKG2A in CD8 and NK cells. HLA-E molecules expressed on the tumor cells can inhibit activity of the CD8
and NK cells through NKG2A expressed on the CD8 and NK cells. The cytoplasmic tail of NKG2A receptor contains two immunoreceptor tyrosine-
based inhibition motifs (ITIMs) capable of recruiting both SHP-1 and SHP-2 phosphatases. NK cells, nature killer cells; ITIM, immunoreceptor
tyrosine-based inhibition motif; NKG2A, a member of the NKG2 seven receptors; SHP, SH2-containing inositol phosphatase; HLA-E, human
leukocyte antigen-E.
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used to transform BAs by gut microbiota bacteria in human (39–41).

Conjugated BAs are deconjugated in gut bacteria (42–48). After BAs

are deconjugated, BAs can be converted into secondary BAs such as

DCA and lithocholic acid (LCA). A range of oxo-, epi- and iso-

derivatives (49) such as oxo-BA metabolites 3-oxoLCA, 7-oxoCDCA,

12-oxoCA, 7-oxoCA, 12-oxoDCA (50), iso-LCA, 3-oxo-LCA, 3-

oxoallo-LCA, isoalloLCA, allo-LCA and 3-ketoLCA can be found in

gut microbiota bacteria (39, 51–54). 7a-epimerization to UDCA also is

produced in gut microbiota bacteria (39).

3.1.3 SCFAs
SCFAs such as acetate, propionate and butyrate are from dietary

fiber fermentation in the cecum and colon by gut bacteria (55, 56).

Acetate (56–58), butyrate (57, 59, 60) and propionate (57, 59, 61)

can be generated by different gut microbiota bacteria.
3.2 Education on the immune cells

GMMs such as Trp metabolites, BA metabolites and SCFAs have

widely effects on the function and differentiation of immune cells such

as CD8 and NK cells, which are involved in NKG2A: HLA-E ICB

immunotherapy against tumor. They can affect the function and
Frontiers in Immunology 04
differentiation of CD8 and NK cells through not only direct, more

importantly but also indirect role such as GMMs educated immune

cells. These educated immune cells include immune regulatory

(suppressive) cells such as rMacs, rDCs, MDSCs, Tregs, Bregs, and

also immune inflammatory/effective cells such as TH1, TH2, and

TH17, which are related to cytotoxic function of CD8 and NK cells.

In addition, the metabolites also have direct effects on the function and

differentiation of CD8 and NK cells (Figure 2). Notably, the functions

of GMMs is highly dependent on concentration and time of exposure

(62, 63). However, there is absence of evidence on how quickly the

metabolites are metabolized once they are produced by bacteria.

3.2.1 Immunosuppressive cells
GMMs can affect the differentiation and function of immune

regulatory (suppressive) cells such as rMacs, Tregs, MDSCs and

Bregs, which can negatively regulate the function of CD8 and NK

cells in HLA-E: NKG2 blockage immunotherapy against tumors.

3.2.1.1 rMacs
3.2.1.1.1 Trp metabolites

The differentiation and function of rMacs can be regulated by

Trp metabolites through their receptor AhR (64). Indeed, the

activation of AhR causes reduced inflammatory responses
FIGURE 2

Regulations of GMMs in the CD8 and NK cells of HLA-E: NKG2A blockage immunotherapy against tumors. GMMs affect the function and
differentiation of the CD8 and NK cells through not only direct but also indirect roles. Immune regulatory cells such as rMacs, MDSCs, Tregs and
Bregs, and immune effective/inflammatory cells such as TH1 and TH17 can be suppressed or promoted by GMMs to positively and negatively
regulate the function and differentiation of the CD8 and NK cells. Meanwhile, gut microbiota/GMMs also have directly negative and positive effects
on the function and differentiation of CD8 and NK cells. Tregs, regulatory T cells; rMacs, regulatory Macs; Bregs, regulatory B cells; MDSCs, myeloid-
derived suppressive cells; DCs, dendritic cells; NK cells, natural killer cells; TH cells, T helper cells; ILCs, innate lymphocytes; SCFAs, short chain fatty
acids; CDCA, chenodeoxycholic acid; Kyn, kynurenine; ILA, indole-3-lactic acid; Trp., tryptophan; IPA, indole-3-propionic acid; 3-HAA, 3-
hydroxyanthranilic acid; IAA, indole-3-acid-acetic; I3A, indole-3-aldehyde; 5-HTP, 5-hydroxytryptophan;NorUDCA, norursodeoxycholicacid; STING,
stimulator of interferon gene; TMAO, trimethylamine oxide.
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through a Ras-related protein Rac1 (ras-related C3 botulinum toxin

substrate 1) ubiquitination-dependent mechanism, which can

attenuate AKT (protein kinase B) signaling in endotoxin-activated

(LPS) monocyte-derived macrophages (65). Trp metabolites 3-

HAA inhibits signaling pathways of LPS mediated PI3K

(phosphatidylinositol 3 kinase)/AKT (protein kinase B)/mTOR

(mammalian target of rapamycin) and NF-kB (nuclear factor k
gene binding) in LPS-stimulated Raw 264.7 cells and Macs (66). In

addition, Trp metabolites also inhibit inflammatory responses also

through suppressing histamine production in the Macs (67).

