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Mechanisms underlying
immunosuppression by
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and Eva Medina*

Infection Immunology Research Group, Helmholtz Centre for Infection Research,
Braunschweig, Germany
Regulatory cells, such as regulatory T cells (Tregs), regulatory B cells (Bregs), and

myeloid-derived suppressor cells (MDSCs), play a crucial role in preserving

immune tolerance and controlling immune responses during infections to

prevent excessive immune activation. However, pathogens have developed

strategies to hijack these regulatory cells to decrease the overall effectiveness

of the immune response and persist within the host. Consequently, therapeutic

targeting of these immunosuppressive mechanisms during infection can

reinvigorate the immune response and improve the infection outcome. The

suppressive mechanisms of regulatory cells are not only numerous but also

redundant, reflecting the complexity of the regulatory network in modulating the

immune responses. The context of the immune response, such as the type of

pathogen or tissue involved, further influences the regulatory mechanisms

involved. Examples of these immunosuppressive mechanisms include the

production of inhibitory cytokines such as interleukin 10 (IL-10) and

transforming growth factor beta (TGF-b) that inhibit the production of pro-

inflammatory cytokines and dampen the activation and proliferation of effector T

cells. In addition, regulatory cells utilize inhibitory receptors like cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1

(PD-1) to engage with their respective effector cells, thereby suppressing their

function. An alternative approach involves the modulation of metabolic

reprogramming in effector immune cells to limit their activation and

proliferation. In this review, we provide an overview of the major mechanisms

mediating the immunosuppressive effect of the different regulatory cell subsets

in the context of infection.
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1 Introduction

The immune system plays an essential role in host defense against

pathogens. However, the immune response during infection needs to

be properly regulated in order to effectively eliminate the infecting

agent while also avoiding the detrimental effect of an excessive

inflammatory reaction. Achieving this balance is important for the

maintenance of immune homeostasis and preventing autoimmunity.

For example, failure to control hyperinflammatory responses can lead

to a cytokine storm that ultimately results in death (1). On the other

hand, excessive dampening of the immune response poses a risk,

potentially hindering the clearance of pathogens and contributing to

the chronicity of infection (2, 3). In order to prevent both excessive

responses and chronic infections, the immune system has evolved

several mechanisms orchestrated by diverse subsets of regulatory cells

for regulating the intensity and duration of immune reactions.

However, because these regulatory mechanisms are mostly

immunosuppressive, many pathogens have evolved strategies to

hijack the regulatory mechanisms of the host for their own

advantage, thus generating conditions that ensure their survival and

persistence within the host. Therefore, in the context of infection,

adjunctive therapeutic approaches that aim to ameliorate ormodulate

these suppressive mechanisms may be beneficial for improving the

infection outcome.

The most prominent regulatory cell subsets include regulatory

T cells (Tregs), regulatory B cells (Bregs), and myeloid-derived

suppressor cells (MDSCs). Tregs are a specialized population of T

cells that regulate the activity of CD4+ and CD8+ T cells as well as

natural killer (NK) cells and are an essential component for the

proper functioning of the immune system (4, 5). They play a pivotal

role in preventing autoimmune diseases by dampening the

responses of self-reactive lymphocytes (6, 7). Tregs are

characterized by the expression of CD4 and the interleukin-2

receptor a-chain (IL-2Ra), commonly known as CD25 (4). A

defining feature of Tregs is the expression of the forkhead box

transcription factor Foxp3, a master regulator that plays a critical

role in their development and function (8–10). Tregs also control

the immune response to infectious pathogens, and in this context,

their activity is not always beneficial (11). For example, Tregs can

hinder the development of sterilizing immunity against specific

pathogens by preventing an effective immune response (11, 12).

While B cells are typically recognized for their role in initiating a

humoral immune response through the production of antigen-

specific antibodies (13), a distinct subset called regulatory B cells

(Breg cells) deviates from this conventional function and

contributes to immune regulation (14–16). Whereas the

regulatory function of Bregs is critical for the maintenance of

immune balance, it can also benefit certain pathogens (17).

MDSCs are immature myeloid cells with vigorous immune-

suppressive activity involved in suppression of effective immune

responses in many pathological conditions, including cancer,

chronic inflammation, autoimmunity, and infections (18, 19).

Various pathogens, including viruses, bacteria, and parasites,

promote the expansion of MDSCs (20). The ability of MDSCs to

dampen effector T-cell responses contributes to their
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immunosuppressive nature, impacting the overall efficacy of the

immune system (21). This, in turn, favors pathogen persistence and

the risk of chronicity following acute infection.

