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Metabolism-driven glycosylation
represents therapeutic
opportunities in interstitial
lung diseases
Katarzyna Drzewicka* and Zbigniew Zasłona*

Molecure SA, Warsaw, Poland
Metabolic changes are coupled with alteration in protein glycosylation. In this

review, we will focus on macrophages that are pivotal in the pathogenesis of

pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are

an attractive therapeutic target. Examples presented in this review demonstrate

that protein glycosylation regulates metabolism-driven immune responses in

macrophages, with implications for fibrotic processes and granuloma formation.

Targeting proteins that regulate glycosylation, such as fucosyltransferases,

neuraminidase 1 and chitinase 1 could effectively block immunometabolic

changes driving inflammation and fibrosis, providing novel avenues for

therapeutic interventions.
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Pathogenesis of lung fibrosis and sarcoidosis – key
cellular players

Interstitial lung diseases (ILDs) encompass over 200 conditions characterized by

inflammation and fibrosis in the lung interstitium, which impairs gas exchange and can

lead to respiratory failure in patients (1). This review focuses on two most common ILDs,

pulmonary fibrosis and pulmonary sarcoidosis, both lacking curative treatments (2–4). The

challenges in treating these diseases arise from their complex pathogenesis, involving a

diverse range of cell types undergoing dynamic transitions and interactions (5, 6). This

complexity primarily involves structural cells like epithelial cells and fibroblasts, as well

innate immunity, including macrophages (7) and, to a lesser extent, neutrophils (8, 9) and

adaptive immune cells (10, 11).

The current understanding assumes that in pulmonary fibrosis, damage to the epithelial

layer initiates processes of both inflammation and tissue repair (10, 12). The causes of

damage can vary and may encompass environmental factors (like cigarette smoke (13),

irradiation (14)), genetic mutations (15) acute inflammation due to severe infections (like

COVID-19) (16), or an unidentified cause, referred to as idiopathic pulmonary fibrosis
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(IPF). A critical point in the pathogenesis is when inflammation

persists, particularly after severe injuries, leading to a dysregulated

repair mechanism (10). This dysregulation is characterized by an

excessive accumulation of extracellular matrix (ECM), culminating

in fibrosis (10). The repair and fibrosis processes are primarily

executed by fibroblast and epithelial cells, which not only proliferate

to lock the wound but also undergo cellular transitions, namely

epithelial-mesenchymal transition (EMT) (17) and fibroblast-

myofibroblast transition (FMT) (18). These transitions result in

the formation of ECM-producing myofibroblasts.

In the case of lung sarcoidosis, persistent infections or the

presence of foreign materials can initiate the formation of structures

called granulomas (6). Granulomas form due to the aggregation of

macrophages, which can differentiate into epithelioid cells and then

to multi-nucleated giant cells (6). A considerable number of cells

within granulomas are CD4+ T cells (6). These cells are crucial to

recognize antigen and trigger adaptive immune response.

Sarcoidosis may progress to fibrosis at the granuloma sites,

illustrating a complex interplay between ongoing inflammatory

stimuli and fibrotic processes (19).

In ILDs, both inflammatory and resolution phase of inflammation

and repair processes are primarily driven by macrophages (7, 20, 21).

These cells can adopt various phenotypes and contribute to disease

progression by secreting pro-inflammatory cytokines and pro-fibrotic

factors. Moreover, crosstalk between macrophages and fibroblasts is

needed for a successful process of a resolution of inflammation (22).

Therefore, macrophages are recognized as central players in the

pathogenesis of pulmonary sarcoidosis (6) and control of fibroblast

transition and proliferation (23).
Metabolic changes in pulmonary
fibrosis and sarcoidosis

Most therapeutic approaches currently used in the clinic or being

under development aim to target two major pathogenic processes in

pulmonary fibrosis and sarcoidosis: inflammation or fibrosis (2, 3).

Recent work focused on the pathogenesis of pulmonary fibrosis and

sarcoidosis identified metabolic reprogramming, fostering glucose

uptake and aerobic glycolysis (known as Warburg’s effect and

previously associated with cancer), as a root cause of inflammation

and fibrosis (24–27). Interestingly, this metabolic shift toward aerobic

glycolysis occurs despite high oxygen concentrations present in the

lungs (28). Although glycolysis generates significantly less energy

compared to mitochondrial-driven oxidative phosphorylation

(OXPHOS), it offers rapid energy production and serves as a source

for various essential building blocks that fuel anabolic pathways (29).

These pathways are activated in both lung diseases we focus on and

include glycosylation, lipid, protein and nucleic acid synthesis (30, 31).

Both inflammation (32, 33) and tissue repair (34–36) benefit from this

metabolic switch, because they demand the extensive production of

inflammatory mediators and extracellular matrix components,

respectively. All key cellular transitions observed in these diseases,

such as EMT (37), FMT (38) and granuloma-associated transitions (6,

39), require aerobic glycolysis. Glycolytic-driven activation of immune
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cells might contribute to epithelial damage in pulmonary diseases, for

example via released cytokines such as tumor necrosis factor (TNF),

causing loosening of tight junction and cell death (40, 41), which can be

defined as a metabolic-driven injury.
Increased glucose uptake as a marker
of a pulmonary fibrosis
and sarcoidosis

