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The nuclear pore protein NUP98
impedes LTR-driven basal gene
expression of HIV-1, viral
propagation, and infectivity
Kumaraswami Chintala, Sriram Yandrapally †, Warisha Faiz †,
Chhaya Rani Kispotta, Satarupa Sarkar, Krishnaveni Mishra
and Sharmistha Banerjee*

Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1

(HIV-1) replication that support nucleocytoplasmic trafficking of viral

components. However, these also non-canonically function as positive

effectors, promoting proviral DNA integration into the host genome and viral

gene transcription, or as negative effectors by associating with HIV-1 restriction

factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the

regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous

levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in

NUP98 overexpression and knockdown backgrounds, we deciphered that

NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity

and lowered released virus levels. The negative effect on promoter activity was

independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene

expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the

negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in

NUP98-mediated lowering of viral gene transcription. Truncated mutants of

NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily

contributed by its N-terminal region. Interestingly, the virus generated from the

producer cells transiently expressing NUP98 showed lower infectivity, while the

virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity

as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98.

Collectively, we show a new non-canonical function of a nucleoporin adding to

the list of moonlighting host factors regulating viral infections. Downregulation

of NUP98 in a host cell upon HIV-1 infection supports the concept of

evolutionary conflicts between viruses and host antiviral factors.
KEYWORDS
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Abbreviations: NPCs, nuclear pore complexes; NUP, nucleoporin; HIV-1, human immunodeficiency virus-

1; LTR, long terminal repeat; Tat, transactivator of transcription; VSV-G, vesicular stomatitis virus

glycoprotein G; HEXIM1, hexamethylene bisacetamide-inducible protein 1; NF-kB, nuclear factor kappa

B; P-TEFb, positive transcription elongation factor b; GLFG, glycine leucine phenyl alanine glycine; ChIP,

chromatin immunoprecipitation.
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Introduction

Human immunodeficiency virus-1 (HIV-1) is an etiological

agent for acquired immunodeficiency syndrome (AIDS) in humans.

The HIV-1 life cycle can be broadly divided into two stages: early

and late events. Principally, the entry of the virus, reverse

transcription of viral RNA, import of viral capsid into the

nucleus, and integration of viral DNA into the host genome are

considered as early stages, whereas post-integration steps such as

transcription of viral genes, translation of viral proteins, and finally,

release of viral particles are categorized as the late stages of HIV-1

replication. Equally essential as any other step during viral

replication, viral gene transcription is an indispensable step for

HIV-1 that depends on both viral and host transcription factors.

The HIV-1 gene transcription occurs from the viral promoter 5'

long terminal repeat (5'LTR) and is regulated by the viral regulatory

protein Tat and a plethora of host transcription factors. Nearly 50

transcription factors are either predicted or shown to bind HIV-1

5'LTR and regulate the activity of this viral promoter (1). Yet, how

these factors regulate viral gene expression and whether they act in a

concerted manner are still open questions to investigate. Although

many studies focused on identifying host transcription factors that

regulate HIV-1 gene transcription to find a host-directed

therapeutic target to cure HIV-1/AIDS, our understanding of

molecular events underlying the HIV-1 gene expression

regulation is still unfolding with newer players (2–4).

Nuclear pore complexes (NPCs) are cellular transport

machineries embedded in the nuclear envelope that separates the

cytosolic compartment from that of the nucleus in a typical human

cell, providing an important basis for nucleocytoplasmic trafficking

(5, 6). NPCs are built from nearly 30 different nucleoporins (NUPs),

and these NUPs are arranged in multiple copies and occupy specific

positions as subcomplexes in the NPC (5, 7, 8). As part of an NPC,

NUPs regulate nucleocytoplasmic shuttling of molecules larger than

40 kDa between the nucleus and cytosol, conferring to the

homeostasis of the cell. Apart from their well-known function in

NPCs, many NUPs have been shown to have off-NPC functions,

i.e., the regulation of gene expression, division of a cell, and

maintenance of transcriptional memory (9–12). Consistent with

these data, several microscopy studies indicate the presence of

NUPs such as NUP153 and NUP98 in the nucleoplasm

suggesting that NUPs are not only part of the static structures but

also dynamically move on and off the NPCs and may play off-NPC

roles under certain conditions (13, 14). Moreover, several studies

show that the composition of NPCs changes both between and

within the cells and that NUPs’ expression varies under certain

conditions such as stimulation with interferons (IFNs) (15–21).

At several steps during its replication, HIV-1 hijacks NUPs to

complete its life cycle in an infected cell. These steps include

docking of the capsid (CA) onto NPC (NUP358), import of viral

DNA (NUP153), integration of viral DNA into the host genome

(NUP62, NUP98), and export of viral RNA (NUP98, NUP214,

NUP62) (22–29). Furthermore, evidence shows that NUPs such as

NUP358 and NUP153 are shown to be important for the HIV-1
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integration site selection in the genome (26, 30, 31). Given their

essential participation during HIV-1 replication, several proteomic

studies have focused on and identified many NUPs that are

dysregulated during HIV-1 infection (28, 32, 33). However, the

functional association of many of the NUPs identified in these

studies with respect to HIV-1 infection remains to be characterized.

Kane et al. observed that both natural and manipulated changes in

the composition of NUPs affected an HIV-1 infection and that the

differential effect of NUP depletion on HIV-1 infection was

dependent on cell type, cell cycle, and host factor cyclophilin A

(CypA) (21). This study further demonstrates that HIV-1 utilizes

several NUP-dependent pathways for viral entry into the nucleus.

Accordingly, it was shown that HIV-1 utilizes a distinct set of NUPs

for nuclear entry and requires CA and NUP interaction to do so

(34). However, these studies could not exclude the possible

participation of NUPs in other late steps of HIV-1 replication

including transcription, and export of viral RNA. Yet, HIV-1–NUP

interactions have also been implicated in myxovirus resistance 2

(MX2)-mediated HIV-1 restriction (21, 35). MX2, which is thought

to prevent the importation of the viral preintegration complex,

localizes to NPCs and interacts with many NUPs for the

perturbation of HIV-1 infection (35–39). Thus, the critical

understanding of both pro- and anti-HIV-1 roles for NUPs could

be beneficial in finding novel anti-retroviral therapies.

Among NUPs, NUP98 is shown as one of the interferon-

stimulated genes (ISGs) and is implicated in antiviral gene

expression to limit viral infection in a Drosophila model (40). The

gene for NUP98 expresses two alternatively spliced forms of mRNA:

one encodes the shorter NUP98 protein and the other encodes the

longer NUP98–NUP96 precursor protein. The longer NUP98–NUP96

precursor, upon autoproteolytic cleavage, gives rise to both full-length

functional NUP98 (98 kDa) and NUP96 (96 kDa) proteins (41, 42).

The N-terminal region of NUP98 is rich in the so-called GLFG

(glycine-leucine-phenylalanine-glycine) motifs and is responsible for

the interaction with protein factors such as RAE1, DHX9, and CBP/

p300 (43–46). In the current study, we set out to understand the

regulation of NUPs, which are implicated in the HIV-1 life cycle,

during the late stages of the HIV-1 infection, i.e., the expression of the

viral genes and the release of virions. We identified that NUP98 was

downregulated under these conditions. While NUP98 was shown to

promote the export of HIV-1 RNA via Rev-hCRM1-mediated

transport from the nucleus to the cytosol across the nuclear

membrane barrier (27), evidence also suggested that NUP98 was

required for MX2-mediated HIV-1 restriction (35), pointing out

multiple and conflicting roles for NUP98 as a pro- or anti-HIV-1

factor. We aimed to further understand the multifaceted function of

NUP98 in HIV-1 infection and decipher the underlying mechanism

driven by NUP98 that regulates HIV-1 propagation.
Material and methods

All experiments were performed as per the guidelines of the

Institutional Biosafety Committee.
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Cell lines and reagents

SupT1 cells (gifted by Dr. Shahid Jameel, International Centre for

Genetic Engineering And Biotechnology, New Delhi, India) were

grown in Roswell Park Memorial Institute’s medium (RPMI-1640,

HiMedia, Cat. # AL162A) with 10% fetal bovine serum (FBS, Cat.

