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Lung infection by influenza A virus (IAV) is a major cause of global mortality from

lung injury, a disease defined by widespread dysfunction of the lung’s air-blood

barrier. Endocytosis of IAV virions by the alveolar epithelium – the cells that

determine barrier function – is central to barrier loss mechanisms. Here, we

address the current understanding of the mechanistic steps that lead to

endocytosis in the alveolar epithelium, with an eye to how the unique

structure of lung alveoli shapes endocytic mechanisms. We highlight where

future studies of alveolar interactions with IAV virions may lead to new

therapeutic approaches for IAV-induced lung injury.
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1 Introduction

Lung infection by influenza A virus (IAV) is a major cause of global mortality. In the

last century alone, four global IAV pandemics caused more than 50 million deaths (1, 2). In

the modern era, seasonal IAV infections cause nearly half a million deaths every year (3, 4).

Death from IAV lung infection often results from lung injury (5, 6). Acute lung injury is

defined by damage to lung alveoli that causes loss of alveolar barrier function, leading to

airspace flooding with protein-rich edema fluid (7). Therapy for IAV-induced lung injury

centers on antiviral drugs. But, antiviral drugs do not contain lung injury once it initiates

(8–11) and are increasingly hindered by viral drug resistance (12, 13), creating a critical

need for new approaches to therapy. The sizeable annual risk of a recurrent IAV pandemic

(1, 14) makes that need not only critical, but urgent.

Endocytosis of IAV virions by alveolar cells is a central event on the path from lung

infection to lung injury (15) and a target for antiviral drug development (16, 17). However,
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the understanding of endocytic mechanisms is largely informed by

findings generated in systems that incorporate non-alveolar cells or

that isolate alveolar cells from their normal microenvironment. The

extent to which such systems represent IAV uptake mechanisms in

alveoli in vivo may be limited, since unique aspects of alveolar

structure that likely impact endocytic mechanisms are difficult to

replicate in vitro.

Whereas previous reviews of IAV lung infection have focused

on viral entry mechanisms derived from studies in cultured cells,

here we will consider viral endocytosis in the alveolar epithelium

from the standpoint of structural features of intact alveoli that likely

impact endocytic mechanisms. Although alveolar macrophages also

shape IAV lung pathogenesis, we will not address them in this

review. By highlighting structural features of alveoli, we hope to

stimulate new investigations of viral endocytosis in the alveolar

epithelium that may lead to new therapeutic approaches for IAV-

induced lung injury.
2 IAV virion inhalation into alveoli

Alveolar infection initiates when IAV virions are inhaled into

the lung. IAV virions consist of a membrane envelope that

surrounds the viral genome. The envelope contains host-derived

lipids and proteins (18–20) and three viral proteins: hemagglutinin

(HA), neuraminidase (NA), and the M2 ion channel (21). The viral

matrix protein, M1 supports the envelope on its inner aspect. The

genome consists of eight discrete, negative-sense, single-stranded

RNA segments that each associate with viral nucleoprotein and an
Frontiers in Immunology 02
RNA-dependent RNA polymerase complex to form eight rod-

like structures.
2.1 Determinants of virion inhalation
into alveoli

Virions inhaled into the lungs are conducted through a series of

branching airways of successively smaller diameter that transition

distally from terminal bronchioles to acini, which include

respiratory bronchioles, alveolar ducts, and alveoli. Alveoli are

cup-like chambers that average 100-250 um in diameter in

human lungs and comprise more than 95% – the vast majority –

of the lung luminal surface (Figure 1) (22, 23). Despite their

extensive surface area, alveoli are not the primary site of

deposition for all inhaled particles. Only particles smaller than

about 2 um diameter appear to be preferentially deposited in alveoli

after inhalation (24). Studies of viral transmission suggest IAV

virions are inhaled in liquid-containing particles as small as 1.5 um

diameter (25–27) – a size that makes them likely to reach alveoli

based on particle inhalation studies in human lungs (24). The

possibility that inhaled IAV virions reach alveoli is supported by

pathological studies offixed lungs of rodents, primates, and humans

with severe IAV infection, which identify virions, viral nucleic acids,

and viral proteins associated with the alveolar epithelial type 1

(AT1) and type 2 (AT2) cells that line alveolar walls (28–31).