In fibrotic lungs, the transition to aerobic glycolysis becomes

evident through increased expression of glucose transporter 1

(GLUT1) that was found on macrophages, facilitating the influx

of glucose into cells (42). This transition is accompanied by elevated

levels of glycolytic enzymes, including hexokinase (38, 43),

phosphofructokinase 3 (PFKB3) (38, 44), pyruvate dehydrogenase

kinase (45), and lactate dehydrogenase (43). Similarly, GLUT1 as

well as total lung glycolysis measured by TLuG tool, increases

during a process of granuloma formation in patients with

pulmonary sarcoidosis (46). The significant rise in glucose uptake

demanded by aerobic glycolysis, forms the basis for how positron

emission tomography (PET) involving radiotracer 18-

fluorodeoxyglucose (FDG), is effective in detecting and tracking

sarcoidosis. In clinical trials, PET-CT was used as an endpoint read-

out for monitoring sarcoidosis patients treated with antibodies

against macrophage specific cytokines, such as Canakinumab

(anti-IL-1b antibody) or CMK389 (anti-IL-18 antibody), from

Novartis Pharmaceuticals (47). These studies demonstrate that

FDG PET-CT scans for metabolic monitoring can be utilized to

assess not only mentioned disease diagnosis and progression but

also the efficacy of drugs that target macrophage activity and

inflammation as their underlying mechanisms of action. Many

novel approaches, being in the preclinical development, aim to

target metabolic reprogramming to stop inflammation and fibrosis.

For instance, inhibition of GLUT1 by a natural substance, phloretin,

in macrophages, is found to be effective in mouse models of acute

lung injury (48) and bleomycin-induced lung fibrosis (49).

Moreover, anlotinib, a multitargeted tyrosine inhibitor drug, is

found to reduce activation of PFKB3 and subsequently glycolysis

during fibroblast activation (44).
Glycosylation during homeostasis
and disease

Glycosylation, a process dynamically regulated by glycolysis, is

changed during inflammation (50) and repair processes (51–54).

Protein glycosylation is a post-translational modification, which can

be broadly classified into two types: O-linked glycosylation,

targeting serine or threonine amino acids, and N-linked

glycosylation, which occurs on asparagine residues (55). At the

molecular level, glycosylation generally increases protein stability

(56), activity (57) and can change its localization (58, 59) and

interacting partners (60, 61). Notably, a specific type of O-

glycosylation called O-GlcNAcylation, primarily takes place
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intracellularly (in cytoplasm or nucleus) and regulates transcription

factors and kinases signaling pathways, often competing with

phosphorylation (62) (Figures 1, 2). Protein glycosylation plays a

pivotal role in a cell-cell and cell-ECM communication, being

especially relevant for immune functions, where it modulates

receptor-ligand interactions (63, 64) and receptor plasma

membrane localization (59). In addition, changes in protein

glycosylation are important to facilitate repair following injury,

through processes like polarization of inflammation-resolving

macrophages, EMT (51), epithelial migration and adhesion (52).

For instance, N-glycosylation mediated translocation of annexin II

to cell surface drives wound healing in airway epithelium (54).

Similarly, alpha-dystroglycan that bind laminin in ECM was found

to enhance airway epithelia wound healing (53). Alterations of these

crucial functions of protein glycosylation are implicated in various

disorders including ILDs, leading to the emergence of protein

glycosylation as an important therapeutic target (65–67).

A good mechanistic example of a dysregulated glycosylation is a

mutation in integrin a3 (ITA3) called A349S which has been

identified in ILDs (68). This mutation leads to a gain-of-

glycosylation and disrupts ITA3 biosynthesis, a crucial integrin

highly expressed in lung epithelium playing a key role in IPF and

the EMT (15). Another interesting study examined the alteration of

N-glycans in irradiation-induced lung injury, a condition that

frequently progresses to pulmonary fibrosis (69). This research

utilized Matrix-Assisted Laser Desorption Ionization Mass
Frontiers in Immunology 03
Spectrometry Imaging (MALDI-MSI) to map the changes in N-

glycans (69). The findings highlighted variations in different forms

of N-glycans, which were localized to areas characterized by mucus

presence, alveolar-bronchiolar hyperplasia, increased proliferation

of epithelial cells, macrophage accumulation, edema, and

fibrosis (69).

Dysregulated glycosylation has also been observed in the serum

of pulmonary sarcoidosis patients, who have elevated levels of N-

galactosylation of IgG4, which is a potential marker for this disease

(70). Further examples of the importance of protein glycosylation as

a functional biomarker and a driver of pulmonary fibrosis and

sarcoidosis will be demonstrated in the context of glycan synthesis,

regulation and its links to metabolic changes mainly

in macrophages.
Structure and synthesis of glycans

Glucose metabolism serves as a significant source of

intermediates for glycan synthesis, followed by lipid and protein

glycosylation. The synthesis of glycans is a highly complex process

involving more than 200 enzymes, accounting for 10% of protein-

encoding human genes (71) . Glycans are bui lt f rom

monosaccharides such as mannose (Man), galactose (Gal),

glucose (Glc), fucose (Fuc), xylose (Xy), N-acetylglucosamine

(GlcNAc), N-acetylgalactosamine (GalNAc) and sialic acid (Sia),
FIGURE 1

Components and basic structural forms of N-glycans and O-glycans. Most glycans are composed of monosaccharides like mannose (Man),
galactose (Gal), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose (Fuc), sialic acid (Sia) and xylose (Xy). N-linked glycans are
attached to asparagine residues and are characterized by a core pentasaccharide structure, comprising two GlcNAc and three Man residues. These
glycans are categorized into three principal types: oligomannose, which consists solely of Man residues in varying numbers branching off from the
core; complex N-glycans, distinguished by their antennae that begin with a GlcNAc residue; and hybrid N-glycans, where both Man and GlcNAc
residues extend as antennae from the core structure. Additionally, a type known as paucimannose can be identified, which bear only one or two
Man residues. Here, two dissacharide units of N-glycans are markered. These are LacNAc (Galb1-4GlcNAc) and LadiNACs (GalNAcb1-4GlcNAc). O-
linked glycans typically form through the attachment of GalNAc to Ser/Thr residues, resulting in various core types that can be further extended.
Additionally, Ser/Thr residues can be linked to other monosaccharides like Fuc (O-fucosylation), Man (O-mannosylation), xylose (often the core for
glucosaminoglycans), glucose (O-glucosylation) or GlcNAc (O-GlcNAcylation) that is the most dynamic modification performed by O-GlcNAc
transferase (OGT) and O-GlcNAcase (OGA) enzymes.
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forming complex and variable combinations (an overview is

presented in Figure 1) (55).