3.2.1.1.2 BA metabolites

BA metabolites have an important role in the differentiation and

function of rMacs through their receptors such as TGR5 (GPBAR1),

FXR, VDR, LXR, PXR, RORgt and CAR (13, 14). They are essential in

maintaining immunosuppressive phenotypes of the Macs via TGR5

(GPBAR1) (68–70). Through activating TGR5 (71) or TGR5-cAMP

(adenosine monophosphate)-dependent ubiquitination of NLRP3

(72), secondary BAs DCA and LCA can function as endogenous

inhibitors of NLRP3 activation to maintain immunosuppressive

phenotypes of macrophages. FXR, another BA receptor also is an

important negative regulator of macrophages by directly interacting

with NLRP3 and caspase 1 (72). Notably, FXR also activates SHP or

SOCS3 (suppressor of cytokine signaling 3), FGF19 (fibroblasts

growth factor 19) and CYP450 (Cytochrome P450) to inhibit

macrophage inflammation (73–76).

3.2.1.1.3 SCFAs

SCFAs butyrate can inhibit lipopolysaccharide (LPS)-mediated

proinflammatory mediators such as IL-6, IL-12 and nitric oxide

(NO) in macrophages. The inflammatory responses mediated by

NLRP3 are negatively modulated by SCFAs to suppress the Macs

(77). Butyrate can also reprogram metabolisms of macrophages

toward oxidative phosphorylation, causing an anti-inflammatory

phenotype in vivo (78).

3.2.1.2 Tregs
3.2.1.2.1 Trp metabolites

The generation and expansion of Tregs can be induced by Trp

metabolites mediated regulatory DCs. Trp metabolites such as

indole also directly regulate the function of Tregs (79, 80). In

addition, Trp metabolite Kyn from gut microbiota can enhance

differentiation of Tregs by the activation of AhR (81–84), and

increase Foxp3+Tregs through direct transactivation and the

induction of epigenetic modifications which control Foxp3

transcription (84–86). 3-HAA, a downstream metabolite of Kyn

also promotes the generation of Foxp3+Treg cells via a nuclear

coactivator 7 (NCOA7)-dependent pathway in immunoregulatory

dendritic cells (87).

3.2.1.2.2 BA metabolites

The differentiation of Tregs is promoted by secondary BA

derivatives isoal loLCA (88–90) via the production of

mitochondrial reactive oxygen species (mitoROS), which can

increase expression of Foxp3 (88). Nuclear receptor subfamily 4,

group A, member 1 (NR4A1) is also necessary for the effect of
Frontiers in Immunology 05
isoalloLCA on Treg cells in vitro-induced Treg (iTreg) differentiation

(91). IsoalloLCA may result in the increased binding of NR4A1 at

the Foxp3 locus, causing Foxp3 gene transcription. In addition, the

differentiation of TH17 cells is inhibited by 3-OxoLCA by directly

binding to the key transcription factor RORgt (retinoid-related

orphan receptor-gt), which finally affects the TH17/Treg balance

via administration of 3-oxoLCA to mice (88).

3.2.1.2.3 SCFAs

In Treg cell polarization conditions, SCFAs also promote the

conversion of naïve T cells toward Tregs (92). An increased number

of extra-thymic Foxp3+Tregs could be observed in mice provided

with SCFAs (93). In mechanism, SCFA receptor GPR43 on the T

cells induces the differentiation of Foxp3+ Tregs in histone

deacetylase (HDAC)-dependent model (94). The differentiation of

Tregs is also promoted through upregulating the histone H3

acetylation of Foxp3 by butyrate in in vitro CXCR5+Bcl-6+Foxp3+

TFR (iTFR) cell culture system (93). Notably, upon exposure to

butyrate, DCs also facilitate the differentiation of Foxp3+Tregs, and

meanwhile also inhibit the differentiation of naïve T cells into

interferon (IFN)g producing TH1 cells.
3.2.1.3 MDSCs

Notably, intra-tumor increased F. nucleatum in patients with

colorectal cancer (CRC) is associated with enrichment of MDSCs

(95). Gut microbiome can also control accumulation of MDSCs in the

context of a benign liver disease or colitis (96). Taurodeoxycholate

(TDCA), a BAmetabolite also causes increasedMDSCs in the spleen of

septic mice (97). AhR activation triggers dysbiosis, which in turn

regulates induction of MDSCs by injecting 2,3,7,8-tetrachlorodibenzo-

p-dioxin directly into antibiotic-treated mice (98).
3.2.1.4 Other immune cells
3.2.1.4.1 Trp metabolites