Whether inhaled particles, including IAV virions, reach alveoli

is partly governed by the balance of convective and diffusive

transport of gases in the lung. Broadly, convection refers to bulk
FIGURE 1

Overview of lung alveolar structure and selected features to be addressed in future research of the alveolar endocytosis of IAV virions. The cartoon
shows a lung alveolus and parts of neighboring alveoli and microvessels. The alveolar lining layer (ALL) and alveolar epithelial type 1 (AT1) and 2 (AT2)
cells are indicated. Boxed cartoons at right show enlarged views of area i, an alveolar corner, and area ii, a flat alveolar region. In i, the corner is
depicted as a site of aggregation of inhaled IAV virions. Two virions are shown covered by a phospholipid film derived from the ALL’s surfactant layer.
Labels highlight ALL components and plasma membrane caveolae, which are abundant in AT1 cells and located primarily near AT1-AT2 cell
junctions. In ii, a virion interacts with the alveolar surface. Symbols approximate the epithelial glycocalyx and virion-binding molecules in alveolar
epithelial membranes, and labels point out epithelial and endothelial components of the alveolar barrier and the intercellular gap junctional channels
that conduct epithelial cell-cell signaling. See main text for discussion of how the depicted structural features might bear on the alveolar
pathogenesis of IAV and may be addressed in future research. Note, in the cartoon, AT1 cells are shown as thicker than neighboring structures in
order to emphasize the epithelium. However, publications including reference #153 indicate that the epithelium is, in fact, thinner than the
interstitium and endothelial cells in alveoli of mammalian lungs. Size relationships between virions, AT1 cells, the glycocalyx, and the ALL are drawn
approximately to scale.
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transport of gases in the airways, while diffusion relates to gas

mixing in acinar regions (32). The balance between convection and

diffusion determines particle transport in non-lung model systems

(33, 34). In healthy lungs, the convective-diffusive balance is neither

static nor uniform. Rather, it varies with breathing pattern (24, 32)

and across acinar geometries (35) that, themselves, change with age

(36, 37) and vary by lung region (38, 39). At the acinar level, air flow

represents a combination of convection and diffusion that generates

chaotic gas mixing where inhaled and residual acinar gases meet

(40–42). Going forward, better understanding is needed of how

local and regional gas transport mechanisms affect the alveolar

inhalation of IAV virions, since the inhalation of virion-sized

particles into acini and alveoli is influenced by factors that affect

the convective-diffusive balance (24, 35, 37, 43).

There is notably little understanding of how chronic lung

diseases bear on the alveolar inhalation of IAV virions. Human

aerosol inhalation studies (44–47) and computational models (48)

suggest that airway obstruction due to asthma and chronic

obstructive pulmonary disease (COPD) promotes the deposition

of inhaled particles in central lung airways. By contrast, lung

compliance changes related to aging and obesity may promote

particle deposition in more distal lung regions, including alveoli

(49–51). Clinical studies that associate severe IAV infection with

aging and obesity – but not asthma or COPD (52–55) – raise the

possibility that the tendency to inhale particles into distal lung

regions promotes IAV pathogenesis. Experimental studies that

relate airway obstruction, lung compliance, and IAV pathogenesis

to the microanatomical location of inhaled particles might clarify

these issues.

Finally, virion inhalation into alveoli is likely to be influenced by

virion morphology. IAV virions assume spherical, bacilliform, or

filamentous shapes in response to host and viral factors (56–58).

Spherical and bacilliform virions range 120-150 nm in length, but

filamentous virions can extend tens of microns long (56). Although

studies of fixed lung tissue demonstrate the presence of all virion

morphologies in IAV-infected human lungs (59, 60), the relevance

of virion morphology to the alveolar pathogenesis of IAV is not

clear. While electron microscopic data suggest that spherical and

bacilliform virions associate with the alveolar epithelium (60), the

relatively large size of filamentous virions may inhibit their

inhalation into alveoli. Future studies might clarify how virion

morphology affects alveolar inhalation dynamics and the extent to

which inhaled filamentous virions initiate alveolar IAV infection.
2.2 Significance of alveolar structure for
IAV virion inhalation

Once inhaled IAV virions reach alveoli, alveolar structure may

influence how virions establish contact with alveolar walls. Alveolar

structure is defined by flat tissue surfaces that alternate with curved,

corner-like regions to form a unique tissue architecture. At flat

septal regions, a thin band of tissue and surface lining liquid

separates alveolar airspaces from the microvascular lumens of the
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adjacent capillary meshwork (23, 61). Flat septal regions converge

to form more than five corner-like structures per alveolus (62),

where the radius of corner curvature varies with the degree of lung

inflation (63).