N-linked glycans typically have a pentasaccharide core structure

that includes two N-acetylglucosamine (GlcNAc) and three mannose

(Man) residues (72). These glycans can be classified into three main

types: oligomannose, which have onlyMan residues of variable number

branching off from the core; complex N-glycans, characterized by

antennae starting with a GlcNAc residue; and hybrid N-glycans, where

bothMan and GlcNAc residues form extended antennae from the core

(72). Additionally, so called paucimannose N-glycans can be

distinguished, which are characterized by their unique structure of

just one or two mannose residues, and represent an ancient type of

glycan predominantly found in invertebrates (73). In vertebrates, these

glycans are tissue and context specific, being enriched in pathological

conditions like cancer (74) and inflammation (75) - their presence

significantly increases in macrophages during infection (76).

Additionally neutrophil elastase, a key secreted proteins in

neutrophils, shaping ECM in lung fibrosis is rich in these glycans

(77). O-linked glycans typically are formed through the attachment of

GalNAc to Ser/Thr residues, resulting in various core types that can be

further extended. Ser/Thr residues can be linked to other

monosaccharides like Fuc (O-fucosylation) (78), Man (O-

mannosylation) (79), xylose (initiation of glycosaminoglycans

synthesis like heparan sulphate) (80, 81), Glc (O-glucosylation) (82)

or GlcNAC (O-GlcNAcylation) (62).

Certain subunits of glycans are characterized by their affinity for

specific lectins. For instance, disaccharides such as LacNAc (Gal-

GlcNAc) (83) and the less common LacdiNAc (GalNAc-GlcNAc)

(84) are found to interact with the galectin family of proteins (85).

B4GALT1, an enzyme that synthesizes LacNAC, is found to be

overexpressed in patients with IPF (86). Moreover, level of galectin 3

(GAL3), is increased in patients of pulmonary sarcoidosis (87) and

fibrosis (88) and targeting GAL3 by small molecule inhibitors was

showed efficacious in mouse models of bleomycin-induced lung

fibrosis (89). Recent studies have linked LacNAc and LacdiNAc

dissacharides with the process of granuloma formation, suggesting a

pro-inflammatory role for these molecules (84) in IPF and sarcoidosis.

Glycosylation processes take place mostly in the endoplasmic

reticulum (ER) and Golgi apparatus, where glycosyltransferases are

responsible for glycan elongation, and glycosidases perform glycan

trimming and remodeling (Figure 2) (55). The initial step in this

process involves monosaccharides binding to a nucleotide sugar,

creating an activated highly energetic form (e.g. UDP-GalNac, GDP-

Fuc) that serves as a substrate for glycosyltransferases (55) (Figure 2). In

the ER, the oligomannose type of N-glycans is initially attached to

dolichol phosphate by various glycosyltransferases from ALG group

and then transferred co-translationally to proteins by

oligosaccharyltransferase (OST) (55). Subsequent modifications in

the Golgi apparatus include trimming of Man by a-mannosidases

and addition of various monosaccharides: Fuc by fucosyltransferases

(FUTs), sialic acid by sialyltransferase (STs), GlcNAc by N-

acetylglucosaminylltransferases (GnTs), Gal by galactosyltransferases

(GalTs, including beforementioned B4GALT1), and GalNAc by N-

acetylgalactosaminyltransferases (GalNTs) (55). In contrast, O-glycans

are linked directly to synthetized protein in ER or most commonly in
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Golgi apparatus (55). Glycans can undergo additional modifications,

such as acetylation and sulfation, adding further complexity and layers

of regulation to their structure and function (90). Notably, after exiting

ER-Golgi apparatus route, mature glycans can undergo fine-tuned

remodeling by specific glycosidases (e.g. neuraminidase/sialidase,

heparinase), which are found on the cell surface (91) and in the

ECM (92, 93).

In addition to specific regulatory mechanisms, glycans can be

broken down by a range of lysosomal glycosidases (94). These

enzymes play a crucial role in hydrolyzing glycans, fragmenting

them into monosaccharides (94). These monosaccharides can then

be reused in glycan synthesis (94). The examples highlighted above

demonstrate the strict regulation of glycosylation under normal

physiological conditions. As a result, any disruptions in the

glycosylation machinery can have significant adverse effects on

health. Notably, ER stress is a recognized factor in the

development of pulmonary fibrosis (95). The role of changes in

protein glycosylation in relation to fibrotic alterations in the context

of ER stress has been investigated by Lee and colleagues (96). Their

research demonstrates that BAX inhibitor-1, which acts as a

negative regulator of ER stress, enhances the glycosylation of

lysosomal V-ATPase (96). This modification leads to increased

activity of lysosomal glycosidases that break down collagen glycan,

thereby contributing to the degradation of collagen. This process is

crucial in reducing collagen deposition, as shown in cellular assays

and in an in vivo model of bleomycin-induced lung fibrosis (96).
Protein glycosylation is linked
to metabolism

The main building block for glycans is uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc), synthesized in the hexosamine

biosynthetic pathway (HBP) (97) (Figure 2). This pathway requires

several substrates such as fructose-6-phosphate (from glucose

metabolism), glutamine (from amino acids metabolism), acetyl-CoA

(from fatty acids metabolism) and UDP (from nucleotide metabolism).