#10270106, Invitrogen, USA), 100 mg/ml of streptomycin, and 100 U/

ml of penicillin (Cat. # A001A, HiMedia, India). HEK293T cells (gifted

by Dr. Reddy’s Institute of Life Sciences, Hyderabad, India) and TZM-

bl cells (gifted by Prof. Ranga Udaykumar, Jawaharlal Nehru Centre for

Advanced Scientific Research, Bengaluru, India) were grown in high

glucose Dulbecco’s modified Eagle medium (DMEM, Cat. # AL066A,

HiMedia, India) with 10% FBS, 100 mg/ml of streptomycin, and 100 U/

ml of penicillin as recommended. Protein A/G agarose beads (Cat. # sc-

2003) were purchased from Santa Cruz Biotechnology, USA.

Antibodies against NUP155 (Cat. # ab199528), NUP133 (Cat. #

ab155990), NUP107 (Cat. # ab73290), and HIV-1 p24 (Cat. #

ab9071) were purchased from Abcam, USA. The antibody against

NUP85 was purchased from Invitrogen, USA (Cat. # PA5-84522).

Antibodies against NUP98 (Cat. # PAB196Hu01) and NUP62 (Cat. #

PAC257Hu01) were purchased from Cloud-Clone Corp., USA.

Antibodies against GAPDH (Cat. # sc-47724), GFP (Cat. # sc-9996),

and HEXIM1 (Cat. # sc-390059) were purchased from Santa Cruz

Biotechnology, USA. The antibody against b-tubulin (Cat. # AC008)

was purchased fromABclonal, USA. The anti-NF-kB p65 antibody was

purchased from Cell Signaling Technology, USA (Cat. # 4764T). The

anti-HDAC1 antibody used in the study was a kind gift from Prof.

Arunasree, University of Hyderabad, India (Cat. # BML-SA401-0100).

Anti-rabbit HRP (Cat. # sc-2357) and anti-mouse HRP (Cat. # sc-

516102) were purchased from Santa Cruz Biotechnology, USA.

Lipofectamine 2000 (Cat. # 11668-019) was purchased from

Invitrogen, USA.
Plasmids

The plasmids including the HIV-1 molecular clone pNL4.3 and

pHEF VSV-G were a kind gift fromDr. Udaykumar Ranga (Jawaharlal

Nehru Centre for Advanced Scientific and Research, Bangalore, India)

(47). The plasmids pLTR-Luc and pIndie-C1 were a kind gift from Dr.

DebashisMitra (National Centre for Cell Science, Pune, India) (48–52).

The plasmids pEGFPC1, full-length GFP-NUP98, and GFP-NUP62

were a kind gift from Dr. Radha Chauhan (National Centre for Cell

Science, Pune, India). The plasmids expressing different domains of

NUP98 cloned in pEGFPC1 and full-length Myc-NUP98 cloned in

pcDNA were a kind gift from Dr. Maureen Powers (Emory University,

Atlanta, USA) (53). pSIVAGM-Luc-R
−E−Dvif was a kind gift from

Carsten Munk (Heinrich-Heine-University, Düsseldorf, Germany)

(54). pNLC4.3GFP was a kind gift from Prof. Barbara Muller

(University of Heidelberg, Germany) (55). The plasmid HIV-1 LTR-

GFP was obtained from Addgene, USA (Cat. #115809). The pLKO

plasmids expressing shRNA targeting NUP98 (TRCN0000291177) and

scrambled shRNA were obtained from the ShRNA Resource Centre

(Indian Institute of Science, Bangalore, India). HIV-1 Tat cloned in

pcDNA3.1 was described previously (56). The deletion mutant
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constructs such as DNRE LTR, DNF-kB LTR, and DSP1 LTR were

generated by site-directed mutagenesis using the respective primers

listed in Table 1 and the pLTR-Luc construct as a template.
Transfections, virus preparations,
and infections

In all the experiments unless otherwise stated, HEK293T cells were

seeded overnight before transfection at 4 * 105 cells per well in a six-well

plate and then transfected or co-transfected with the indicated plasmids

for 6 hours (h) at 37°C with 5% CO2 using Lipofectamine 2000. Cells

were then added with fresh DMEM containing 10% FBS and further

incubated for 48 h at 37°C with 5% CO2. For VSV-G pseudotyped

HIV-1 NL4.3 virus preparation, HEK293T cells were seeded at 80%

confluence before transfection in a six-well plate, and transfection was

performed using the calcium phosphate method. Briefly, transfection

mixtures were made with the plasmids pNL4.3 and pHEF VSV-G at

3:1 (total 3 mg per well) and sprinkled on the cells with DMEM

containing 10% FBS, 100 mg/ml of streptomycin, and 100 U/ml of

penicillin. Cells were then allowed for transfection for 6 h at 37°C with

5% CO2. The transfection medium was removed and fresh DMEM

with 10% FBS, 100 mg/ml of streptomycin, and 100 U of penicillin was

added to the cells, and cells were incubated at 37°C with 5%CO2 for the

formation of HIV-1 NL4.3. Forty-eight hours post-transfection, the

culture supernatant containing the virus was collected, centrifuged at

500g for 10 min for the removal of cell debris, and filtered through a

0.45-mm syringe-driven filter. The virus was then precipitated with

8.5% PEG and 0.3 M of NaCl at 4°C overnight. The virus was pelleted

at 7,000g for 10 min at 4°C, resuspended in incomplete DMEM, and

stored at −80°C. The concentration of viral p24 was estimated by p24

ELISA according to the manufacturer’s protocol (ABL, Cat. # 5447).

SupT1 cells were infected by spinoculation, wherein cells were added

with the required amount of the HIV-1 NL4.3 virus (2 ng of p24

equivalents/1 * 105 cells) in complete RPMI medium with DEAE

dextran (10 mg/ml), allowed for centrifugation at 350g for 40min at 15°

C, and incubated for 2 h at 37°C, 5% CO2 for viral entry. Then, cells

were washed with PBS twice before they were incubated in a complete

RPMI medium at 37°C with 5% CO2 for 4 days. HEK293T cells were

incubated with the HIV-1 NL4.3 virus (2 ng of p24 equivalents/1 * 105

cells) in a complete DMEM medium with DEAE dextran (10 mg/ml)

for 4 h at 37°C, 5% CO2 for viral entry. Then, cells were washed with

PBS twice before they were incubated in a complete DMEMmedium at

37°C with 5% CO2 for 4 days.
Lentivirus production and shRNA
knockdown in HEK293T and SupT1 cells

For the knockdown of NUP98 in HEK293T cells, cells were

seeded overnight before transfection at 4 * 105 cells per well in a six-

well plate and then transfected with shRNA-expressing plasmids for

6 h at 37°C with 5% CO2 using Lipofectamine 2000. Cells were

added with fresh DMEM containing 10% FBS and further incubated

for 48 h at 37°C with 5% CO2. Forty-eight hours post-transfection,

cells were washed once with PBS and lysed in NP-40 buffer. The
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efficiency of the knockdown of NUP98 by shRNA was determined

by Western blotting using anti-NUP98 antibody. The lentivirus

used for the knockdown of NUP98 in SupT1 cells was prepared by

transfecting HEK293T cells with packaging and transfer vectors as

previously described (54). Briefly, HEK293T cells in a six-well plate

were co-transfected with VSV-G encoding pMD2.G (250 ng), Gag-

Pol encoding psPAX2 (1,000 ng), and pLKO.1-Puro (1,000 ng)