Trp metabolites also promote differentiation of Tr1 cells,

another immune regulatory T cells (99) by activating AhR

through associating with c-Maf to activate IL-10 and IL-21

promoters during the differentiation (100). Differentiation and

function of IL-10-producing Bregs are also induced by AhR

under Breg-inducing conditions (101). IAA together with LPS can

activate transcription factor PXR and NF-kB to induce the

generation of IL-35+ Breg cells in vitro culture condition (102).

Trp metabolite IAA downregulates RORgt (transcription factors

retinoic acid receptor-related orphan receptor gamma t) and

STAT3 (signal transducer and activator of transcription 3) to

decreases TH17 cells through activating the AhR pathway (103).

IAld generated by Lactobacilli fosters IL-22 production by ILC3s

(104, 105). AhR is an important transcription factor for all ILC3

subsets such as lymphoid tissue-inducer (LTi)-like ILC3s and

NKp46+ ILC3s (106–108). AhR also promotes ILC3 survival by

IL-7/IL-7R pathway and anti-apoptotic gene expression in vitro

(107), and drives the expression of IL-22 in TH17 cells but is not

required for their differentiation in mice (109). In addition,

L. reuteri can drive reprogramming of CD4+ T cells into

CD4+CD8aa+ intestinal intraepithelial lymphocytes (IELs) in the
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gut via Trp metabolites mediated AhR activation (35). Oral Trp

supplementation suppresses antigen-specific TH1 responses at sub-

toxic concentrations (110).

3.2.1.4.2 BA metabolites

BA metabolites disrupt intracellular calcium homeostasis,

which is essential for NFAT (nuclear factor of activated T cells)

signaling in T cells (111). In the presence of BAs, CD4+ T effector

cells upregulated the xenobiotic transporter Mdr1 in the ileum to

maintain homeostasis (112). Pols et al. revealed that physiological

concentrations of unconjugated LCA could inhibit the activation of

primary human and mouse CD4+ TH1 cells through a VDR-

dependent mechanism, resulting in decreased TNFa and INFg
(113). PXR activation in both mouse and human also inhibits T

cell proliferation in vitro. TH17 cell differentiation can be inhibited

by 3-oxoLCA by blocking the function of RORgt (88, 114) and

directly binding to transcription factor RORgt (88). Similar to 3-

oxoLCA, isoLCA also inhibits TH17 cell differentiation by

suppressing RORgt (52). The administration of 3-oxoLCA and

isoalloLCA to mice can reduce TH17 cell differentiation but

increases Treg cell differentiation in vivo (88).

3.2.1.4.3 SCFAs

The expression of indoleamine 2,3-dioxygenase 1 (IDO1) and

aldehyde dehydrogenase 1A2 (Aldh1A2), immunosuppressive

enzymes in DCs, can be induced by butyrate (115). Mouse DCs

treated with SCFA propionate exhibit the impaired ability to initiate

TH2 effector function (116). In addition, Rosser and colleagues

showed that butyrate could cause the production of 5-

hydroxyindole-3-acetic acid (5-HIAA) (117), which could activate

its AhR in Bregs to mediate the suppressive effect in a rheumatoid

arthritis model in vivo (117). Administration of SCFAs also

increases the frequency of Bregs and improve rheumatoid

arthritis (RA) symptoms (118). In addition, SCFA butyrate also

decreases the proliferation and cytokine production of TH1, TH17

and TH22 cells (119). Furthermore, SCFAs also deeply impact on

ILC function as demonstrated by the effects of antibiotics on the

transcriptomic program of ILC1s, ILC2s, and ILC3s (120).

3.2.2 Inflammatory immune cells
GMMs can also affect the differentiation and function of

inflammatory/effective immune cells such as inflammatory

macrophages (iMAC), TH1 and TH17 cells, which can have

positive regulation on the CD8 and NK cells in HLA-E: NKG2

blockage immunotherapy against tumors.