Alveolar structure might determine viral entry mechanisms by

shaping how virions are presented to alveolar cells. Our group has

shown, by live imaging of intact lungs, that alveolar corners are sites

of accumulation for bacteria, inert particles, and liquid (64, 65). The

extent to which virions also accumulate at alveolar corners is not

clear. If such accumulation occurs, it might facilitate contact

between IAV virions and AT2 cells, which are located primarily

at alveolar corners (66, 67) and serve functions critical to alveolar

homeostasis and injury responses.

Virion localization to corners or other alveolar sites may be

determined by air flow patterns that arise from the unique structure

of alveoli. Thus, an encounter with an alveolar opening causes fluid

flowing in an airway to change from a linear flow pattern to a

curved flow pattern, oriented into the alveolus (37, 40, 41).

Simulation and experimental data show that the vectors of curved

flow form a gradient, with vectors of lesser curvature intersecting

with alveolar walls and vectors of greater curvature forming vortices

in airspaces (37, 40, 41). Such rotational flow patterns may promote

the deposition of particles on alveolar walls (37, 68), but the extent

to which they determine virion deposition in alveoli is not clear.

Better understanding in this area seems particularly important in

the lungs of young children, whose developing acinar structure may

promote rotational air flows and particle deposition in alveoli (37,

68), and who experience disproportionately high mortality from

IAV infection (69–73).

Breathing also causes changes in alveolar structure that might

further influence the deposition of inhaled IAV virions in alveoli.

Using live imaging of intact, perfused lungs, our group showed that

lung inflation causes a heterogeneous distribution of alveolar

distention, with the greatest increase of alveolar septal length

occurring at flat segments lined by AT1 cells (67). Interestingly,

alveolar expansion is lost with aging in a manner that correlates

with age-related increases of perialveolar and subpleural collagen

density (74), suggesting that age-related changes in lung tissue have

a constraining effect on alveolar micromechanics. Further research

is needed to understand how breathing-induced changes of alveolar

structure affect particle and virion localization in alveoli and to

characterize how aging bears on these issues.
3 IAV virion attachment to the
alveolar surface

To initiate viral entry, virions must stabilize on the alveolar

surface by attaching to epithelial cells. The alveolar epithelium

consists of two cell populations: large, thin AT1 cells that cover the

bulk of the alveolar surface, and small, cuboidal AT2 cells. IAV

attaches to both AT1 and AT2 cells of fixed lung tissue (75, 76),

indicating that both cell types are susceptible to virion attachment.
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3.1 Significance of the alveolar glycocalyx
for IAV virion attachment

Attachment of IAV virions to host cells is mediated by

interactions between the viral HA protein and sialic acids on the

host cell surface. The HA protein protrudes from the virion surface

and binds sialic acid moieties at a site on the HA head domain (77–

79). Sialic acids are 9-carbon sugars typically found at the distal end

of glycolipid and glycoprotein components of the host cell

glycocalyx, a layer of carbohydrates, proteins, and lipids that

covers the surface of all mammalian cells. Strong evidence

supports the presence of an airspace-facing glycocalyx on the

alveolar epithelial surface (80) that provides potential attachment

sites for IAV virions inhaled into alveoli. This, coupled with the

high density of HA protein on the virion surface – more than 300

per spherical virion (81) – seems to create ample opportunity for

HA-sialic acid interactions in alveoli.

The alveolar pathogenesis of IAV is thought to derive, in part,

from the configuration of chemical bonds between sialic acids and

the galactose residues that connect them to glycocalyx glycolipids

and glycoproteins (82–84). Two such configurations are recognized

for their potential relevance to lung infection: an a2,3- link that

connects the quaternary C2 carbon of sialic acid to the C3 carbon of

galactose, and an a2,6- link that connects the C2 carbon of sialic

acid to the C6 carbon of galactose. Although studies using

erythrocyte agglutination show that IAV virions bind sialic acids

bearing either linkage configuration (85, 86), IAV has strain-specific

differences in linkage binding. Thus, the erythrocyte-agglutinating

capacity is greater when mammalian-origin IAV strains are exposed

to a2,6-bearing erythrocytes, and when avian-origin IAV strains are

exposed to a2,3-bearing erythrocytes (85, 86). These findings

suggest that IAV virions originating from mammalian versus

avian sources have unique capacities for host cell attachment,

depending on the sialic acid linkage present at the host cell

surface. Notably, landmark studies show that the a2,3- linkage is

highly expressed on the alveolar epithelium, and that avian viruses

that preferentially bind the a2,3- linkage attach to alveoli of fixed

lung tissue and infect the alveolar epithelium of lung tissue blocks

(87, 88). Hence, the presence of the a2,3-galactose linkage on the

alveolar epithelium is suggested to underlie the extreme severity of

lung infection by avian IAV strains (83, 84) that cause severe lung

injury with high mortality (89–93).