harboring NUP98-specific shRNA sequences by the calcium

phosphate method. Forty-eight hours post-transfection, the virus

was collected, centrifuged at 500g for 10 min for the removal of cell

debris, filtered through a 0.45-mm syringe-driven filter, and stored

at −80°C. The infected SupT1 cells were transduced with the

lentivirus containing either Sc shRNA or NUP98-specific shRNA

sequences for 24 h. Seventy-two hours post-transduction, cells were

harvested and analyzed for the depletion of NUP98 by Western

blotting using the anti-NUP98 antibody.
Western blotting

At indicated time points, cells were harvested, washed twice

with PBS, and resuspended in NP-40 lysis buffer (50 mM of Tris pH

8.0, 150 mM of NaCl, 1.0% NP-40) with 1X protease inhibitor

cocktail (PIC). Then, cells were vortexed for 30 min at 4°C, followed
Frontiers in Immunology 04
by centrifugation at 12,000 rpm for 20 min at 4°C. Protein lysates

were collected and proteins were resolved on SDS-PAGE and

transferred onto the nitrocellulose membrane. Membrane blots

were incubated with primary antibodies diluted in blocking buffer

(TBST with 1% BSA) at 4°C overnight on the shaker. All the

primary antibodies used in the study were diluted at 1:2,000 in a

blocking buffer. After three washes with TBST, blots were incubated

with secondary antibodies conjugated to HRP at room temperature

for 1 h on the shaker. The secondary antibodies such as the anti-

rabbit HRP and anti-mouse HRP were diluted at 1:10,000 in

blocking buffer. After three washes with TBST (Tris-buffered

saline Tween 20, 0.1%), blots were developed using the

chemiluminescence detection kit (Cat. # K-12045-D10, Advansta,

USA). Using ImageJ-win64 software, the protein bands of interest

were quantified and the values were normalized to that of the

corresponding loading controls (GAPDH or tubulin) for each

blot individually.
RT-qPCR

At indicated time points, cells were harvested, washed twice

with PBS, and resuspended in TRIzol. Total RNA was isolated and

treated with DNase I to remove the contaminating genomic DNA.

One microgram of RNA was used to obtain cDNA using the iScript

cDNA synthesis kit (Cat. # 1708891, Bio-Rad, USA), which was

then used as a template for the amplification of HIV-1 Env mRNA

by iTaq Universal SYBR Green Supermix (Cat. # 172-5121, Bio-

Rad, USA) using the primers listed in Table 1. The expression of

HIV-1 Env mRNA was normalized to GAPDH mRNA as an

internal control.
Cell viability by trypan blue dye
exclusion assay

The viability of the cells was determined by trypan blue dye

exclusion assay as previously described (57). Briefly, cells were

harvested at indicated time points and resuspended in PBS. Then,

cells were mixed with equal volumes of trypan blue (0.4%), and both

viable and non-viable cells were counted based on the dye exclusion

in the hemocytometer. The percentage of viable cells was

determined by dividing the viable cells by the total number of cells.
Luciferase activity assay

HEK293T cells were seeded overnight before transfection at 1 *

105 cells per well in a 24-well plate and then co-transfected with

reporter plasmids along with the expression plasmids or molecular

clone pNL4.3 for 6 h at 37°C with 5% CO2 using Lipofectamine

2000 (Invitrogen, USA). Cells then were added with fresh DMEM

containing 10% FBS and further incubated for 48 h at 37°C with 5%

CO2. Forty-eight hours post-transfection, cells were washed once

with PBS and 120 ml of reporter lysis buffer (Cat. # E397A) was

added to each well, followed by two freeze–thaw cycles at −80°C for
TABLE 1 List of primers used in the study.

HIV-1 Env
(RT-qPCR)

FP: 5'GCAGTGGGAATAGGAGCTTTGTTC3'

RP: 5'GAGCTGTTGATCCTTTAGGTATCTTTCC3'

GAPDH (RT-qPCR) FP: TGTTGCCATCAATGACCCCTT

RP: CTCCACGACGTACTCAGCG

NUP98 (RT-qPCR) FP: CCGTGATACCGAAGTTGAAAGC

RP: AGATGCCTGCAAGACCTCAC

HIV-1 LTR (ChIP-
qPCR) (+68 nt to
+168 nt)

FP: 5'GCCTCAATAAAGCTTGCCTTGA3'

RP: 5'TCCACACTGACTAAAAGGGTCTGA3'

DNRE LTR-Luc
(SDM)

FP:
5'CTTACAAGGACCCTGAGAGAGAAGTGTTAG3'

RP:
5'TCTCAGGGTCCTTGTAAGTCATTGGTCTTA3'

DNF-kB LTR-
Luc (SDM)

FP:
5'TTGTTACAAAGGGAGGCGTGGCCTGGGCGG3'

RP:
5'CGCCTCCCTTTGTAACAAGCTCGATGTCAA3'

DSp1 LTR-Luc (SDM) FP:
5'ACTTTCCAGGAGCCCTCAGATGCTGCATAT3'

RP:
5'TGAGGGCTCCTGGAAAGTCCCCAGCGGAAA3'

HIV-1 LTR (ChIP-
qPCR) (NRE)

FP: 5'ATCTACCACACACAAGGCTACTTCC3'

RP: 5'CCACTCTAACACTTCTCTCTCAGGGT3'

HIV-1 LTR (ChIP-
qPCR) (NF-kB/Sp1)

FP: 5'TTTGACAGCCGCCTAGCATTTC3'

RP: 5'CATCTGAGGGCTCGCCACTCC3'
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cell lysis. Luciferase activity (RLU) in the cell lysates was measured

using Luciferase assay reagent (Cat. # E1483) by Luminometer

(Turner BioSystems, USA). For each sample, RLUs were

normalized to the protein quantified by the BCA method

according to the manufacturer’s protocol (Cat. # 786-570).
TZM-bl reporter assay

Overnight before infection with HIV-1 NL4.3, TZM-bl cells

were seeded in a 24-well plate at 1 * 105 cells per well in DMEM

medium with 10% FBS. Cells were then allowed for binding with

HIV-1 NL4.3 (5 ng p24/well) for 3 h at 37°C with 5% CO2. Forty-

eight hours post-infection, cells were washed once with PBS and 120

ml of reporter lysis buffer was added to each well, followed by two

freeze–thaw cycles at −80°C for cell lysis. Luciferase activity (RLU)

in the cell lysates was measured as mentioned above.
Chromatin immunoprecipitation

HEK293T cells, 48 h post-co-transfection with Myc-NUP98

and LTR constructs, harvested from a six-well plate were washed

with PBS and subjected to cross-linking with 1% formaldehyde for

15 min at 37°C, followed by quenching with 125 mM of glycine for 5

min at 37°C. Cross-linked cells were washed twice with PBS and

sonicated in 200 ml of NP-40 lysis buffer for six cycles with pulses 20
s on and 30 s off on ice with 30% power. The supernatant containing

chromatin fragments of approximately 400–800 bp was obtained by

centrifugation at 12,000 rpm and 4°C for 20 min. The supernatants

were incubated with protein A/G agarose beads preconjugated to

anti-Myc antibody at 4°C overnight. For preconjugation, 2 mg of

ant i -Myc ant ibody was used for each sample . The

immunoprecipitates with protein A/G agarose beads were pelleted

down by centrifugation at 2,000 rpm for 2 min and washed with

TBST. The antibody-protein-bound DNA was eluted after reverse

cross-linking. The column-purified DNA quantified by

spectrometry was used as a template for qPCR using the primers

(Table 1) designed in the HIV-1 LTR promoter.
Co-immunoprecipitation

HEK293T cells were transfected with either pcDNA or Myc-

NUP98. Forty-eight hours post-transfection, cells were washed with

PBS and lysed in NP40 buffer. Similarly, HEK293T cells infected

with HIV-1 NL4.3 were transfected with either pcDNA or Myc-

NUP98. Forty-eight hours post-transfection, cells were washed with

PBS and lysed in NP-40 buffer. Protein A/G agarose beads were

washed with TBST buffer and incubated with cell lysate for 4 h at 4°

C to remove proteins that may non-specifically bind to the protein

A/G agarose beads (preclearing step). After preclearing wherein the

beads were removed by centrifugation at 2,000 rpm for 2 min, the

supernatant was added to the fresh protein A/G agarose beads

already conjugated with 2 mg of anti-Myc antibody and incubated

overnight at 4°C on a rocker. After overnight incubation, beads
Frontiers in Immunology 05
were washed three times by centrifugation at 2,000 rpm for 2 min

with TBST buffer. The samples with the beads were then dissolved

in an SDS loading buffer and processed for Western blot analysis.
Data and statistical analysis