Hence, UDP-GlcNAc is known as a sensor of the metabolic state in

cells using components of all four macromolecules. Concentration of

these substrates, as well as levels and activities of glycosyltransferase

enzymes will affect dynamics of HBP pathway and subsequent

glycosylation. For instance, influx of UDP-GlcNAc affects glycan

branching that is mediated by b-1,6-N-acetylglucosaminyltransferases

(MGATs: MGAT1, 2, 4 and 5) (98). These enzymes have varying

affinities towards UDP-GlcNAc. In situations where UDP-GlcNAc is

limited, only MGAT1, which has the highest affinity, is active, leading

to reduced glycan branching (98). Conversely, when UDP-GlcNAc is

abundant, it activates other MGAT enzymes, resulting in glycans with

more extensive branching (98).

UDP-GlcNAc can be then further converted into other building

blocks of complex glycans, including GalNAc and sialic acid (99).

Mannose, fucose and galactose can be derived from fructose-6-

phosphate, directly depending on glucose influx (99). HBP plays a

crucial role in glycan biosynthesis, converting glucose into UDP-
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GlcNAc through a six-step process that partially overlaps with

glycolysis. This process begins with the phosphorylation of

glucose by hexokinase (HK), producing glucose-6-phosphate.

Subsequently, glucose-6-phosphate isomerase (GPI) transforms

glucose-6-phosphate into fructose-6-phosphate. The next critical

step, catalyzed by glutamine:fructose-6-phosphate aminotransferase

1 (GFAT1), involves the conversion of fructose-6-phosphate and

glutamine into glucosamine-6-phosphate and glutamate, a rate-

limiting step in the HBP. Following this, glucosamine-6-

phosphate N-acetyltransferase (GNA1) converts glucosamine-6-

phosphate into N-acetylglucosamine-6-phosphate, utilizing

acetylated-coenzyme-A from fatty acid metabolism (FAO).
Frontiers in Immunology 05
Phosphoglucomutase 3 (PGM3) then i somer izes N-

acetylglucosamine-6-phosphate into N-acetylglucosamine-1-

phosphate. Finally, UDP-N-acetylhexosamine pyrophorylase

(UAP) synthesizes UDP-GlcNAc and diphosphate from N-

acetylglucosamine-1-phosphate and uridine triphosphate (UTP).

Crucial enzymes within the HBP pathway such as (GFAT1,

GNA1, PGM3) are elevated in a process shared by various ILDs,

namely when epithelial-mesenchymal plasticity (EMP) is induced

by TGF-b (100). This elevation is necessary for the N-glycosylation

process and subsequent secretion of extracellular matrix (ECM)

components, which is vital for airway remodeling, highlighting

fibrosis-promoting role of the HBP pathway.
FIGURE 2

Protein glycosylation is closely interconnected with glycolysis and other metabolic pathways. Glucose is transported into the cell via the GLUT
transporter, here GLUT1, which is known to be active in its glycosylated form (here with polyLacNAc glycans). The initial steps in converting glucose
are shared between glycolysis and the hexosamine biosynthetic pathway (HBP). Here, glucose undergoes a two-step conversion: first, it is
phosphorylated by hexokinase (HK) to form glucose-6-phosphate, and then, glucose-6-phosphate isomerase (GPI) transforms it into fructose-6-
phosphate. The next critical step is catalyzed by glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1), which converts fructose-6-phosphate
and glutamine into glucosamine-6-phosphate and glutamate. This conversion is a rate-limiting step in the HBP. Following this, glucosamine-6-
phosphate N-acetyltransferase (GNA1) converts glucosamine-6-phosphate into N-acetylglucosamine-6-phosphate, using acetylated-coenzyme-A
from fatty acid oxidation (FAO). Phosphoglucomutase 3 (PGM3) then isomerizes this compound into N-acetylglucosamine-1-phosphate. Finally,
UDP-N-acetylhexosamine pyrophosphorylase (UAP) synthesizes UDP-GlcNAc and diphosphate from N-acetylglucosamine-1-phosphate and uridine
triphosphate (UTP). UDP-GlcNAc, along with other activated monosaccharides derived from UDP-GlcNAc, fructose-6-phosphate, or glucose, is
utilized for protein glycosylation in the ER and Golgi by various glycosyltransferases (here ALGs, OST, MGATs, FUTs, STs, GALTs) and glycosidases (a-
mannosidases). It is also involved in O-GlcNAcylation of nuclear and cytoplasmic proteins by O-GlcNAc transferase (OGT). O-GlcNAcase (OGA)
catalyzes the removal of O-GlcNAc, adding back GlcNAc to the HBP pool for recycling through the salvage pathway. Besides OGA, some
glycosidases located in the extracellular matrix contribute to remodeling glycosylated receptors or ECM proteins. Lysosomal glycosidases play an
essential role in glycan turnover, as they hydrolyze existing glycans into monosaccharides that can be recycled for glycosylation. Other
abbreviations: ALGs, various glycosyltransferases e.g. UDP-N-acetylglucosaminyltransferase (ALG13); MGATs, N-acetyglucosaminyltransferases; FUTs,
fucosyltransferases; STs- sialyltransferases; GALTs, galactosyltransferases; OST, oligosaccharyltransferase.
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Macrophages have wide spectrum of
phenotypes and metabolism

Having inmind recent advances in a field of immunometabolism,

we would like to explore in detail the glycosylation process and its

link to metabolism in a major cell type of innate immunity.

Macrophages play a pivotal role in the pathogenesis of pulmonary

fibrosis and sarcoidosis due to their plastic metabolism (101, 102).

For simplicity, these cells are often broadly classified into M1-like and

M2-like phenotypes, each having distinct roles (103). Classically, M1-

like macrophages active during inflammation heavily rely on aerobic

glycolysis for producing cytokines and chemokines (103). In contrast,

M2-like macrophages shift towards OXPHOS-driven metabolism

during resolution of inflammation and tissue repair process (103).