3.2.2.1 Trp metabolites

Trp metabolites promote inflammatory/effective immune cells

such as that Trp metabolite ILA ameliorates colorectal

tumorigenesis through epigenetic regulation of CD8+ T cell

immunity (121). Interventions with indole-3-lactic acid (ILA) also

complements chemoprevention strategies for colorectal carcinoma

(CRCs) (121). Trp metabolite Kyn may modulate GPR35-positive

macrophages to cause a robust TH17 immune response.
Frontiers in Immunology 06
3.2.2.2 BA metabolites

CDCA, a BA metabolite CDCA suppresses M2 macrophage

polarization (122) through causing mitochondrial morphology

damage, decreasing mitochondrial membrane potential and elevating

mitochondrial calcium level, which can cause the production of ROS.

3.2.2.3 SCFAs

SCFAs increase tumor-killing CD8+ T cells and reduce immune-

suppressing Tregs in tumor tissues. The supplement using SCFAs

increases intra-tumor T cells, raising the concentration of cytokines

INF-g and TNF-a (123). Decreased SCFA-producing taxa such as

Coprococcus is subsequently related to a lower number of CD8+cells.

He et al. also exhibited that butyrate could promote draining lymph

node CD8+ T cells in a mouse model (124). Notably, the evidence of

SCFAs for the responses to ICBs is conflicting (62, 124, 125), which

needs to be further investigated.

3.2.2.4 Others

Gut microbiota-derived stimulator of interferon gene (STING)

agonists such as that cdAMP can induce monocytes to produce type

I IFN and to skew the polarization of M1 macrophages in the TME

(126). The choline or carnitine in foods are metabolized by the gut

microbiota to generate trimethylamine (TMA), which is catalyzed

to produce trimethylamine oxide (TMAO). TMAO can promote

CD8+ T cell-mediated anti-tumor immunity via induction of

pyroptosis in mouse models (127). Inosine, a purine metabolite of

A. muciniphila and B. pseudolongum, could act as a substitute

carbon source for CD8 cell metabolism in the TME, assisting T-cell

proliferation and differentiation to improve sensitivity to ICBs.

Other metabolites such as peptidoglycan and polysaccharide,

outer membrane vesicles, microbial peptides, anacardic acid and

castalagin also promote the differentiation and function of

inflammatory cells.

In addition, bacteria such as Akkermansia muciniphila (A.

muciniphila), Bacteroides (B) fragilis, Bifidobacterium pseudolongum

(B. pseudolongum), Clostridiales SPP., Eleven SPP. and Lactobacillus

species significantly enhance efficacy of ICBs in the cancer (128–130).

They can promote the differentiation and function of inflammatory

immune cells. For example, oral administration with A. muciniphila

recruits CCR9+CXCR3+CD4+ T lymphocyte into tumor (131).

Bifidobacterium alters the functional capacity of DCs to induce

CD8+ T cell proliferation (130, 132) and antitumor immune

responses to improve ICB efficacy (128). Bacteroides fragilis induces

macrophage polarization to M1 and upregulates costimulatory

molecule CD80 and CD86 expression on the cells, which can

promote innate immunity (133). L. plantarum also promotes the

expression of natural cytotoxic receptors, and activate NK cells to

trigger innate immunity. Enterococcus hirae induces the polarization

of immune cells towards a TH1 IFNg phenotype, leading to increased
ratios of cytotoxic T cells to Tregs in mouse models. Faecalibacterium

increases CD4+ T cell proportion and also reduces Treg cell

proportion in peripheral blood. Thus, gut microbiota/metabolites

also educate inflammatory immune cells via promoting their

differentiation and function.
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4 Effects on CD8 and NK cells by
GMM educated immune cells

4.1 Effects on CD8+ T cells by GMM
educated immune cells

GMM educated immunosuppressive immune cells such as Tregs,

rMacs and MDSCs can inhibit the activity of effective NK and CD8

cells, but gut microbiota associated inflammatory cells such as iMacs,

DCs and TH1 also promote these effective cells through cytokine,

metabolites and/or co-signal molecules (27, 134) (Figure 3).

Cytotoxic CD8 T cells have positive cross-talking with immune-

stimulatory cells such as NK cells, iMacs, CD4+ T cells and DCs, but

they have also negative cross-talking with immunosuppressive cells

such as Tregs, rMacs and MDSCs (27). Tregs-mediated CD8+T cell

suppression is applied at their both priming and effector phases (135).

Major immunosuppressive effects of Tregs on the effective CD8 T cells

include cell contact-dependent mechanisms such as down-regulation

of CD80 and CD86 to deprive T effective cells of CD28 signal and to

allow more free PD-L1 to suppress activated T cells through PD-1,

which inhibits TCR signaling. Sequestration of IL-2 by Tregs-induced

expression of CD25 can limit the availability of IL-2 for CD8 T cells.