All the experiments were performed at least three times. The

represented values were the mean with standard deviation. For

statistical analysis, Student’s paired t-test was conducted for all the

experiments except otherwise mentioned, for which one-way

ANOVA with Tukey’s multiple comparisons test was conducted

using GraphPad Prism 5. P < 0.05, P < 0.01, and P < 0.001 were

considered statistically significant and represented as *, **, and **,

respectively. P>0.05 was considered as non-significant (NS).
Results

HIV-1 infection downregulates
nucleoporin NUP98

To understand the impact of HIV-1 on the NPC components,

we checked the expression of some of the NUPs such as NUP98,

NUP62, NUP155, NUP133, NUP107, and NUP85 both in SupT1

(CD4+) and HEK293T cell lines, 4 days after infection with VSV-G

(vesicular stomatitis virus envelope glycoprotein G)-pseudotyped

HIV-1 virus (hereafter referred to as HIV-1 NL4.3). We observed

that NUP98 protein levels were decreased both in SupT1 and

HEK293T cell types upon HIV-1 NL4.3 infection by 4.7- and 1.5-

fold, respectively (Figures 1A, B, 2A, B, respectively), whereas the

protein levels of other NUPs such as NUP62, NUP155, NUP133,

NUP107, and NUP85 remained unaffected (Supplementary Figures

S1A, B). Infections in these cell types were verified by Western

blotting using anti-p24 antibody (Figures 1C, 2C). Speculating that

the differences in the mean fold change of NUP98 protein levels

between these two cell types may be due to differences in infectivity,

the intracellular p55 levels normalized to the corresponding

endogenous GAPDH levels were quantified (Supplementary

Figure S1C). We observed that the percentage of infection by

HIV-1 was nearly 50% lower in HEK293T cells as compared with

SupT1 cells (Supplementary Figure S1C), which indicated that the

moderate lowering in NUP98 protein levels upon HIV-1 infection

in HEK293T cells was probably due to low infection in this cell type.

To further understand how the levels of the NUP98 protein were

downregulated by HIV-1 infection, we checked the total mRNA

that encodes NUP98 in infected SupT1 and HEK293T cells. In

comparison to uninfected cells, we did not observe any significant

change in the total NUP98 mRNA upon infection in both cell types

(Supplementary Figure S2A), suggesting that HIV-1 infection is not

affecting either the transcription or stability of NUP98 encoding

mRNA in these conditions. This result points to the post-

transcriptional regulation of NUP98 levels upon HIV-1 infection

through an unknown mechanism(s).

Having observed that NUP98 levels were lowered upon HIV-1

NL4.3 infection, we repeated the experiment to check the protein
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levels of all the NUPs under study (NUP98, NUP62, NUP155,

NUP133, NUP107, and NUP85) in HEK293T cells upon proviral

DNA pNL4.3 transfection, which allows the synthesis of the viral

genomic RNA and proteins and the release of virions, mimicking

the late stages of HIV-1 infection. We found that NUP98 protein

levels were significantly downregulated by 2.1-fold in comparison to

control cells (Figures 2D, E). The expression of viral proteins from

the pNL4.3 plasmid upon transfection was verified by Western

blotting using an anti-p24 antibody (Figure 2F). Furthermore,

unlike during infection, we observed downregulation of the

protein levels of NUP62 and NUP85 by 1.2- and 2.1-fold,

respectively, whereas NUP133 was upregulated by 1.5-fold

(Supplementary Figure S2B). The NUP85 gene expression results

in several transcript variants and isoforms, including 75 kDa and 69

kDa. In our Western blot analysis, we detected two protein bands

with the anti-NUP85 antibody corresponding to the 69-kDa and

75-kDa isoforms (Supplementary Figure S2B). We quantified the

canonical 75-kDa isoform and represented it in the corresponding

bar graph (Supplementary Figure S2B). The protein levels of other

nucleoporins such as NUP155 and NUP107 remained unchanged

under transfection conditions (Supplementary Figure S2B). Since

NUP98 was the only NUP that was downregulated at the protein

levels during both transfection in HEK293T and infections in

SupT1 and HEK293T cells, we continued our investigations on

NUP98. To examine if the viral regulatory factors such as Tat and
Frontiers in Immunology 06
Rev alone could cause a decrease in the endogenous NUP98 protein

levels, we overexpressed these viral factors in HEK293T cells.

However, the overexpression of either Tat or Rev in HEK293T

cells did not affect the NUP98 protein levels (Figures 2G, H),

indicating that the downmodulation of NUP98 protein levels by

HIV-1 might be Tat- and Rev-independent.
Overexpression of NUP98 reduces HIV-1
viral protein and transcript levels,
decreasing released virus and its infectivity

Overexpression of NUP98 reduces intracellular
p55 viral protein and viral antigen release
(p24 equivalents)

We further investigated the significance of infection-mediated

downregulation of NUP98. Toward this, HEK293T cells were co-

transfected with GFP-NUP98 and pNL4.3, and we studied the

impact of transiently expressed NUP98 on the intracellular levels

of the HIV-1 protein p55 (Gag) as well as viral antigen release (p24

equivalents) in the culture supernatant. Western blotting analysis

showed that the intracellular levels of p55 were significantly

decreased upon overexpression of GFP-NUP98 in comparison to

control cells transfected with pEGFPC1 by 1.7-fold (Figures 3A, B).

The expression of GFP-NUP98 was verified in the cells transfected
B

C

A

FIGURE 1

HIV-1 downregulates NUP98 in CD4+ SupT1 cells. (A) Representative Western blot showing endogenous NUP98 levels upon HIV-1 NL4.3 infection
of SupT1 cells. Blots were probed with anti-NUP98 and anti-GAPDH antibodies. (B) Bar graphs representing the mean fold change of NUP98
expression relative to the uninfected cells. (C) Representative Western blot showing intracellular p55 levels upon HIV-1 NL4.3 infection of SupT1
cells. Blots were probed with anti-HIV-1 p24 antibodies. The experiments were performed at least three times. **, P < 0.01.
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with the GFP-NUP98 plasmid construct by Western blotting using

the anti-GFP antibody (Figure 3C). We next estimated the quantity

of viral antigens released in the culture supernatant of HEK293T

cells co-transfected with GFP-NUP98 and pNL4.3 by p24 ELISA. In

agreement with the cellular viral protein p55 levels, viral antigen in

the culture supernatants of HEK293T cells transfected with GFP-

NUP98 was attenuated by 3-fold compared with the control cells

(Figure 3D). The trypan blue dye exclusion assay showed that

transient overexpression of NUP98 had a negligible effect on cell

viability (Supplementary Figure S3). We then checked if any of the

other NUPs under this study could also affect the HIV-1 virion

production in general. Therefore, as another FG-rich NUP, the
Frontiers in Immunology 07
NUP62’s role on intracellular p55 protein expression and viral

antigen release in the culture supernatant was evaluated. Upon co-

transfection with pNL4.3 and GFP-NUP62, we observed no

significant effect on either intracellular p55 protein expression or

viral antigen release by transiently expressed GFP-NUP62

(Supplementary Figures S4A–C). The expression of GFP-NUP62

was verified in the cells transfected with the GFP-NUP62 plasmid

construct by Western blotting using the anti-GFP antibody

(Supplementary Figure S4D). Thus, these data suggest that

inhibition of HIV-1 protein expression was NUP98-specific in

our conditions with respect to the selected NUPs that we

were studying.
B C
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A

FIGURE 2

HIV-1 downregulates NUP98 in HEK293T cells. (A) Representative Western blot showing endogenous NUP98 levels upon HIV-1 NL4.3 infection of
HEK293T cells. Blots were probed with anti-NUP98 and anti-GAPDH antibodies. (B) Bar graphs representing the mean fold change of NUP98
expression relative to the uninfected cells from (A). (C) Representative Western blot showing intracellular p55 levels upon HIV-1 NL4.3 infection of
HEK293T cells. Blots were probed with anti-HIV-1 p24 antibodies. (D) Representative Western blot showing endogenous NUP98 levels upon pNL4.3
transfection of HEK293T cells. Blots were probed with anti-NUP98 and anti-GAPDH antibodies. (E) Bar graphs representing the mean fold change of
NUP98 expression relative to the untransfected cells from (D). (F) Representative Western blot showing intracellular p24 levels upon pNL4.3
transfection of HEK293T cells. Blots were probed with anti-HIV-1 p24 antibodies. (G) Representative Western blot showing endogenous NUP98
levels in HEK293T cells upon transfection with either pcDNA or pcTat or pcRev. Blots were probed with anti-NUP98, anti-GAPDH, and anti-Myc
antibodies. (H) Bar graphs representing the mean fold change of endogenous NUP98 expression relative to the vector control from (G). The
experiments were performed at least three times. *, P < 0.05; **, P < 0.01; NS, P > 0.05..
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Overexpression of NUP98 reduces viral
transcript levels