However, recent findings suggest the role of sialic acid linkages in

the alveolar pathogenesis of IAV is more complex. The alveolar

epithelium expresses sialic acids of both the a2,3- (76, 87, 94) and
a2,6- (76, 87) linkage configurations, and specific linkage

configurations may not be required for IAV attachment and

infection in the lung (95, 96). In fact, virion attachment to cultured

cells is enhanced by a mix of sialic acid linkage configurations (97),

suggesting that linkage diversity, rather than expression of a single

configuration, might determine virion binding to the alveolar

epithelium. Moreover, virion affinity for specific linkages may change

over time, since HA-sialic acid interactions are affected by point

mutations in the HA head domain (77–79), and mutations

accumulate within strains and occur frequently in the course of
Frontiers in Immunology 04
infection (98–100). The intra-infection mutation rate may be

considerable, since longitudinal sequencing data from IAV-infected

human subjects show that multiple mutations causing amino acid

changes in HA occurred in nearly all subjects in the first days of IAV

infection (100). The potential impact of such mutations is evident from

reports showing that changes in only two amino acids alters the sialic

acid binding specificity of HA (101, 102). Taking the sialic acid data

together, we interpret that epithelial sialic linkage configurations likely

impact the spatial profile of virion attachment on the alveolar surface.

However, future research might address how a2,3- and a2,6- linkages
distribute in alveoli and how linkage partitioning or blending affects

virion attachment.

Emerging data suggest that non-sialic acid components of the

host cell surface, such as carcinoembryonic cell adhesion molecule 6

(CEACAM6, also known as CD66c) and macrophage galactose-

type lectin 1 (MGL1), contribute to virion attachment mechanisms

(103, 104). CEACAM6 and MGL1 may determine virion

attachment to alveoli in vivo, since they are each expressed by the

alveolar epithelium (105, 106). High-throughput approaches have

identified other novel potential attachment mediators in alveolar

epithelial-like A549 cells (107), but their relevance to virion

attachment in alveoli has yet to be defined.

The extent to which virion attachment leads to endocytosis in

intact alveoli may be determined by glycocalyx shedding. Intranasal

instillation of IAV in mice induces shedding of the lung epithelial

glycocalyx (108). Shedding releases glycocalyx components into

airspaces (108), leading to a reduction of glycocalyx height and

density (109). Shedding might defend against virion endocytosis by

coating virions in shed matrix components and displacing them

from the epithelial surface, but direct evidence for this possibility is

lacking. Human studies that show evidence of glycocalyx shedding

in severe lung infection (110) support the potential relevance of

glycocalyx shedding to the alveolar pathogenesis of IAV. Further

research might clarify how shedding of the alveolar epithelial

glycocalyx affects viral entry in alveoli.
3.2 Significance of the alveolar lining layer
for IAV virion attachment

The alveolar wall is covered by a lining layer that may provide a

physical barrier to virion-glycocalyx interactions. The alveolar

lining layer consists of an aqueous hypophase underlying a film

of surfactant phospholipids and proteins at the air-liquid interface.

Although the lining layer covers the alveolar wall in a continuous

fashion, its depth varies across the alveolar surface (61). Thus, thin

portions of the lining layer project an average height of 140 nm

from the alveolar wall on flat surfaces of rat alveoli, and thicker

portions project 1,000 nm or more at alveolar corners (61). The

lining layer completely submerges alveolar epithelial cells and

alveolar macrophages even at its thinnest parts (61), but whether

the lining layer entirely submerges the glycocalyx remains unclear.

Data generated by thorium dioxide-based electron microscopy

show that the epithelial glycocalyx height also varies across

alveolar regions, with its shortest level on the surfaces of AT1
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cells that line flat alveolar walls (109). The extent to which the

alveolar lining layer shields the epithelial glycocalyx from virion

attachment in alveoli in vivo remains uncertain, but it may have

implications for viral entry mechanisms, particularly on flat

alveolar surfaces.

Surfactant proteins and phospholipids might also inhibit virion

attachment to the alveolar epithelium. Reports indicate that

particles inhaled into alveoli of rodent lungs become submerged

in the alveolar lining layer and coated by a phospholipid film (111).