The secretion of cytokines such as IL-10, TGF-b, and IL-35, and

generation of adenosine also regulate APC activity (136). The cytokines

IL-10 and IL-35 by Tregs cooperatively promote intra-tumor T cell

exhaustion by modulating multiple inhibitory receptor expression and

exhaustion-associated transcriptomic signature of cytotoxic CD8+ (137,

138). The release of TGF-b by Tregs can inhibit the expressions for

cytolytic gene products from CTLs, including granzymes A and B,
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perforin, FasL, and IFN-g (139). In addition, CD73 on the surface of

Tregs also contributes to Treg-mediated inhibition of CTL

immunosuppressive activity (140). CD73 expression in the T cells is

induced by TGF-b (141). Tregs also generate metabolites such as

adenosine, prostaglandin E2 (PGE2) and ROS, which are potent

suppressors of effector CD8+T cells (142). ROS/RNS compounds

secreted by Tregs also inhibit the TCR signaling of mouse T cells

and cytotoxic activity, cytokine production, and signal transduction of

NK cells (143). Indeed, increased frequency of Treg cells and a reduced

CD8+/Treg cell-ratio in tumors are linked to poor prognosis inmultiple

cancers (138). Tregs can also kill effector T cells directly in culture

through the release of perforins/granzyme B (144).

Gut microbiota mediated Macs such as immunosuppressive

Macs or rMacs can regulate activity of effective CD8+ T cells.

Activated rMacs have anti-inflammatory effects on the CD8+ cells

(145). These Macs are characterized by a high expression of

immune-checkpoint molecules (PDL1, PDL2, B7-H4), which can

cause T cell exhaustion. PD-L1 binding to PD-1 in the T cells has

been demonstrated to induce apoptosis of T cells, thereby

facilitating immune escape (146). Macs with high PD-L1

expression also secreted the typical chemokines, TGF-b and IL-10

(147), which repress the immune system and impair responses from

CTLs (148, 149). Secretion of IL-10, TGFb, prostaglandins and

indoleamine 2,3-dioxygenase (IDO) also promotes T cell metabolic

starvation. Immunosuppressive Macs or rMacs also produce other

immunosuppressive factors such as ROS, prostaglandins, arginase-1

(ARG1), and IDO, which suppress the functions of CD8 T and

promote T cell metabolic starvation (150). Elevated expression of

the enzyme IDO1 by immunosuppressive Macs results in the
FIGURE 3

Regulation of GMM educated immune cells on the CD8 and NK cells in HLA-E: NKG2 blockage immunotherapy against tumors. (A)
Immunosuppression of Tregs, rMacs and MDSCs on the CD8 cells. Down-regulation of CD80 and CD86 co-stimulatory molecules in antigen-
presenting cells (APCs) by Tregs to deprive CD8 T cells of CD28 signaling and allowing more free PD-L1 to suppress activated effective T cells
through PD-1, which inhibits TCR signaling. Sequestration of IL-2 by Tregs-induced expression of CD25 limits the availability of IL-2 for effective
CD8 T cells. Secretion of cytokines, such as IL-10, TGF-b, IL-35 and metabolites adenosine by Tregs directly regulate CD8 T cells and also APC
activity. The PD-L1 and PD-L2 expressed on Macs affect CD8 T cell function through PD-1 on the CD8 T cells. MDSCs inhibit CD8 T cells through
INOS, ROS, PGE2 and arginase-1. (B) Immunosuppression of Tregs, rMacs and MDSCs on the NK cells. Tregs suppress NK cells via IL-35, IL-37, IL10
and TGFb1; Whereas rMacs inhibit NK cells mainly through cytokines IL-10 and TGFb, and metabolites NO, ROS, PEG2 and ARG1. MDSCs suppress
NK cells through TGFb1, PGE2, ARG1, ROS and NO. (C) Effects of immunosuppressive cells and inflammatory cells on the activity and function of
CD8 and NK cells. rMac, regulatory macrophages; Treg, regulatory T cells; Breg, regulatory B cells; rDC, regulatory dendritic cells; MDSC, myeloid-
derived suppressive cells; iMac, inflammatory macrophages. PGE2, prostaglandin E2; ARG1, arginase 1; ROS, reactive oxygen species; TGF, tumor
growth factor; TNF, tumor necrosis factor; IDO, indoleamine 2,3-dioxygenase; INOS, inducible NO synthase.
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consumption of Trp, an amino acid that is essential for the

functional activation of T cells.

MDSCs can suppress T cells through ARG1, INOS and ROS

(151). Polymorphonuclear neutrophils (PMN) -MDSCs also

exerted immunosuppressive effect through S100A8/A9.