Highly plastic metabolism allows macrophages to switch between

different phenotypes (104). It has been shown that alteration of

metabolic pathways associated with aerobic glycolysis can shift from

M1-like towards M2-like (104). This reprogramming is unique to

macrophages, since other immune cells from innate and adaptive

immune system have limited abilities to change their phenotype once

they have specialized (105, 106). Furthermore, macrophages, with a

lifespan ranging from months to years, possess the opportunity to

shape microenvironment both within an afflicted lung and during the

recovery phase (107, 108). The immunometabolic profile of

macrophages is influenced not only by the microenvironment but

also their origins (109). For example, contrary to expectations, tissue-

resident alveolar macrophages transition towards a pro-inflammatory

state following injury, heavily depending on OXPHOS respiration, as

treatment with glycolysis inhibitor, 2-deoxyglucose (2-DG), has

almost no effect on secretion of cytokines (109). This underscores

the broader array of potential immunometabolic states within the

realm of macrophages.
Glycosylation regulates
macrophage phenotype

In activation states macrophages undergo metabolic changes

that precede their pathogenic shift into either an inflammatory or

fibrotic phenotype. These metabolic alterations are primarily

directed by the mammalian target of rapamycin - hypoxia-

inducible factor 1a (mTOR-Hif1a) axis (103, 110, 111).

Specifically, in the M1-like pro-inflammatory state, the mTOR-

Hif1a axis is activated (110). This results in an increase in GLUT1

expression, augmented glucose uptake, glycolysis (112) and

activation of anabolic pathways like pentose phosphate pathway

to sustain infammation (113). Conversely, in the M2 state, there is a

suppression of the aforementioned pathways, and mitochondrial

metabolism based on OXPHOS and fatty acid oxidation (FAO)

becomes dominant (103). Importantly, these metabolic shifts also

affect glycosylation processes, which serves a dual role - it can be

both an executor and a regulator of immunometabolic alterations

within macrophages. The link between metabolism and

glycosylation is especially evident in protein O-GlcNAcylation, an

intracellular process where UDP-GlcNAc, a product of HBP, is
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added to serine or threonine residues (62). This modification is very

dynamic being facilitated by the OGT enzyme and reversed by the

OGA enzyme (62) (Figures 1, 2).

The role of O-GlcNAcylation in macrophage polarization is

complex and sometimes contradictory. Various studies using

inhibition of O-GlcNAcylation by GlcNAc or genetic deletion of

OGA or OGT enzymes, suggest that O-GlcNAcylation favors the

M1-like phenotype by modifying and activating crucial pro-

inflammatory transcription factors such as p65 (114), c-Rel (115),

and STAT3 (116) (see Table 1). Conversely, it has been shown that

HBP activity and protein O-GlcNAcylation decreases in LPS-

treated macrophages (61). In the same study, inhibiting protein

O-GlcNAcylation by deletion of OGT enzyme enhances immune

response and necroptosis, by reducing RIPK3 O-GlcNAcylation

and inhibiting its interaction with RIPK1 (61). In line with this,

deletion of OGT enzyme shifts macrophages towards M1-like

phenotype (138). Interestingly, increased O-GlcNAcylation is

observed in M2-like macrophages (139). This can be attributed to

the increased availability of HBP substrates including acetyl-CoA

from the TCA cycle and glutamine, which is boosted by enhanced

glutaminolysis and increased glutamine uptake in M2-like

macrophages (140). We think that the contradictory data on the

role of O-GlcNAcylation in macrophage polarization may be result

of dynamic nature of this modification that relays on metabolite

influx and may vary in different models. Moreover, depletion of an

enzyme in the O-GlcNAcylation cycle may not necessarily lead to a

global loss or gain of O-GlcNAcylation; instead, it could selectively

affect specific targets, as observed in other types of reversible protein

modifications (141). Several proteins governing macrophage

metabolism-driven regulation, including mTOR (142) and the

AMP-activated protein kinase (AMPK) (143), have been found to

undergo O-GlcNAcylation. Investigating macrophage O-

GlcNAcylation status could provide valuable insights into

macrophage function and polarization.

Conversely to O-GlcNacylation, N-glycosylation is found

mostly in secretory proteins as well as on membrane receptors,

shaping interactions between macrophages and ECM as well as

fibroblasts (144). Inhibition of N-glycosylation by tunicamycin

(UDP-GlcNAc analog) lowers down the expression of many M2-

like activation markers including two cell surface lectins CD206,

and CD301 (127) both relevant to progression of fibrosis (145) and

sarcoidosis (146–148) (see Table 1). Both lectins are engaged in

recognition, endocytosis and presentation of glycosylated proteins

(149, 150) as well as adhesion and fusion during granuloma

formation (147, 148). In case of CD206, commonly known as

mannose receptor, it is shown that glycosylation status of this

receptor is influencing its binding to mannose, showing that

glycosylation can also alter lectin-glycan interactions (60). In M1-

like macrophages, tunicamycin causes loss of TNF receptor 1

(TNFR1) N-glycosylation and inhibits pro-inflammatory response

(117) (see Table 1). In another study, authors using N-

glycoproteomic profiling of murine macrophages stimulated with

LPS and viruses such as HSV and VSV, showed that N-glycosylated

proteins were mostly linked to immune functions such as antigen

processing and presentation, as well as cytokine secretion (59).

Among N-glycosylated proteins were TLR2, TLR7 and CD14,
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receptors crucial for pathogen recognition and macrophage

activation (59) (see Table 1).