There is little understanding of how surfactant phospholipids

interact with inhaled IAV virions in alveoli. Since surfactant

proteins enhance the uptake of IAV virions by macrophages in

vitro (112), surfactant-virion interactions in alveoli in vivo might

promote virion phagocytosis by alveolar macrophages. A protective

role for surfactant proteins is supported by mouse models of IAV

infection, in which mice with deficiencies of surfactant proteins A

and D have impaired viral clearance from the lung (113, 114).

Recombinant surfactant protein D binds the viral HA protein to

protect against IAV uptake and replication in lungs of IAV-infected

mice (115, 116), supporting the therapeutic potential of surfactant

proteins in IAV infection.

The aqueous portion of the alveolar lining layer might further

limit virion attachment to alveolar walls. Our group has shown that,

under baseline conditions, the aqueous hypophase of the alveolar

lining layer is secreted continuously by the alveolar epithelium (65,

117). The secretion generates a flow of alveolar wall liquid on the

alveolar surface that clears particles from alveoli by convective

transport (117). Alveolar wall liquid secretion also promotes the

alveolar clearance of S. aureus bacteria (64, 65), but whether the

secretion clears IAV virions from alveoli, thereby blocking their

endocytosis, is not clear. Since we reported recently that IAV

disrupts alveolar wall liquid secretion (65), the capacity of the

secretion to clear virions may change in IAV-infected lungs over

the course of lung infection.
4 IAV virion endocytosis by the
alveolar epithelium

Binding of IAV virions to sialic acids is neither necessary (118)

nor sufficient (119) to induce endocytosis by cultured cells,

suggesting that the endocytosis is mediated by non-sialic acid

interactions between virions and host membrane proteins. Here,

we will address the known pathways of IAV virion endocytosis that

are supported by evidence generated in alveoli, cultured alveolar

cells, or cultured alveolar-like cells. Broadly, reports indicate that

IAV virions exploit both clathrin-dependent and clathrin-

independent endocytic pathways.
4.1 Clathrin-dependent mechanisms
in alveoli

Evidence supports clathrin-mediated endocytosis (CME) as a

mechanism of IAV virion uptake by cultured cells of non-alveolar
Frontiers in Immunology 05
origin (120–123). Briefly, CME is triggered by interactions between

extracellular cargo and the plasma membrane phosphoinositide,

PI(4,5)P2, that lead to binding of PI(4,5)P2 by the cytosolic adaptor

protein 2 (AP2) (124, 125). AP2 stimulates the assembly of a protein

complex that includes the scaffolding protein, clathrin. Lateral

enlargement of the clathrin complex along the inner plasma

membrane surface forms a polyhedral clathrin-containing “coat”

that, along with polymerization of an actin filament network,

induces plasma membrane curvature to form an endocytic vesicle.

The developing vesicle is progressively constricted at the vesicle

neck, then released into the cytosol by the cooperative activity of

dynamin, an intracellular GTPase, and proteins of the Bin/

amphiphysin/Rvs (BAR) domain family.

IAV virions are taken up by CME in cultured alveolar epithelial-

like cells. Thus, data generated in cultured, alveolar epithelial-like

A549 cells indicate that IAV virions interact with the epidermal

growth factor receptor (EGFR), free fatty acid receptor 2 (FFAR2),

or transferrin receptor 1 (TfR1) to initiate endocytosis by CME

(126–128). Importantly, genetic inhibition of each protein blocks

IAV entry and replication (126–128). Although these findings

provide strong evidence that EGFR, FFAR2, TfR1, and CME

drive viral entry mechanisms in A549 cells, future studies are

needed to determine their roles the alveolar epithelium, since

A549 cells are a cancer cell line (129) that exhibit features not

shared with either AT1 or AT2 cells (129, 130). However, single cell

transcriptomic datasets indicate EGFR, FFAR2, and TfR1 are each

expressed by the alveolar epithelium of human lungs (131),

bolstering the potential relevance of these proteins as initiators of

CME for IAV virion endocytosis in alveoli.
4.2 Clathrin-independent mechanisms
in alveoli