Mechanically, S100A8/A9 led to CD8+ T cells exhaustion

including inhibiting CD8+ T cells glycolysis, proliferation and

TNF-a and IFN-g production, which was dependent on TLR4/

AKT/mTOR pathway (152). MDSCs suppress CD8+ T cell activity

via the IL-6/IL-8-ARG1 axis in human gastric cancer (153). They

promote apoptosis of tumor-infiltrating CD8 T cells and

immunotherapy resistance in breast cancer (154).
4.2 Effects on NK cells by GMM educated
immune cells

Effects of GMMs on NK cells may be realized through GMM-

educated immune cells (Figure 3). Immunosuppressive Tregs, rMacs

and MDSCs actively suppress NK cell-dependent anticancer

immunity (155). Both human and mouse canonical NK cells are

highly sensitive to Treg cell-mediated immunosuppression, generally

resulting in decreased expression of NK cell-activating receptors such

as NKG2D, upregulation of co-inhibitory receptors such as PD-1 and

interleukin 1 receptor accessory protein like 1 (IL1-RAPL1, best

known as IL1R8) to limit proliferative and cytotoxic responses upon

activation (156). Tregs also inhibit NK-cell functions either via TGF-

b or direct killing (157).

Immunosuppressive Macs inhibit the activation and function of

NK cells through cytokines such as IL-10 and TGFb, and

metabolites such as ROS, NO, PEG2 and ARG-1. Notably,

monoclonal antibodies targeting scavenger receptors on rMacs

can de-repress the cytolytic functions of NK cells in both human

and mouse models of melanoma (158).

In mouse tumor model, the frequency of MDSCs inversely

correlates with the expression of NK cell-activating receptors

including NKG2D and natural cytotoxicity triggering receptor 3 on

the NK cell surface, as well as with IFNg and PRF1 (perforin 1)

production (159). At least in preclinical models, the ability of MDSCs

to suppress NK cell functions requires physical contact, which is

facilitated by membrane-bound TGFb (160). Additional mechanisms

through which MDSCs inhibit NK cells include the production of

ROS and reactive nitrogen species, as well as the depletion of essential

amino acids such as arginine, reflecting the elevated expression of

ARG1 (151, 161). Interactions with regulatory DCs can inhibit NK

cells through downregulation of CD80/CD86 onDCs or upregulation

of indoleamine 2,3-dioxygenase (IDO) in rDCs (162).
5 Direct effects of GMMs on CD8 and
NK cells

Notably, gut microbiota/GMMs also exert direct effects on CD8

and NK cells in HLA-E and NKG2 blockage immunotherapy against

tumors though inhibiting or promoting their differentiation and
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function. For example, F. nucleatum can inhibit the attack of

natural killer (NK) cells on tumor cells by binding TIGIT (T cell

immunoglobulin and ITIM domain), an inhibitory receptor on

human NK cells and various T cells via the fusobacterial

Fap2 protein (163). Gut microbes promotes pancreatic ductal

adenocarcinoma by decreasing the intratumoral infiltration

and activity of NK cells (164). Eleven strain combined with ICBs

also induces IFN g+CD8+T cells to inhibit tumor growth. Hezaveh

et al. showed that indole compounds, tryptophan metabolites

by Lactobacillus, could activate the aryl hydrocarbon receptor in

tumor-associated macrophages to inhibits intratumoral infiltration of

CD8 + T cells in the pancreatic ductal adenocarcinoma (165).

SCFAs may limit the antitumor effects of CTLA-4 blockade.

High concentration of butyrate in cancer patients can decrease

the anticancer activity of ipilimumab by inhibiting the

accumulation of T cells (62). Notably, PD-1 expression in effective

CD8+T cells is also upregulated through ligand-activated AhR (166).

5-hydroxytryptophan (5-HTP) subsequently activates AhR nuclear

translocation, causing a coordinated upregulation of inhibitory

receptors and downregulation of cytokine and effector-molecule

production, thereby rendering T cells dysfunctional in the tumor

microenvironment (167). The immune suppression can also be

caused by 3-HAA by inducing apoptosis in T-cells (168). L-kyn

metabolites (169) may cause cell death of NK cells via ROS pathway

(170). Taken together, the function of immune effective cell CD8may

be directly inhibited by gut microbiota/metabolites.