In the context of infection, interfering with the inhibitory

mechanisms of regulatory cells may assist in the clearance of

pathogens. However, a complete understanding of these

immunosuppressive mechanisms is required prior to exploiting

these novel therapeutic strategies. In this article, we review the

mechanisms used by the different regulatory cell types to

mediate immunosuppression.
2 Mechanisms of Treg-
mediated immunosuppression

Tregs inhibit proliferation and production of cytokines after

ligation of the receptor [T-cell receptor (TCR)] in effector CD4+ as

well as the cytotoxic effect of CD8+ T cells (22, 23). While the main

function of Tregs is to prevent excessive immune activation and the

maintenance of tolerance to self-antigens (7), they have also been

shown to have a significant negative impact on the immune responses

to pathogens (11, 12, 24, 25). The diverse functions of Tregs are

reflected in the existence of several types, each designated based on

their source, generation, and effector mechanisms. The two major

subsets identified are the thymus-derived naturally occurring Foxp3+

regulatory T cells (nTregs) and inducible regulatory T cells (iTregs),

which develop from peripheral conventional CD4+ T cells in

response to stimulus such as microbial products (26). Although

both nTregs and iTregs play a significant role in infections due to

their ability to control the intensity and duration of the effector

responses, natural Tregs play a major role in mediating tolerance to

self-antigens and inducible Tregs are the main players in the

induction of tolerance to pathogens (27).

Tregs play a crucial and nuanced role in the immune response

to various infections (12, 25). For example, in the case of infections

caused by Mycobacterium tuberculosis, Tregs hinder an effective

immune response against the pathogen by inhibiting the production

of cytokines like interferon gamma (IFN-g) or interleukin 17 (IL-

17), which are essential for controllingM. tuberculosis (28). Indeed,

Tregs are expanded in patients infected with M. tuberculosis and

compromise protective IFN-g responses and bacterial killing by

macrophages (29–31). High amounts of Tregs capable of

suppressing antigen-specific production of INF-g by effector T

cells have been found in patients with active tuberculosis (29, 32–

34). Tregs have been also shown to expand and restrict bacterial

clearance in the lungs of M. tuberculosis-infected mice (35). The

Tregs arising in M. tuberculosis-infected mice proliferated faster

than effector T cells and induced delayed recruitment of effector T

cells into the infected lungs (36). Tregs have been also shown to

suppress protective immunity in other bacterial infections,

including those by Streptococcus pneumoniae (37), Salmonella

(38), Helicobacter pylori (39), and Listeria monocytogenes (40).

Tregs play also an important role in the outcome of acute and

chronic viral infections, including herpes simplex virus (HSV) (41),

human immunodeficiency virus (HIV) (42), hepatitis B virus
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(HBV) (43), and hepatitis C virus (HCV) (44). Strategies that

temporarily dampen the immune-suppressive mechanisms of

Tregs could enhance the efficacy of infection therapies, allowing

the immune system to mount a more robust response to the

infecting agents.

Studies in humans and experimental models have revealed that

Treg cells employ a variety of mechanisms to suppress immune

responses, in both cell contact-dependent and cell contact-

independent manners (45, 46). These mechanisms include a)

production of suppressive cytokines such as IL-10, transforming

growth factor beta (TGF-b), and IL-35; b) induction of cytolysis in

effector cells; c) suppression of immune cells or function indirectly

by modulating antigen-presenting cells; d) suppression of T cells via

IL-2 consumption; and e) generation of immunosuppressive

environments through adenosine production (45–47) (Figure 1).

The different suppressive mechanisms of Tregs are described in

more detail in the following sections.
2.1 Production of suppressive cytokines

The suppressive cytokines TGF-b and IL-10 have been reported

to be involved in Treg-mediated immunosuppression (48–50). The

engagement of IL-10 with its receptor on monocytes and

macrophages triggers the activation of the Janus kinase/signal

transduce and activator of transcription (JAK/STAT) signaling

cascade (51). The activation of this pathway by IL-10 results in
Frontiers in Immunology 03
profound changes in expression of immunomodulatory genes that

lead to the inhibition of pro-inflammatory mediator production,

decreased antigen presentation capacity, and impaired phagocytosis

(51). TGF-b signaling involves activation of suppressor of mothers

against decapentaplegic (SMAD) transcription factors (52). TGF-b
blocks T helper type 1 (Th1) differentiation and effector functions

(53) and silences the expression of IL-2, which is required for T-cell

proliferation (54). Furthermore, TGF-b inhibits the antigen

presentation capacity of dendritic cells by suppressing expression

of major histocompatibility complex (MHC) class II genes (55).

Several studies have also reported the ability of Tregs to suppress

CD8+ T-lymphocyte cytotoxicity via TGF-b (50, 56) and to

suppress differentiation of CD4+ T cells into Th1 effectors (57).

Furthermore, TGF-b produced by Tregs induces infectious

tolerance by further promoting naive T cells to become

immunosuppressive cells, thus leading to long-term propagation

of the effects provoked by Tregs (58–61).

Contrary to the perception of TGF-b as a dominant mechanism

of Treg suppression, some studies have presented challenges to this

notion (62, 63). The findings that the addition of anti-IL-10 or anti-

TGF-b antibodies did not impact the suppressive effect of human

Treg cells in in vitro assays imply that Treg-mediated suppression

may involve alternative mechanisms beyond the classical role

attributed to IL-10 or TGF-b (64). The diverse functions of IL-10

and TGF-b in Treg-induced suppression in different specific

pathologies may provide an explanation for these discrepancies.