Noteworthy, GLUT1 a receptor elevated in M1-like state, is also

N-glycosylated and this modification promotes its plasma

membrane localization, stability, and glucose uptake (58, 123–

125, 151). Studies on other cell types, including erythrocytes and

cancer cells, show that GLUT1 possess oligomannose and complex

N-glycans rich in poly-LacNAc (125, 126) (see Table 1). Potentially,

activity of extracellular glycosidase that can process some of these

saccharides could affect GLUT1 activity and in consequence

metabolism. N-glycosylation of GLUT1 is a perfect example of

glycosylation directly regulating metabolism, and specifically

glucose uptake during glycolysis, which eventually determines

immune response.
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Another N-glycoprotein important for macrophage phenotype

is CD147/EMMPRIN, a plasma membrane receptor. Glycosylation

level of CD147 determines its functionality, which is primarily to

activate expression of various matrix metalloproteases (MMPs),

including MMP-1, MMP-2, MMP-3, MMP-9, and MMP-14 (120,

121, 152) (see Table 1). Apart from inducing MMPs, macrophage

-expressed CD147 can stimulate its proinflammatory phenotype

(153). In THP1 cells, highly glycosylated form of CD147 increases

after stimulation with pro-inflammatory activators and induces

adhesion, migration, ERK, and NF-kb signaling (153). Recent

data strongly implicates CD147 as a driver of pulmonary fibrosis

(152) including the one induced by SARS-CoV2 (154). CD147

blockage by antibody diminishes M1-like phenotype and in

consequence reduced Th17 cell differentiation in bleomycin-

induced lung fibrosis (155). Altogether, O-GlcNAcylation and N-

glycosylation of proteins are crucial to drive or regulate

immunometabolic changes in macrophages.
Differences in glycan structures
between different macrophages

Macrophages can accumulate in tissues by local proliferation or

recruitment from circulating monocytes followed by a

differentiation process (156). Glycomic and glycoproteomic

techniques have been used to identify glycans and glycosylated

proteins during the differentiation of monocytes into macrophages

(157) and their subsequent polarization (59, 158). Study from

Hinneburg et al., 2020 found that both blood-derived human

monocytes and macrophages possess typical to innate immunity

ancient mannose-terminating N-glycans (paucimannosidic/

oligomannosidic type) as well as trimming machinery of

intracellular glycosidases possibly involving N-acetyl-b-
hexosaminidases and a-mannosidases that produce such short

structures (157). Although the presence of these specific glycans

in macrophages has been confirmed in another study involving

THP1 cells (76), their role in macrophage function, specifically in

the context of pulmonary fibrosis and sarcoidosis, is not yet

understood. The levels of paucimannosidic and oligomannosidic

glycans as well as core-fucosylation is found to be slightly reduced

in macrophages compared to monocytes (157). More pronounced

differences in glycosylation are evident on the macrophage cell

membrane, marked by elevated levels of mannosidic and sialylated

glycans, which intensify as maturation progresses (157).

Observation from Park et al., 2021 highlights a considerable

difference in the glycan profile between resident and newly

recruited to the tissue macrophages (158). This suggests that

glycosylation is not solely dependent on the macrophage’s

phenotype but is also influenced by its origin.

While examining the differences between M1-like and M2-like

macrophages, some significant changes in specific structures of O-

and N-glycans were identified (158), which in the future may help

to further characterize macrophage phenotypes. Alterations of

protein glycosylation in macrophages, specifically expression
TABLE 1 Glycosylated proteins in macrophages implicated in
progression if inflammation and fibrosis as well as glycosidase targets
and their inhibitors at different stages of development for treating
pulmonary fibrosis and sarcoidosis.

Glycosylation of macrophage proteins that promotes
inflammation

Protein Type of glycosylation References

p65 O-GlcNAcylation (114)

c-Rel O-GlcNAcylation (115)

STAT3 O-GlcNAcylation (116)

TNFR1 N-glycosylation (117)

CD14 N-glycosylation: oligomannose and complex types
(59,
118, 119)

CD147 N-glycosylation: oligomannose and complex types (120, 121)

TLR2 N-glycosylation (59, 122)

TLR7 N-glycosylation (59)

Glut1
N-glycosylation: oligomannose and complex types
with polyLacNAc

(58,
123–126)

Glycosylation of macrophage proteins that
promotes fibrosis

CD206 N-glycosylation:complex type and O-glycosylation (60)

CD301 N-glycosylation (127)

integrin
b1

N-glycosylation (128, 129)

integrin
b2

N-glycosylation (130)

Glycosidase targets and their inhibitors for treating
pulmonary fibrosis and sarcoidosis

Target Small molecule Stage of development References

NEU1 C9-BA-DANA Pre-clinical (131)

FUTs
fucose
mimetics

Pre-clinical (132)

CHIT1 OATD-01
phase II for pulmonary
sarcoidosis,
study number: NCT06205121

(133–137)
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changes of glycosyltransferases and sulfotransferases during the

monocyte-macrophage transition and in response to LPS

stimulation, have been reported (159). These findings indicate

that the expression of genes encoding glycosyltransferases (e. g.

ALG9, FUT8) and sulfotransferases (e. g. ST6GALNAC3) increases

during differentiation of macrophages while being down-regulated

during M1 activation, suggesting significant changes in protein

glycosylation in major processes of macrophage biology (159).

Furthermore, Delannoy and colleagues have found that the

transcript levels of key glycosylation enzymes significantly

increase during the differentiation of THP-1 macrophages,

including ST3GAL5, MGAT1, MGAT5, B4GALT1, FUT8, and

NEU1 (160). In fact, macrophage maturation might represent the

period of most significant increase in glycosylation and further

studies need to confirm this.

In conclusion, while the distinct metabolic states of monocytes,

macrophages and their M1 and M2 subtypes are characterized by a

specific glycosylation patterns, it is vital to emphasize the

importance of the macrophage’s origin in influencing these

outcomes. Further studies concerning glycan structure on

macrophages will help to identify specific subsets of innate

immunity cells and possibly track their origins, since

glycosylation patterns are evolutionary conserved. With better

molecular biology tools determining glycan profile of immune

cells, we will be able to predict diseases progression and more

accurately distinguish between the inflammatory and resolution

phases of various disorders.
Glycosylation of integrins regulates
macrophage biology in ILDs

In the context of pulmonary fibrosis and sarcoidosis, a critical

aspects of macrophage biology worth discussing include adhesion

(161, 162), phagocytosis (163, 164), and tissue migration (165). All

of these processes are mediated by the integrins – a protein family

whose function depend on glycosylation status (166, 167). Integrins

are glycoproteins, consisting of a and b subunits, which are

considered as therapeutic targets for cancer and respiratory

diseases, including pulmonary fibrosis and sarcoidosis (168–170).