The decrease in both intracellular p55 levels and viral antigen

release led us to speculate if NUP98 actually reduced total viral

RNA. To this end, HEK293T cells were co-transfected with GFP-

NUP98 and pNL4.3 as mentioned above. After 48 h of transfection,

cells were harvested and total viral RNA was quantified by qPCR

using the primers listed in Table 1. Indeed, we observed that the

overexpression of NUP98 reduced total viral transcript (Env

mRNA) levels (Figure 3E). To test if NUP98-mediated reduction

of viral p55, RNA levels, and viral antigen release was also true for

cells infected with HIV-1 NL4.3, HEK293T cells were first

transfected either with pEGFPC1 or GFP-NUP98 for 24 h and

then infected with HIV-1 NL4.3 for 48 h. As expected, even under

these infection conditions, intracellular p55 levels were reduced by

GFP-NUP98 (Figures 4A, B). The expression of GFP-NUP98 was

verified in the cells transfected with the GFP-NUP98 plasmid

construct by Western blotting using the anti-GFP antibody

(Figure 4C). In addition, viral RNA levels and viral antigen

release were also reduced upon NUP98 transient overexpression

(Figures 4D, E). The reduced total viral RNA upon NUP98

overexpression, thus, explains the decrease in the intracellular p55

levels and viral antigen release. It should be further noted that the

quantification of total viral RNA by RT-qPCR would only infer

the levels of RNA at a given state, and therefore, we cannot rule out

the possible combined effect of viral transcription inhibition and
Frontiers in Immunology 08
decrease in viral transcript stability by NUP98 during HIV-1

infection. We also extended our study to see if transiently

expressed GFP-NUP98 could affect p55 levels from another

proviral construct pIndie-C1 (subtype C) (Supplementary Figures

S5A, B). pIndie-C1 is an infectious molecular clone isolated from

the HIV-1 subtype C strain 93IN101 of pandemic potential, which

is prevalent in India (51). In line with the data obtained from

pNL4.3 (subtype B) (Figures 3A, B), p55 levels from pIndie-C1 were

significantly reduced by 5-fold upon transient expression of NUP98

(Supplementary Figures S5A, B). Hence, it can be inferred that

NUP98 negatively affected viral protein levels both in subtypes B

and C of HIV-1. The expression of GFP-NUP98 was verified in the

cells transfected with the GFP-NUP98 plasmid construct by

Western blotting using the anti-GFP antibody (Supplementary

Figure S5C). Taken together, these results suggest that NUP98

negatively impacts viral RNA levels.

Virions released from NUP98 overexpressing
producer cells showed reduced infectivity

As we observed that NUP98 attenuated the intracellular p55,

viral RNA, and viral antigens released in the culture supernatant

from the producer cell , we reasoned whether NUP98

overexpression might also affect the infectivity of the HIV-1

particles released from the producer cell. Toward this, HIV-1 was

prepared from HEK293T cells by co-transfecting with the plasmids

pNL4.3 and GFP-NUP98. As a control, cells were also co-
B C

D E

A

FIGURE 3

Overexpression of NUP98 reduces HIV-1 p55 protein and RNA levels. (A–E) HEK293T cells were co-transfected with pNL4.3 and either pEGFPC1 or
GFP-NUP98. Forty-eight hours post-transfection, cells were harvested and the culture supernatant was collected. (A) Blots were probed with anti-
HIV-1 p24 and GAPDH antibodies. p55 expression was normalized to the loading control GAPDH. (B) Bar graphs represent the mean fold change of
p55 expression relative to the vector control. (C) The GFP-NUP98 expression was verified by Western blotting using the anti-GFP antibody. (D) Bar
graphs represent the mean fold change of viral antigens in the culture supernatant relative to the vector control. (E) Bar graphs represent the mean
fold change of intracellular viral RNA relative to the vector control. The experiments were performed at least three times. *, P < 0.05; **, P < 0.01.
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transfected with pNL4.3 and pEGFPC1. The equal amounts of viral

particles (5 ng/ml of p24 equivalents) produced from either control

cells or NUP98 overexpressing cells were then used to infect the

target reporter cell line TZM-bl. The TZM-bl cell line is genetically

engineered from the HeLa cell line and stably expresses the receptor

(CD4) and co-receptor (CCR5). The genome of this cell line also

harbors separate integrated copies of reporter genes such as

luciferase and b-galactosidase, and their expression is under the

control of the HIV-1 promoter LTR (58). After 48 h post-infection,

luciferase activity driven by the HIV-1 LTR promoter was

evaluated. To our surprise, the infectivity of the virus prepared

from the producer cells (HEK293T) expressing NUP98 was

decreased by 2-fold in comparison to the control cells (Figure 4F).
Knockdown of NUP98 enhances HIV-1
viral protein and transcript levels,
increasing the released virus and
its infectivity

To corroborate the effect of NUP98 on HIV-1 replication, the

endogenous NUP98 in SupT1 cells was depleted using shRNA.

Previously, it was shown that NUP98 promotes the integration of
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HIV-1 and that the depletion of NUP98 led to decreased infectivity

(22). To surpass the effect of NUP98 depletion on the integration of

HIV-1 DNA, SupT1 cells were first infected with HIV-1 NL4.3 for

24 h and then transduced with lentivirus containing shRNA that

targeted NUP98. Seventy-two hours post-transduction, cells were

harvested to analyze the intracellular p55 protein and viral RNA

levels by Western blotting and RT-qPCR, respectively, and culture

supernatants were collected to measure the virus-associated p24 by

ELISA. Western blotting analysis showed that the endogenous

NUP98 was significantly downregulated in comparison to cells

transduced with scrambled (Sc) shRNA (Figures 5A, B). The

viability of the cells that were depleted of NUP98 was assessed by

trypan blue dye exclusion assay, and we observed that depletion of

NUP98 had a negligible effect on the cell viability in comparison to

control cells (Supplementary Figure S6). In agreement with

overexpression studies in HEK293T cells, the depletion of

endogenous NUP98 enhanced the intracellular p55 levels as well

as the virus-associated p24 in the culture supernatant (Figures 5C–

E). Moreover, viral RNA levels were also increased upon depletion

of NUP98, suggesting that NUP98 plays an important antiviral role

in the HIV-1 gene expression (Figure 5F). To examine the

infectivity of the virus that emerged from SupT1 cells depleted of

NUP98, TZM-bl cells were infected with equal amounts of viral
B C

D E F

A

FIGURE 4

Overexpression of NUP98 reduces viral protein and RNA levels during HIV-1 NL4.3 infection in HEK293T cells. (A–E) HEK293T cells were transfected
with either pEGFPC1 or GFP-NUP98. Twenty-four hours post-transfection, cells were infected with HIV-1 NL4.3, and 48 hpi cells were harvested
either for lysate preparation or RNA isolation, and the culture supernatant was collected for p24 ELISA. (A) Blots were probed with anti-HIV-1 p24
and anti-GAPDH antibodies. p55 expression was normalized to the loading control GAPDH. (B) Bar graphs represent the mean fold change of p55
expression relative to the vector control. (C) The GFP-NUP98 expression was verified by Western blotting using the anti-GFP antibody. (D) Bar
graphs represent the mean fold change of viral RNA expression relative to the vector control. (E) Bar graphs represent the mean fold change of viral
antigens relative to the vector control. (F) HEK293T cells were co-transfected with pNL4.3 and either pEGFPC1 or GFP-NUP98. Forty-eight hours
post-transfection, culture supernatants were collected. The culture supernatant containing the virus (p24 equivalents) was used to infect TZM-bl
cells. Forty-eight hours post-infection, cells were harvested for luciferase assay. Bar graphs represent the mean fold change of luciferase activity
relative to the vector control. The experiments were performed at least three times. **, P < 0.01; ***, P < 0.001.
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particles (5 ng/ml of p24 equivalents) produced from either NUP98

shRNA- or Sc shRNA-transduced SupT1 cells as previously

described. We observed that the infectivity of the virus produced

from NUP98-depleted cells was enhanced (Figure 5G).