On the other hand, the activity of CD8 and NK cells can also be

promoted by gut microbiota/metabolites. Bifidobacterium plays

antitumor roles by inducing the maturation of dendritic cells,

stimulating cytotoxic CD8 + T cells (132). Kassayová et al. found

that Lactobacillus (L). plantarum inhibited the proliferation of

breast cancer cells by increasing the levels of CD8+ T cells and

CD4+ T cells (171). Akkermansia muciniphila raises the CD8+ T

proportion to promote liver tumor cells apoptosis in the tumor

microenvironment (172). Trp metabolite indole-3-aldehyde (I3A)

locally promotes interferon-g-producing CD8 T cells, thereby

bolstering ICB (173) to improve ICB efficacy and survival in

advanced melanoma patients. Notably, one study showed that

high tryptophan metabolism group had an increased proportion

of CD8+ T cells, augmented cytolytic activity mediated by CD8+

T cells, and promoted expression of immune checkpoint molecules

(174). The restoration of gut microbial butyrate also enhance CD8+

T cell cytotoxicity via GPR109A/HOPX, inhibiting gastric

carcinogenesis (GC) (175).
6 Regulation of GMM associated
immune factors in NKG2A/CD94 and
HLA-E expression

Tumor cells such as HLA-E and immune cells such as CD8 and

NK cells can express immune checkpoint molecules upon exposure

to immune factors such as cytokines, which prevent NK and CD8

cell activation, even resulting in NK and CD8 cell dysfunction or

exhaustion (Figure 4).
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6.1 HLA-E expression in tumor cells

HLA-E expression in tumor cells can be regulated in response to

immune associated factors such as IFNg, TNFa, IL-1b and IL-27,

which are also associated to GMM educated immune cells. The

IFNg/JAK/STAT1 pathway plays a crucial role in the antigen

processing pathway and the subsequent dynamic change of

downstream signals, including major histocompatibility complex

(MHC) class I (176). IFNg, as an important cytokine, promotes

HLA-E expression through binding of a STAT1-containing

complex to IFNg-responsive region of the HLA-E gene. Higher

STAT1 expression is an indicative of high expression levels of MHC

class I and PD-L1 in human colon cancer cells in vitro (177). Other

pro-inflammatory cytokines such as IL-1b, TNFa and IL-27 also

induce HLA-E expression in vitro (178). Notably, recent findings

indicate that the platelet-derived RGS18 promotes the expression of

HLA-E through AKT-GSK3b-CREB signaling (26). The

overexpression of RGS18 facilitates pancreatic tumor hepatic

metastasis (26). HLA-E expression is also induced by senescence-

related pro-inflammatory cytokines through p38 MAP kinase

signaling in vitro (179). Notably, HLA-E surface expression is

post-translationally regulated by the conserved leader peptides,

the peptide transporter TAP, and proteolytic enzymes (180).

Their signal sequences contain a highly conserved segment that is

eventually presented at the cell surface by the nonpolymorphic

nonclassical MHC class I molecule HLA-E. Expression of HLA-A, B

and C alleles on tumors promotes higher HLA-E cell-surface

expression through provision of VL9 peptides. Furthermore, HLA

class I signal peptide polymorphism determines the level of NKG2/

CD94-HLA-E-mediated regulation of effector cell responses (181).

In mice, the inhibitory CD94/NKG2A receptor recognizes H2-T23

(Qa-1) complexes with leader peptides from H-2D alleles. However,

HLA-E expression in tumor microenvironment (TME) does not

also always depend on the expression of HLA-A, B and C alleles.

Notably, immune cells such as Macs and DCs can contribute to

HLA-E enrichment in the TME (11, 15). Thus it is necessary to
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further investigate the mechanism of HLA-E expression in the

TME, which is independent on the HLA-A, B and C alleles.
6.2 CD94/NKG2A expression in
immune cells

NKG2A expression can be detected in cytotoxic lymphocytes,

including most NK cells and a subset of CD8+ T cells (182).

Multiple cytokines including interleukin (IL)-21, IL-15, IL-12, IL-

10 and transforming growth factor b (TGFb) are able to induce the

expression of NKG2A in NK cells (183). IL-12, secreted by Macs

and dendritic cells, is an important activator of immune responses

against tumor cells, including the generation of NK cells with

memory-like properties. TGFb is often overtly present in the

tumor microenvironment (184). IL-15-induced maturation of

human NK cells from early thymic precursors can selectively

cause the expression of CD94/NKG2A (185).