Both subunits require N-glycosylation for the formation of

heterodimers, proper plasma membrane localization, and effective

interactions with extracellular matrix proteins (e.g. fibronectin,

collagen) and cellular ligands (128, 129, 171, 172). The extent of

N-glycosylation varies depending on the specific integrin receptors,

and these variations are linked to distinct adhesive properties (128,

129). This is evident for two common macrophage integrin

complexes, a4b1 and a5b1 that bind to fibronectin (128, 129,

173). It was found that integrin a4b1 binding to fibronectin can be

hindered by accelerating the N-glycosylation processing of the

integrin receptor (129), while an increase in the N-glycosylation

state of a5b1 enhances cell adhesion (128).

Integrins are known to be modified by LacdiNAcs

disaccharides, that are found at the tips of complex N- or O-

glycans (174) (Figure 1). These disaccharides have the ability to
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modify the adhesive properties of integrins and research has

predominantly concentrated on their impact in the context of

cancer cells (174, 175). Interestingly, integrin complexes sense the

“stiffness” of ECM and in turn switch on signaling cascade that

influence mitochondrial metabolism (176). Mitochondria can also

impact integrins’ ability to bind to their ligands, highlighting the

phenomenon of a feedback loop between protein glycosylation and

metabolic alternations (177). Specifically, dysfunction in OXPHOS

can lead to increased glycosylation of b1 integrin, thereby

promoting its binding to its ligand (177).

Integrins are known to contribute to the onset and progression of

pulmonary fibrosis and sarcoidosis (169, 178). Mechanistic insights

include work where alveolar M2-like macrophage attachment to

collagen type I was facilitated by b2-integrins, which are known to

be heavily glycosylated (130), leading to an increased CCL18

production – a biomarker of pulmonary sarcoidosis (179). This

interaction creates an ongoing cycle of enhanced M2-like

macrophage activation and excessive collagen production by lung

fibroblasts (179). In pulmonary sarcoidosis increased expression of

b1- and b2-integrin complexes on sarcoid monocytes and

macrophages is a hallmark of the disease, by contributing to

enhanced phagocytosis and antigen presentation by these cells (180,

181). Currently, integrins are targeted by antibodies blocking their

functions and developed as therapeutics for IPF (182). It would be

interesting to study if glycosylation of integrins is linked with metabolic

changes altering macrophage functions that contribute to progression

of ILDs. Therefore, future studies addressing glycosylation state of

integrins can present novel therapeutic opportunities.
Proteins regulating glycans are
promising therapeutic targets in ILDs

So far, we have presented examples of crucial proteins involved in

the development of ILDs whose functions can be altered by targeting

their glycosylation status. Another approach is to focus on proteins

capable of sugar modifications like adding specific sugar residue or

glycan hydrolysis. Specifically, we want to highlight glycan-regulating

proteins linked to macrophages, which hold promise as therapeutic

targets in pulmonary fibrosis and sarcoidosis using as examples

fucosyltransferases (FUTs), neuraminidase-1 (NEU1), and chitinase-1

(CHIT1) (see Table 1).
FUTs

Fucosylation mediated by FUTs can alter receptor-ligand

interactions (183); typically, fucosylated epitopes are bound by

selectins, which are important for leukocyte adhesion (183). FUTs

can add a fucose residue either at terminus or at the core of a glycan

(183). Both types of modification are involved in driving

inflammatory phenotype of macrophages. Inhibition of terminal

FUTs, like FUT1/3/7/9 that are upregulated upon inflammatory

stimulus, leads to a shift in M1-like differentiation toward M2-like

macrophages (184). In addition, deletion of FUT8 involved in core
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fucosylation diminished inflammation in macrophages by CD14

regulation of TLR2 and TLR4 (118). It was also found that

expression of FUT8 is increased after monocyte to macrophage

differentiation (159). FUT8 is already considered as a therapeutic

target in IPF, because of its role in enhancing crucial signaling for

IPF such as TGFb (185) and IGF (186, 187). Better understanding

of the role of fucosylation and FUTs in pulmonary fibrosis and

sarcoidosis should unravel new biomarkers and present therapeutic

targets. Fucosylation has been targeted with fucose mimetics, but so

far only in the context of cancer indications (132). Ideally, more

specific synthetic inhibitors could provide better efficacy in ILDs.
NEU1

NEU1 belongs to the NEU family of neuraminidases/sialidases that

cleave off the terminal sialic acid residue from glycan moiety (188).

This, in turn, can change receptor-ligand interactions since sialic acid is

recognized typically by cell surface proteins called Siglecs which

regulate adhesion, antigen recognition and presentation (189).