Thus, with the overexpression and knockdown studies, we

conclude that NUP98 reduced intracellular viral RNA, viral p55

levels, released virus titers, and the infectivity of the released virus.
NUP98 is associated with HIV-1 LTR and
decreases HIV-1 LTR-driven
gene expression

As overexpression and knockdown studies indicated that

NUP98 reduced both viral protein and RNA levels, we

investigated if NUP98 affected the HIV-1 LTR-driven

transcription by associating with HIV-1 LTR. To check this

hypothesis, HEK293T cells were co-transfected with Myc-NUP98

and plasmid construct containing the full-length HIV-1 LTR

promoter (pLTR-Luc), and 48 h later, ChIP-qPCR was performed

using the anti-Myc antibody. For the qPCR analysis, the primers

were designed to amplify the region toward the end of 5'LTR of

HIV-1, i.e., +68 nt to +168 nt, where +1 nt indicates the

transcription start site in the LTR promoter (Table 1) (59). We

found that transiently expressed NUP98 was enriched at HIV-1

LTR by 6-fold in comparison to the vector control (Figure 6A).

Having confirmed that NUP98 is associated with HIV-1 LTR, we

next investigated its impact on HIV-1 LTR-driven transcription.
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Toward this, we used the pLTR-Luc construct that expresses the

luciferase gene from the HIV-1 LTR as a reporter system. HEK293T

cells were co-transfected with pLTR-Luc and pEGFPC1 or GFP-

NUP98 in the absence or presence of pNL4.3. All HIV-1 viral

proteins were provided in the form of the molecular clone pNL4.3

to mimic the condition wherein the possible regulation of LTR

activity by viral proteins including HIV-1 Tat, which is the main

viral transcription regulator of LTR promoter, would be ensured.

We indeed observed that the transiently expressed GFP-NUP98

decreased the expression of the luciferase gene from HIV-1 LTR in

comparison to the vector control, irrespective of whether pNL4.3

was provided or not (Figure 6B). These results indicate that NUP98

prevents basal viral gene expression from the HIV-1 LTR promoter.

To further understand if the inhibition of basal transcription of

HIV-1 LTR by NUP98 could be rescued by HIV-1 Tat, HEK293T

cells were co-transfected with pLTR-Luc and pcDNA Tat or

pcDNA along with GFP-NUP98 or pEGFPC1. We observed that

NUP98 reduced the luciferase activity by 3.9-fold even in the

presence of Tat, indicating that Tat could not rescue the NUP98-

mediated downregulation of HIV-1 LTR activity (Figure 6C). We

further substantiated these observations using the pLTR-GFP

construct which retains LTRs, genes for early viral regulatory

proteins, Tat, and Rev, but lacks genes for Env, Gag, Gag-Pol,

Nef, Vif, and Vpr. In place of gag, pol, vif, and vpr, GFP was inserted

such that its expression is directly under the control of LTR. The

expression of GFP from the LTR promoter was then analyzed by

Western blotting using the anti-GFP antibody and normalized to

the loading control b-tubulin. Even under these conditions, NUP98
B C D
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FIGURE 5

Knockdown of NUP98 in SupT1 cells ameliorates HIV-1 viral protein, RNA levels, and infectivity. (A–G) SupT1 cells were infected with HIV-1 NL4.3 for
24 h and then transduced with lentivirus containing either control scrambled (Sc) shRNA or NUP98 shRNA. Seventy-two hours post-transduction,
cells were harvested either for lysate preparation or RNA isolation, and culture supernatants were collected for p24 ELISA and for the TZM-bl
reporter assay. (A) Blots were probed with anti-NUP98 and anti-GAPDH antibodies. NUP98 expression was normalized to the corresponding loading
control GAPDH. (B) Bar graphs represent the mean fold change of NUP98 expression relative to Sc shRNA. (C) Using the same lysates as in (A), blots
were probed with anti-p24 and anti-GAPDH antibodies. p55 expression was normalized to the loading control GAPDH. (D) Bar graphs represent the
mean fold change of p55 expression relative to Sc shRNA. (E) Bar graphs represent the mean fold change of viral antigens relative to Sc shRNA (F)
Bar graphs represent the mean fold change of viral RNA expression relative to Sc shRNA. (G) Equal amounts of the virus (p24 equivalents) collected
from shRNA-transduced cells (Sc shRNA and NUP98 shRNA) were used to infect TZM-bl cells. Forty-eight hours post-infection, cells were harvested
for luciferase assay. Bar graphs represent the mean fold change of luciferase activity relative to the Sc shRNA control. The experiments were
performed at least three times. *, P < 0.05; **, P < 0.01.
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was able to reduce the GFP expression driven by HIV-1 LTR by 10-

fold (Figures 6D, E). To further validate if the negative effect of

NUP98 on HIV-1 LTR was indeed HIV-1 LTR-specific, we co-

transfected both Myc-NUP98 or pcDNA and pEGFPC1 [GFP

expression from the cytomegalovirus (CMV) promoter] into

HEK293T cells. The expression of GFP from the CMV promoter

was then analyzed by Western blotting using the anti-GFP antibody

and normalized to the loading control b-tubulin. However, the

overexpression of NUP98 did not change the levels of GFP

expressed from the CMV promoter (Supplementary Figures S7A,
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B). It should be noted that since the CMV promoter in the

pEGFPC1 construct does not contain all the elements of the

CMV, we cannot exclude the possible inhibitory effect of NUP98

on CMV-driven gene expression in the context of CMV infection.

Similarly, we also tested if NUP98 could affect the SIV promoter by

co-transfecting HEK293T cells with pSIVAGM-Luc-R
−E−Dvif and

GFP-NUP98 and measuring SIV promoter-driven luciferase

activity. We found that NUP98 had no influence on the SIV LTR

promoter (Supplementary Figure S7C), suggesting that NUP98

specifically suppresses HIV-1 LTR activity.
B
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FIGURE 6