NKG2A expression in CD8+ T cells is highly regulated, differing

from its expression pattern in NK cells. A number of cytokines such as

IL-12, IL-15, IL-10, IL-6, IL-2 and TGFb can regulate the expression of

NKG2A in CD8+ T cells. NKG2A expressionmay be induced in T cells

by TCR triggering in combination with tissue-released cytokines (186,

187), such as the presence of cytokines like IL-15 and TGFb (188, 189).
NKG2A is also expressed by T lymphocytes, either upon prolonged

stimulation via TCR (190) or upon exposure to TGF-b, an

immunosuppressive cytokine. Indeed, high expression of NKG2A on

NK cells and cytotoxic CD8 T cells happens in the tumor

microenvironment as a result of PD-1 blockade therapy as well as

after immune activation by cancer vaccines (7). However, CD94/

NKG2A expression is impaired by several other cytokines such as

IL-4 and IL-23. T cells responding to toxic shock syndrome toxin 1 also

promote the expression of CD94 in the presence of IL-15 (190). Thus,

immune cytokines exert an important role in the expression of CD94/

NKG2A of NK and CD8 T cells.
FIGURE 4

Effects of GMM associated immune factors on the expression of NKG2A/CD94 in immune cells and HLA-E in tumor cells. Immune factors such as
cytokines affect the expression of NKG2A/CD94 in the CD8 and NK cells, and also expression of HLA-E in the tumor cells. TCR, T cell receptors;
RGS, regulator of G protein signaling; JAK, Janus kinase; STAT1, signal transducers and activators of transcription 1; AKT, protein kinase B; GSK3b,
glycogen synthase kinase-3; CREB, cAMP-response element binding protein.
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7 Enhancing HLA-E: NKG2a blockage
immunotherapy against tumors by
gut microbiota

Immune checkpoint inhibitors such as HLA-E: NKG2a

blockages are effective immunotherapy strategies against tumor

(191). However, the interactions between gut microbiota and

immune cells can affect tumor immunotherapy. In melanoma

patients, the diversity and composition of gut microbiota were

positively correlated with anti-PD-1 therapy responses (130).

B. longum, Collinsella aerofaciens, and Enterococcus faecium

were more abundant in the baseline feces of responders to

immune checkpoint inhibitor (192). This causes the development

of multiple therapeutic methods targeting on microbiota such as

fecal microbiota transplantation (FMT), probiotics, prebiotics,

genetically engineered probiotics and phage-targeted depletion of

pathogenic bacteria (193, 194). FMT can alter the gut microbiome

of patients with cancer to improve the efficacy of immunotherapy

such as anti-PD-1 monoclonal antibody (195, 196). Probiotics and/

or bacteria consortia containing live bacteria such as Bifidobacteria,

Lactobacillus, Propionibacterium and Streptococcus thermophiles

combined with monoclonal antibodies (anti-PD-1 and anti-

CTLA-4 antibodies) also significantly improve the outcomes of

cancer patients with immunotherapy. Prebiotics such as

oligofructose and inulin are capable of facilitating the growth

of healthier microorganisms. Their metabolites such as SCFAs,

which enhance tumor cell killing efficacy through promoting

effective T lymphocytes. The specific gut bacteria, such as

Bifidobacterium, Akkermansia, Enterococcus, Faecalibacterium,

and Ruminococcaceae, play the role of immune adjuvants in ICB

immunotherapy based on anti-PD-1 and anti-CTLA-4 antibodies

(197). Although there also are not reports on the involvement of gut

microbiota in HLA-E: NKG2A ICB against tumors, it is possible to

improve HLA-E: NKG2A ICB immunotherapy against tumors

through regulating the composition of gut microbiota. Notably,

studies found the bacteria universally linked to ICB resistance (198).

Future studies will help sharpen the effect of the specific bacteria

and their potential as new biomarkers.
8 Conclusion and perspectives

Blocking the interaction of NKG2A expressed on both NK cells

and CD8+ T cells with HLA-E in tumor cells is effective in

immunotherapy against tumor. The activity of the NK cells and

CD8+ T cells can be regulated not only by GMM educated immune

cells but also directly by GMM. Furthermore, the expression of HLA-

E in tumor cells and CD94/NKG2A in CD8 and NK cells are also

affected by GMM associated immune factors. These findings offer
Frontiers in Immunology 10
new insights for the clinical application of gut microbiota/metabolites

in precise and/or personalized treatments of tumors. Indeed,

immunotherapy against tumor based HLA-E: NKG2A might be

improved through diet, fecal bacterial transplantation, probiotics

(individual probiotics or cocktails), prebiotics (dietary fiber and the

related metabolites), genetically engineered probiotics and phage-

targeted depletion of pathogenic bacteria (193, 194). Notably, the

levels of bacteria in tumor tissues might not have anything to do with

their abundance in the gut. Although there have many challenges, the

full potential of gut microbiota/metabolites cannot be overstated for

the new anti-tumor strategies. But, it is critical to decipher the

specialized roles of GMMs in regulating the immune cells in tumors.
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