Clathrin-independent endocytic pathways may also mediate the

alveolar epithelial uptake of IAV virions. In non-alveolar epithelial

cells, IAV virions are taken up by multiple clathrin-independent

pathways including caveolae-mediated endocytosis (132),

macropinocytosis (133, 134) and a mechanism that involves the

small GTPase, Cdc42 (135). Few studies have addressed whether

such clathrin-independent pathways facilitate the endocytosis of

IAV virions in alveoli. There is evidence that, in cultured alveolar

epithelial-like A549 cells, the virion endocytic pathway initiated by

EGFR that was discussed earlier in this review proceeds not only

through CME, but also through an endocytic pathway that involves

the caveolin-1 protein (126). While the mechanistic details of the

caveolin-1 pathway remain uncertain, support for caveolin-1 as a

potential mediator of virion endocytosis in alveoli comes from

studies of uptake mechanisms of non-virion cargo. Genetic

inhibition of caveolin-1 blocks endocytosis of P. aeruginosa (136)

and nanoparticles (137, 138) in cultured alveolar epithelial-like

cells, indicating caveolin-1 is critical to the endocytic

mechanisms. Immunolabeling studies that identify caveolin-1 in

AT1 and AT2 cells of fixed rat lungs (139) lend plausibility to a role

for caveolin-1 in alveolar function. Taken together, these data
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support the possibility that caveolin-1 mediates endocytosis of IAV

virions in the alveolar epithelium, but further studies are needed to

draw this conclusion definitively.

Caveolin-1 is known to associate with plasma membrane

domains called caveolae, but endocytic pathways mediated by

caveolin-1 protein may occur independently of membrane

caveolae in alveoli. Caveolae are plasma membrane regions

defined by their pit-shaped architecture and specific lipid and

protein composition, which includes core structural proteins such

as caveolin-1. Membrane caveolae are traditionally thought to

mediate endocytosis (140–143), but emerging views call into

question the extent to which caveolae participate in endocytic

mechanisms (144–146). This issue is relevant to alveoli because

expression patterns of caveolin-1 protein and membrane caveolae

are discordant in cells of the alveolar epithelium. Thus, caveolin-1

protein is expressed by both AT1 and AT2 cells (139, 147–151), but

membrane caveolae are identified only in AT1 cells (139). Yet,

immunofluorescence studies of cultured AT2 cells show caveolin-1

protein colocalizes with albumin taken up by endocytosis (152),

suggesting caveolin-1 participates in endocytic mechanisms in

alveolar epithelial cells that lack membrane caveolae.

In AT1 cells, the extent to which membrane caveolae and

caveolin-1 protein mediate endocytosis remains unclear. Better

understanding of their roles may be important, since alveolar

epithelial expression of caveolin-1 protein occurs primarily in

AT1 cells (139, 147–151), and AT1 cell membranes contain

numerous caveolae. In fact, Gil et al. determined AT1 cells

contain more than 150 vesicular structures per um2 of the

luminal plasma membrane surface in unchallenged rabbit lungs

(153). Even though immunolocalization studies suggest only some

of the vesicular structures are caveolae (139), the calculations of Gil

et al., taken in the context of the extensive surface area of AT1 cells

(154), suggest caveolae number more than half a million in the AT1

cells that line alveolar walls. Immunolabeling studies identify

caveolin-1 protein near AT1-AT2 cell junctions (139), and

electron microscopic images demonstrate few caveolae in AT1

cell regions that line flat alveolar septa (23, 153, 155). This

paucity of caveolin-1 protein and membrane caveolae at flat

alveolar septa suggests that the endocytosis of IAV virions occurs

at non-septal regions of the intact alveolus.
4.3 Virion motility across the
alveolar surface

Reports indicate virion-epithelial interactions that lead to

endocytosis are spatially and temporally dynamic and might

localize virions to membrane sites conducive to endocytosis. After

virion HA binds to host sialic acids, cooperative activity of HA and

the viral neuraminidase (NA), an enzyme that cleaves sialic acids to

release them from the glycocalyx, generates a series of sialic acid

binding and cleavage events that induces IAV virion motility across

a sialic acid-coated surface (156–158). If such motility occurs on the

alveolar surface, it might move virions into proximity to EGFR,

FFAR2, or TfR1. IAV virions also induce movement of host
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endocytic factors to sites of virion attachment. In cultured kidney

epithelial-like cells, IAV virions induce clathrin accumulation at

virion binding sites (120), perhaps promoting CME. Virion-

induced plasma membrane clustering of the lipid raft ganglioside,

GM1 (126) may lead to interactions between IAV virions and GM1

that are pro-endocytic (159). In alveoli, we do not identify evidence

to support virion motility or to indicate whether such motility, if it

occurs, promotes endocytosis.
5 Post-endocytic events that lead to
alveolar barrier dysfunction