Increased expression of NEU1 is observed in the lungs of patients

with IPF, and NEU1 participates in the pathogenesis of lung fibrosis by

provoking lymphocytic infiltration and promoting accumulation of

glycoprotein TGFb, type I and III collagen (190). In macrophage

biology, NEU1 localizes at the plasma membrane during monocyte to

macrophage differentiation (191), where it is crucial for phagocytosis

and antigen presentation (191, 192) - processes especially relevant in

granuloma formation. NEU1 has been demonstrated to induce a pro-

inflammatory phenotype in macrophages by activating TLR receptors

through desialylation (193). Most recent study presents NEU1-selective

inhibitor, C9-BA-DANA, mimetic of sialic acid, that dose-dependently

inhibited bleomycin-induced lung fibrosis in mouse models (131),

presenting its therapeutic potential for IPF patients.
CHIT1

CHIT1 is a macrophages specific enzyme, belonging to the GH18

glycosidase family, cleaving b(1→4) glycosidic bonds in glycans,

which play a significant role in various lung diseases (194). CHIT1

is capable of processing LacNAc and LacdiNAc (195), suggesting its

direct role in modification of protein glycosylation. This enzyme is

primarily known as an extracellular glycosidase, but literature

suggests its presence in the form of catalytic domain in the

lysosomes of macrophages, pointing to a potential intracellular role

for the enzyme (196). Our data present CHIT1 as a promising

therapeutic target capable of modification of the glycosylation of

proteins, which leads to an overall anti-inflammatory and anti-

fibrotic effects in various pre-clinical models. Intriguingly, insights

from a single-cell RNAseq lung atlas revealed that CHIT1 is

exclusively expressed within a specific subset of emerging fibrosis-

specific macrophages in the lungs of patients with IPF (133). In the

context of pulmonary sarcoidosis in another un-biased study, CHIT1
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expression was observed in activated macrophages within

granulomas - confirmed through transcriptomic data and

immunocytochemistry (134). CHIT1 expression increases during

monocyte-macrophage differentiation (197). Macrophages treated

with 2-deoxyglucose exhibit reduced CHIT1 expression (198),

revealing a link between the process of glycolysis and CHIT1

induction. CHIT1 is a well-known biomarker in lung sarcoidosis,

which correlated with diseases severity and progression (199). The

CHIT1 inhibitor, synthetic drug OATD-01, targeting GH18

glycosidase active site, effectively mitigates inflammation driven by

macrophages and indirectly influences fibroblast behavior, leading to

decreased collagen deposition and a lowered fibrotic score in in vivo

model of bleomycin-induced lung fibrosis (133). Similarly, OATD-01

suppresses granuloma formation in a murine MWCNT + ESAT6

sarcoidosis model, while modulating immune responses in

macrophages (134). OATD-01 has demonstrated efficacy in

multiple models characterized by chronic inflammation and

fibrosis including pulmonary fibrosis (133), non-alcoholic

steatohepatitis (135), inflammatory bowel disease (200) and chronic

asthma (201) – diseases where pathological macrophages contribute

to chronic inflammation leading to fibrotic changes. First-in-human

proof-of-concept phase II clinical study assessing efficacy of OATD-

01 in patients with pulmonary sarcoidosis will use F-FDG PET/CT

imaging as a primary endpoint (study number: NCT06205121). This

readout utilizing an analogue of glucose, will provide valuable

functional information of OATD-01 based on the increased glucose

uptake and glycolysis of granulomas, reflecting inflammatory activity

of granulomas in the lungs of sarcoidosis patients.
Summary and future perspectives

Inflammation and fibrosis are lung diseases with unmet clinical

need that have long been in the center of the search of new

therapeutics. Recently, the advances in the area of pharmaceutical

exploitation of a metabolic switch that drives both inflammation

and fibrosis opened new opportunities. In this review, we highlight

the process of protein glycosylation as a therapeutic strategy, and

provide evidence of how it regulates immune-metabolic changes

(Figure 3). We used macrophages as cells where biological

consequences of altered protein glycosylation was successfully

studied and focused on ILDs – incurable diseases where patients

would significantly benefit from new research.

Although the literature provides numerous examples of

alterations in protein glycosylation or changes in the expression

of proteins that regulate glycosylation in pulmonary fibrosis and

sarcoidosis, there remains an obvious need for a comprehensive

glycan profiling and glycoproteomic studies. These studies are

essential for identifying novel biomarkers and key factors altering

function of crucial proteins driving the progression of ILDs. Studies

that combine glycoproteomics with metabolomics, specifically

focusing on macrophages, are particularly valuable. This

integrated approach would enable a further exploration leading to
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therapeutic use of the glycosylation and metabolism. Currently,

these types of analyses are technically challenging, and there are

limited methods to directly compare levels of different glycan

structures across various disease conditions. Therefore, we believe

that the use of glycobiology field in drug discovery is limited by

technical restrictions rather than biological potential. Specifically

since glycosylation is highly sensitive to metabolic fluctuations that

can lead to data inconsistencies.

Glycosylation patterns depends highly on metabolism and

glycosylation influences metabolic changes. Key examples of

glycosylated proteins explored in this review include GLUT1

and integrins. We discussed the role of HBP, which serves as a

link between metabolism and glycosylation justifying further

exploration in lung fibrosis and sarcoidosis. Finally we present

FUTs, NEU1 and CHIT1 as enzymes regulating glycosylation in

various inflammatory and fibrotic diseases. As often in drug

discovery new translational studies can only advance the field

when a basic research presents clear scientific perspective. The

focus on exploration of novel glycan-regulating proteins

influencing metabolism has a potential to identify new drugs

for ILDs.
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FIGURE 3

Pathological macrophages that promote inflammation or fibrosis have altered metabolism as a results of lung injury. The metabolic shift, through
hexosamine biosynthetic pathway (HBP), causes changes to the glycosylation of proteins implicated in inflammation (p65, c-Rel, STAT3, TNFR1,
TLR2, TLR7, CD14, CD147, GLUT1) or fibrosis (CD206, CD301, integrins b1-b2). Inflammation can perpetuate injury to the lung and promote fibrotic
changes. These alterations drive the progression of interstitial lung diseases (ILDs), including pulmonary fibrosis and sarcoidosis. While metabolism
can be regulated by key glycoproteins such as GLUT1 and integrins (bolded), known therapeutic targets in ILDs, we propose a novel approach:
targeting the glycans regulating proteins such as CHIT1, NEU1, and FUTs to address metabolic-driven glycosylation in ILDs.
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