NUP98 associates with HIV-1 LTR and diminishes HIV-1 LTR-driven transcription. (A) HEK293T cells were co-transfected with pLTR-Luc and either
pcDNA or Myc-NUP98. Forty-eight hours post-transfection, cells were subjected to cross-linking, and the ChIP assay was performed with the anti-
Myc antibody. The pull-down fractions were analyzed by qPCR using primers against HIV-1 LTR. Bar graphs represent the mean fold enrichment of
Myc-NUP98 at HIV-1 LTR relative to the vector control. (B) HEK293T cells were co-transfected with pLTR-Luc and either pEGFPC1 or GFP-NUP98
in the presence or absence of pNL4.3. Forty-eight hours post-transfection, cells were lysed in reporter lysis buffer and lysate was used for luciferase
activity. Bar graphs represent the mean basal luciferase activities (B, left panel). Bar graphs represent the mean fold change of luciferase activities in
relative vector control (B, right panel). (C) HEK293T cells were co-transfected with pLTR-Luc, pcDNA, or pcTat and either pEGFPC1 or GFP-NUP98.
Forty-eight hours post-transfection, cells were lysed in reporter lysis buffer and lysate was used for luciferase activity. Bar graphs represent the mean
basal luciferase activities (C, left panel). Bar graphs represent the mean fold change of luciferase activity relative to the vector control (C, right panel).
(D, E) HEK293T cells were co-transfected with pLTR-GFP and either pcDNA or Myc-NUP98. Forty-eight hours post-transfection, cells were lysed
and lysate was used for Western blotting. (D) Blots were probed with antibodies against GFP, b-tubulin, and myc. GFP expression was normalized to
the loading control b-tubulin. (E) Bar graphs represent the mean fold change of GFP expression relative to the vector control. (F, G) HEK293T cells
were transfected with NUP98 targeting shRNA. As a control, cells were also transfected with scrambled (Sc) non-specific shRNA. (F) Blots were
probed with anti-NUP98 and anti-GAPDH antibodies. The expression of NUP98 was normalized to the loading control GAPDH. (G) Bar graphs
represent the mean fold change of NUP98 expression relative to the Sc shRNA control. (H) Forty-eight hours post-transfection with shRNAs, cells
were again transfected with pLTR-Luc and incubated further for 24 h. Cells were lysed in reporter lysis buffer and lysate was used for luciferase
activity. Bar graphs represent the mean fold change of luciferase activity relative to the Sc shRNA control. The experiments were performed at least
three times. *, P < 0.05; **, P < 0.01.
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To corroborate the role of NUP98 in the regulation of HIV-1 LTR-

driven transcription, the expression of NUP98 was depleted in

HEK293T cells by transfecting the cells with the target shRNA

plasmid. As a control, cells were also transfected with scrambled (Sc)

shRNA plasmid independently. The significant depletion of the

NUP98 protein was observed in the cells transfected with shRNA

targeting NUP98 but not in the cells transfected with Sc shRNA

(Figures 6F, G). Forty-eight hours after transfection with shRNAs,

cells were retransfected with pLTR Luc. After 24 h of incubation, cells

were harvested and luciferase activity was performed. The data from

luciferase assays showed that the HIV-1 LTR activity was increased by

1.5-fold in the cells depleted of NUP98 in comparison to the cells

transfected with Sc shRNA, corroborating that NUP98 decreased the

transcription from the HIV-1 LTR promoter (Figure 6H). These data,

thus, provide evidence that NUP98 specifically suppressed the HIV-1

LTR-driven viral basal gene expression.
The NUP98-mediated decrease in viral
gene expression is dependent on the NRE
region of HIV-1 LTR

The HIV-1 LTR promoter is functionally divided into the negative

regulatory element (NRE), enhancer, core, and TAR regions (4). The

NRE of LTR was known to downmodulate the LTR-directed HIV-1

gene expression (4). While the enhancer region contains binding sites

for transcription factors such as nuclear factor-kappa B (NF-kB), the
core region harbors the binding sites for constitutive transcription

factors such as specificity protein 1 (Sp1) and TATA-box binding

protein (TBP). As the above experiments suggested that NUP98

negatively affected the basal viral gene expression, which was

independent of Tat, we hypothesized that the elements upstream to

the TAR region might play a regulatory role in the NUP98-mediated

lowering of viral gene expression. To test this hypothesis, we created

deletion mutants of HIV-1 LTR in the pLTR-Luc construct, lacking

NRE or binding sites for NF-kB and Sp1 (Figure 7A). HEK293T cells

were co-transfected with these deletion mutants and GFP-NUP98 or

pEGFPC1. The comparison of basal luciferase activities of these LTR

deletion mutants with that of WT LTR in cells transfected with

pEGFPC1 suggested that the deletion mutants that lacked NF-kB
and Sp1 binding sites significantly lost the promoter activity, suggesting

that the binding sites for these transcription factors are important for

the basal activity of the LTR promoter (Supplementary Figure S8). In

contrast, deletion of the NRE region (DNRE LTR) did not affect basal

transcription activity (Supplementary Figure S8). We further

normalized the luciferase activities for each LTR construct, including

WT LTR, in the presence of GFP-NUP98 with the luciferase activities

measured in the background of the corresponding vector control

pEGFPC1. Consistent with the above experiments, the negative effect

of NUP98 on WT LTR activity was evident relative to the vector

control (pEGFPC1) (Figure 7B). Moreover, the promoter activity of

LTR deletion mutants such as DNF-kB and DSp1 was also shown to be

suppressed by NUP98 relative to the vector control, suggesting that

these elements of LTR may not be required for NUP98-mediated
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suppression of HIV-1 gene expression (Figure 7B). Interestingly, the

NUP98-mediated suppressing effect on the luciferase activity from the

DNRE LTR construct was not observed (Figure 7B), pointing to this

region being involved in NUP98-mediated LTR activity suppression.

We next performed ChIP-qPCR using specific primers (Table 1) to

amplify specific regions of LTR (Figure 7C) to study the occupancy of

Myc-NUP98.We observed the enrichment ofMyc-NUP98 on both the

NRE and NF-kB/Sp1 regions (Figure 7D). However, considering that

DNF-kB or DSp1 did not affect NUP98-mediated suppression of LTR

activity, we conclude that NUP98-mediated lowering of viral gene

expression is dependent on the NRE region of HIV-1 LTR. It should be

noted that this does not rule out the possibility of the involvement of

NF-kB and Sp1 in NUP98-mediated regulation of HIV-1 LTR activity.

This observation further warrants future investigation to understand

the molecular events underlying the NRE-specific suppressive effect of

NUP98 on HIV-1 gene expression.
The N-terminal region of NUP98 (1–504)
contributes to NUP98-mediated inhibition
of HIV-1 LTR-driven transcription

Next, we deliberated on understanding the contribution of

different domains of NUP98 in the regulation of HIV-1 LTR-

driven transcription. The constructs that express domains of

NUP98 were previously described and schematically shown in

Figure 7E (14). HEK293T cells were co-transfected with pLTR

Luc, pcDNA Tat, and pEGFPC1 or NUP98 GFP or plasmid

expressing different domains of NUP98. As observed in previous

experiments, the full-length NUP98 (1–920) reduced the promoter

activity of HIV-1 LTR (Figure 7F). A similar effect was also

observed for GFP-DC NUP98 (1–863), which has a 6-kDa region

removed from the C-terminal end of NUP98 (Figure 7F). The GFP-

NTD NUP98 (1–225), which expressed only the N-terminal

domain of NUP98, was also found to reduce the HIV-1 LTR-

driven activity by 2-fold (Figure 7F). When the reduction in the

HIV-1 LTR-driven activities was calculated for GFP-GLFG

(glycine-leucine-phenylalanine-glycine) NUP98 (221–504) and

GFP-CTD NUP98 (506–920), representing the GLFG domain

and the C-terminal domain, respectively, we found that the GLFG

domain reduced the LTR activity significantly by 1.6-fold, whereas

the CTD of NUP98 did not affect the LTR activity (Figure 7F). The

suppression of HIV-1 LTR gene expression by both NTD and

GLFG domains indicates that the N-terminal region spanning both

these domains (1–504) is required for NUP98 to downregulate

HIV-1 LTR activity, with the NTD playing the dominant role.

Overall, we infer that NUP98, which was downregulated upon

HIV-1 infection, functions as a negative regulator of HIV-1 LTR-

driven transcription, consequently lowering released virions.