After endocytosis, IAV virions undergo a number of processing

events that establish host cell infection: (i) endosomal trafficking;

(ii) fusion with endosomal membranes to release viral

nucleoproteins into the host cell cytosol; (iii) nucleoprotein

trafficking to the host cell nucleus; (iv) viral RNA replication and

transcription; (v) viral mRNA export to the cytosol; (vi) mRNA

translation and viral protein processing; and (vii) virion formation

and release via assembly and budding of viral proteins and

nucleoproteins at the host cell plasma membrane. Here, we will

briefly address the consequences of IAV virion endocytosis for

alveolar function, specifically function of the alveolar barrier.
5.1 Alveolar barrier loss mechanisms

IAV lung infection causes dysfunction of the alveolar barrier,

leading to pulmonary edema formation (160–166). Under baseline

conditions, the alveolar barrier restricts the passage of proteins and

small molecules from microvessels into airspaces to maintain

airspace patency. The barrier is comprised of alveolar epithelial

and microvascular endothelial cells that share a basement

membrane (167). Barrier permeability is regulated at sites of

contact between adjacent epithelial or adjacent endothelial cells

by tight junctional protein complexes that incorporate claudins,

occludins, junctional adhesion molecules, and cytoskeleton-binding

adaptor proteins (168). Epithelial cells are the chief regulators of

alveolar barrier permeability (169–171) due to the high density of

junctional complexes at epithelial intercellular surfaces (172) and

the large size of AT1 cells (154), which minimizes the total

junctional surface area (173).

Mechanisms of alveolar barrier loss may include direct effects of

IAV infection on alveolar epithelial barrier proteins. In cultured

A549 cells, H1N1 IAV exposure causes loss of the tight junction

proteins, occludin and ZO-1, and the adherens junction protein, E-

cadherin by inhibiting junctional protein transcription (174).

Although junctional protein loss is also reported in A549 cells

exposed to H5N1 IAV, it results from protein degradation via the

E3 ubiquitin ligase, Itch (93). Inhibition of the upstream kinase,

TAK1 restores junctional protein expression in H5N1-exposed

cultured cells, and intraperitoneal pretreatment with a TAK1

inhibitor restores alveolar junctional protein expression and

increases survival in H5N1-infected mice (93). Findings by others
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confirm loss of the tight junction protein, claudin-4, in cells of the

distal lung epithelial cancer line, NCI-H441, after exposure to either

H5N1 or H1N1 IAV (175). Taken together, these findings provide

evidence that IAV causes loss of alveolar epithelial junctional

proteins by pre- and post-translational mechanisms, leading

directly to loss of alveolar barrier function.

Indirect mechanisms may also mediate IAV-induced alveolar

barrier loss. Reports indicate IAV induces proinflammatory

signaling in alveolar epithelial and alveolar epithelial-like cells

(176–184), leading to inflammation-induced alveolar damage

(185–188). Numerous studies support the notion that IAV

induces cell death in the alveolar epithelium (31, 161, 164, 189–

191) and in cultured alveolar epithelial and alveolar epithelial-like

cells (166, 192, 193), contributing to barrier loss. Once edema

forms, IAV-induced alterations of alveolar epithelial ion channel

function may further dysregulate alveolar liquid dynamics to

potentiate the edema response (160, 194–198). Together, these

data support the capacity of IAV to induce alveolar barrier loss

by indirect effects on alveolar barrier function.

Although we do not address them in this review, other

mechanisms may contribute to barrier loss and edema formation

in IAV-infected lungs but are not well understood. For example, the

interplay between surfactant, surface tension, and barrier

permeability in alveoli of IAV-infected lungs may have

implications for edema formation and virion distribution. Thus,

IAV infection of AT2 cells (199, 200) may cause loss of surfactant

secretion, leading to increase of alveolar surface tension and edema

formation by a mechanism proposed by Pattle (201) and Clements

(202) and supported by experimental data (203, 204). How this

edema formation might affect the subsequent distribution of virions

in alveoli is not clear. In addition, the specific mechanisms by which

different IAV strains affect alveolar barrier function remain unclear,

but they may relate to viral factors directly (205, 206) or to how

viruses interact with the host (207–211). New insights in this area

might address the disproportionately high morbidity and mortality

caused by pandemic and avian IAV strains (212, 213). Finally, a

growing literature supports a role for circadian rhythms in lung

inflammation and repair in lungs that are mechanically ventilated

(214) and IAV-infected (215–217). Better understanding of how

sleep and circadian rhythm disruption affects alveolar responses to

IAV may lead to new therapeutic approaches for infection-induced

critical illness (218, 219).
5.2 Significance of alveolar communication
pathways for barrier loss

Recent advances highlight the potential for cell-cell

communication pathways present in intact alveoli to amplify the

barrier dysfunction that follows virion endocytosis (220). Necropsy

studies of human lungs with severe IAV infection identify little, if

any, viral nucleic acids, protein, or cytopathic changes in the

alveolar epithelium at sites of alveolar damage and barrier loss, at

the same time that such evidence of active IAV infection is

detectable elsewhere in the lungs (191, 221–224). Although these

findings might reflect the tendency of tissue damage to linger after
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the resolution of viral infection, alternatively, they could reflect

tissue damage that occurred due to spread of alveolar damage

signals from infected to uninfected alveoli.

Interferon signaling might spread alveolar damage and barrier

dysfunction in intact alveoli of IAV-infected lungs. Interferon

signals spread from IAV-infected to uninfected cells in culture

(225) and in alveoli (226), and interferon exposure causes loss of

tight junctional proteins and barrier permeability in cultured

intestinal epithelial-like cells (227, 228). These data raise the

possibility that barrier-deteriorating interferon signals spread

from infected to uninfected alveoli in IAV-exposed lungs, such

that alveolar epithelial cells need not take up IAV virions directly to

lose barrier function. A critical role for interferon signaling in

influenza infection is supported by human data that identify genetic

mutations in the interferon system in patients with influenza-

induced critical illness (229–231).

Gap junctional communication in intact alveoli might also

expand the scope of IAV-induced barrier loss. We have shown

connexin 43-containing gap junctional channels conduct cytosolic

Ca2+ signals in the alveolar epithelium (64, 232, 233) that, in

S. aureus-infected alveoli, spread barrier loss from infected to

uninfected alveolar regions (64). Since reports indicate IAV

infection induces cytosolic Ca2+ increases in alveolar epithelial-

like A549 cells (234, 235), IAV might also induce spread of cytosolic

Ca2+ signals that amplify the barrier loss effects of virion

endocytosis. Evidence is needed to determine whether this occurs

in intact alveoli.
6 Conclusion

This review highlights key mechanistic steps underlying virion

endocytosis in alveoli of IAV-infected lungs. Evidence from fixed

lung tissue supports the notion that inhaled IAV virions can attach

to AT1 and AT2 cells of the alveolar epithelium. The attachment

mechanisms may involve virion interactions with sialic acids of the

alveolar glycocalyx and alveolar epithelial surface proteins, such as

CEACAM6 and MGL1. Data generated in cultured cells indicate

that, after attachment, IAV virions are taken up by clathrin-

dependent and clathrin-independent endocytic mechanisms. In

this regard, EGFR-, FFAR2-, TfR1, and caveolin-1 may drive

alveolar endocytic responses and provide new opportunities for

the development of host-directed therapies that block viral entry at

its earliest mechanistic steps. Finally, endocytosis of IAV virions

leads to alveolar barrier permeability, and evidence derived from

cultured cells suggests that the permeability responses might result

from loss of alveolar barrier proteins. Targeting these responses

may likewise yield new therapeutic approaches.

However, we point out that the unique structure of intact alveoli

raises numerous, as yet unstudied questions about the mechanisms

by which IAV virions are inhaled into alveoli, attach to the alveolar

surface, and are taken up by the alveolar epithelium. For example,

whether virions accumulate at alveolar corners is not clear but may

determine which cells of the alveolar epithelium are exposed to and

take up the virus. The extent to which virion attachment to the

alveolar surface is opposed by glycocalyx shedding, surfactant
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binding, and alveolar wall liquid secretion in uncertain but may

bear on the efficacy of virion attachment and internalization in

intact alveoli. Alveolar cell-cell communication pathways may

spread virus-induced interferon and Ca2+ responses, perhaps

negating the need for virion endocytosis in barrier loss

mechanisms. Thus, new insights are needed to generate a more

fundamental understanding of IAV lung pathogenesis mechanisms

that takes into account these unique structural features of intact

alveoli. A better understanding of how alveolar structure shapes

alveolar interactions with IAV may lead to novel approaches to

therapy for IAV-induced lung injury that disrupt virion endocytosis

and the barrier dysfunction that follows.
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