Interestingly, the virus generated from the producer cells

transiently expressing NUP98 showed lower infectivity, while the

virus generated from NUP98 knockdown CD4+ T cells showed

higher infectivity, warranting further investigations on the antiviral

properties of NUP98.
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Discussion

In this study, we examined the expression levels of NUPs, each

representing a subcomplex in NPC, during the late stages of HIV-1

infection and demonstrated a non-canonical antiviral role of

NUP98 in HIV-1 infection. We observed a decrease in the levels

of the NUP98 protein during HIV-1 infection in both SupT1 and

HEK293T cell lines (Figures 1A, 2A). In addition, the precursor

form, i.e., NUP98–NUP96, also seemed to be downregulated, which

was readily observed in HEK293T cells transfected with pNL4.3

(Figure 2D) and less clearly in HEK293T cells infected with HIV-1

NL4.3 (Figure 2A). Since the precursor NUP98–NUP96 levels at the

basal state in SupT1 cells were below detectable (Figure 1A), we
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cannot conclude the effect of HIV-1 infection on this precursor

form in SupT1 cells. As we have described earlier, the products of

NUP98 gene expression could be either the NUP98 protein alone

(expressed from alternatively spliced short mRNA) or the NUP98

and NUP96 protein precursor (expressed from longer mRNA and

undergoes autoproteolytic cleavage to give rise to NUP98 and

NUP96). Given this versatile regulation of NUP98 gene

expression, we deduce that HIV-1 may reduce both the NUP98

protein and its precursor levels by affecting any of these processes

either alone or in combination.

Several host factors were earlier shown to associate with and

regulate HIV-1 LTR (50, 60–67). Indeed, the NUPs such as NUP153

and TPR were shown to associate with HIV-1 LTR and enhance
B

C D

E F

A

FIGURE 7

The NRE of LTR is required for NUP98-mediated perturbation of HIV-1 LTR-directed gene expression. (A) The schematic representation of the full-
length wild-type (WT) LTR and its deletion mutant plasmid constructs. (B) HEK293T cells were co-transfected either with pEGFPC1 or GFP-NUP98
and pLTR-Luc or LTR deletion mutant plasmid constructs. Forty-eight hours post-transfection, cells were lysed in reporter lysis buffer and lysate was
used for luciferase activity. Bar graphs represent the mean fold change of luciferase activities of LTR constructs in the presence of the GFP-NUP98
relative vector control. (C) The schematic representation of primers that amplify NRE and NF-kB/Sp1 binding sites. (D) HEK293T cells were co-
transfected with either pcDNA or Myc-NUP98 and pLTR-Luc. Forty-eight hours post-transfection, cells were harvested for the ChIP-qPCR assay.
The immunoprecipitated DNA was used as a template for qPCR using the primers that amplify NRE and NF-kB/Sp1 binding sites. Bar graphs
represent the mean fold enrichment of NUP98 at NRE and NF-kB/Sp1 binding sites relative to the vector control. (E) Schematic representation of
the full-length and the domains of NUP98; the down arrow indicates the autoproteolytic cleavage site. (F) HEK293T cells were co-transfected with
pLTR-Luc, pcTat, and plasmids expressing the full-length and the domains of NUP98. Forty-eight hours post-transfection, cells were lysed in
reporter lysis buffer and lysate was used for luciferase activity. Bar graphs represent the mean fold change of luciferase activity relative to the vector
control. The experiments were performed at least three times. One-way ANOVA with Tukey’s multiple comparisons test was used for statistical
analysis for figure B using GraphPad Prism. *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, P > 0.05.
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viral gene expression (67). Although this previous report showed

the association of NUP98 with HIV-1 LTR, the significance of this

association in the context of viral gene expression or infectivity was

not explored. In agreement with these studies, we also showed that

NUP98 associates with the HIV-1 LTR promoter. Given the

observation that NUP98 associates and activates several host gene

promoters, it will be intriguing to check how NUP98 could be

recruited to the HIV-1 LTR promoter (68). Concordantly, through

overexpression and knockdown studies, we showed that NUP98

inhibits the HIV-1 gene transcription from the promoter HIV-1

LTR. To understand the underlying mechanism of LTR-directed

gene expression inhibition by NUP98, we constructed LTR

promoter mutants and found that NUP98 relied on NRE of HIV-

1 LTR to exhibit its suppressive effect on HIV-1 gene expression.

Furthermore, we showed that NUP98 occupies the NRE region and

requires the N-terminal region (1–504) to suppress the HIV-1 LTR-

driven gene expression.

We further checked if transiently expressed NUP98 could

interact with some of the well-established host protein regulators

of HIV-1 LTR such as NF-kB (p65), HEXIM1, and HDAC1. The

Western blotting analysis of immunoprecipitated complexes

showed that none of these factors interacted with transiently

expressed NUP98 (Supplementary Figures S9A, B). Although a

previous study showed that fused NUP98 proteins, i.e., NUP98-

HOXA9 and NUP98-PMX1, interact with HDAC1 and are

involved in the regulation of genes implicated in acute leukemia

(46), our experiments with transiently expressed NUP98 indicate

that unfused NUP98 might not interact with HDAC1. Nevertheless,

based on co-IP analysis with transiently expressed NUP98, we

cannot rule out the functional interaction between endogenous

NUP98 and NF-kB, HEXIM1, or HDAC1. Future investigations

will be required to understand the possible physical interaction

between NUP98 and members of protein complexes that regulate

HIV-1 gene expression.

It is well established that many of the host co-factors as well as

restriction factors are packaged into the released HIV-1 virions and

that these factors decide the fate of the virus in the target cells by

employing a wide range of mechanisms (36, 54). For instance, the

APOBEC family member APOBEC3G, by being packaged into the

released viral particles, was shown to cause fatal mutations in the

viral genome during the reverse transcription step of the viral life

cycle and, thus, limit the infectivity of the virus during new rounds

of infection in a target cell (36). Since we observed that NUP98

reduced the infectivity of released viral particles, we checked if

NUP98 is packaged into the emerging virions from the producer

cells (SupT1 and HEK293T). We probed the presence of both

endogenous (from SupT1 and HEK293T) and transiently (from

HEK293T) expressed NUP98 in the virion particles released from

these producer cells. We found that the endogenous NUP98 was not

packaged into the released virion particles produced either from

SupT1 or HEK293T cells (Supplementary Figures S10A, B). We

further examined if the transiently overexpressed NUP98 could be

packaged into the virion particles. However, owing to the

suppressive effect of NUP98 on intracellular p55 levels, the viral

particles released were very low to be detected by Western blotting.

Thus, it is difficult to conclude whether transiently expressed
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NUP98 could be packaged into the released virions under these

conditions (Supplementary Figure S10C).

To keep pace with the virus, some of the host proteins gain

antiviral functions (reviewed in (36)). Most of these factors are

frequently induced by interferon (IFN) signaling in response to viral

infections (36, 69). Several reports demonstrated that NUP98 is an

interferon-inducible protein and is implicated as an antiviral factor

for viruses including poliovirus, cardiovirus, and influenza virus

(40, 70–74). In these cases, the NUP98 protein was shown to be

targeted during viral infection by several mechanisms including

phosphorylation, degradation, or specific cleavage, thus reducing

intracellular NUP98 levels (71–74). Recently, SARS-CoV-2-

encoded Orf6 has been shown to target the NUP98, which results

in the inhibition of the import of signal transducer and activator of

transcription (STAT) and thereby antagonizes the interferon

signaling pathway (70). HIV-1 employs several mechanisms to

counteract host restriction factors that prevent different steps of

viral replication (36). The best-known restriction factor to be

targeted by HIV-1 is the APOBEC family member APOBEC3G.

Using its accessory proteins such as Vif and Vpr, HIV-1 targets and

reduces in t r ace l lu l a r APOBEC3G through mul t ip l e

mechanisms (36). Given a plethora of these counter mechanisms

exhibited by viruses of different families including HIV-1, it is

reasonable to assume that HIV-1 by employing yet unknown

mechanism(s) reduced the NUP98 protein levels for the benefit of

its replication.

Based on the evidence presented in the manuscript, we conclude

that NUP98, which is conventionally involved in the transport of

molecules as a member of the nuclear pore complex, non-

canonically functions as an anti-HIV-1 factor through two

different mechanisms: 1) limiting the viral gene transcription

through interaction with HIV-1 LTR and 2) lowering the

infectivity of the virus released from a producer cell. The

downregulation of this antiviral factor during infection can be a

host restriction evasion strategy employed by HIV-1. We believe

that more insights into the understanding of molecular events

underlying NUP98-mediated HIV-1 gene expression repression

will help us understand the complex biology behind the host–

HIV-1 conflicts.
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