Addressing these discrepancies and understanding the specific
FIGURE 1

Immunosuppressive mechanisms of Tregs. Tregs inhibit effector T cells (Teff) by 1) the release of inhibitory cytokines, including IL-10, TGF-b, and IL-
35; 2) exerting of cytotoxic effects on Teff as well as on antigen-presenting cells (APCs); 3) interference with Teff proliferation via consumption and
depletion of IL-2; 4) metabolic disruption; and 5) interference with differentiation of naive T cells (Tn) into Teff. LFA-1, lymphocyte function-
associated antigen 1; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; IDO, indoleamine 2,3-dioxygenase; ATP, adenosine triphosphate;
cAMP, cyclic adenosine monophosphate. Created with BioRender.com.
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conditions under which these cytokines operate is crucial for a

better understanding of Treg function.

IL-35 is an additional inhibitory cytokine that contributes to

Treg function (65). IL-35 not only has the ability to directly

suppress effector T-cell effector functions and proliferation (65),

but it is also able to propagate infectious tolerance by expanding a

vigorous population of inducible Tregs (66). Furthermore, IL-35

produced by Tregs can inhibit the capacity of CD4+ T cells to

differentiate into Th17 effector cells (67).
2.2 Induction of cytolysis in effector cells

Activated human natural Treg cells have been shown to exert

cytotoxic activity against various cell types, including monocytes,

dendritic cells, and CD4+ and CD8+ T cells (68). This cytotoxic

effect is mediated by the perforin/granzyme pathway and is

dependent on CD18 adhesive interactions (68). In the perforin/

granzyme pathway, perforin and granzymes synergize to mediate

apoptosis of target cells such T cells, monocytes, and dendritic cells

(69). Thus, perforin induces pores in the target cell membrane and

granzymes induce cell death after diffusing into the intracellular

compartment through the perforin pores (69). Natural Tregs have

been shown to predominantly express granzyme A, whereas iTregs

express granzyme B upon activation, but both exert cytotoxicity

against autologous targets via perforin (68). Granzyme A and B

differ in their target cell-killing mechanism. Granzyme A induces a

caspase-independent form of cell death that includes apoptotic

features such as DNA damage (70). In contrast, granzyme B

triggers apoptosis through a different route by directly cleaving

caspases and caspase substrates (71). The differential modes of

action of granzyme A and granzyme B exemplify the adaptability of

Tregs in utilizing various cytotoxic mechanisms based on the

specific context and the nature of the target cell.
2.3 Modulation of antigen-presenting
cell function

Tregs can also inhibit immune responses by modulating the

activity of antigen-presenting cells such as dendritic cells (72–74).

In this regard, it has been reported that antigen-specific Tregs can

inhibit antigen presentation to T cells by strongly binding to

dendritic cells (72). This tight interaction reduces the capacity of

dendritic cells to present antigens by promoting the removal of

cognate peptide/MHC class II complex (72). Adhesion of Tregs to

dendritic cells is mediated by lymphocyte function-associated

antigen 1 (LFA-1), which exhibits an extraordinarily high

strength binding as a consequence of a reduced calpain activities

within these cells (73). The decreased calpain activities result in a

deficiency in the normal process of integrin recycling, leading to

sustained presence of LFA-1 on the cell surface. Consequently,

Tregs exhibit prolonged binding to dendritic cells, limiting the

physical interactions of dendritic cells with cognate conventional T

cells and thereby reducing the capacity of dendritic cells to prime T

cells (73).
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Co-stimulation by CD28 binding to CD80 and CD86 expressed

by antigen-presenting cells is essential for effective T-cell expansion

and differentiation (75). Cytotoxic T lymphocyte-associated antigen

4 (CTLA-4) can also bind CD80 and CD86 on antigen-presenting

cells, but in contrast to CD28, this molecule is a negative regulator

and inhibits T-cell responses (76). Tregs express high levels of

CTLA-4, which seems to be an important means of

immunosuppression (77–80). Several mechanisms that mediate

the inhibitory activity of CTLA-4 have been proposed, including

the downregulation of ligand expression and transmission of

inhibitory signals (76, 81). Furthermore, CTLA-4 has a superior

affinity for CD80 and CD86 molecules than for CD28 (82). By

outcompeting with CD28, CTLA-4 downregulates the co-

stimulatory signals required for optimal activation of

conventional T cells. Tregs can also induce tolerogenic dendritic

cells through CTLA-4 engagement-induced tryptophan catabolism

(83, 84). Thus, Tregs can stimulate dendritic cells to produce the

enzyme indoleamine 2,3-dioxygenase (IDO), which catabolizes the

conversion of tryptophan to kynurenine, which is toxic to T

cells (85).
2.4 Other immunosuppressive mechanisms

Tregs are extremely dependent on IL-2 for their maintenance

and functionality, but they lack the capability to produce IL-2

themselves (86–88). Therefore, Tregs rely on the external supply

of IL-2, typically provided by activated effector T cells and other

immune cells in their microenvironment. Since IL-2 is also critical

for the survival and proliferation of effector T cells (89), it has been

suggested that one mechanism of Treg suppression of effector T-cell

activation is by depriving effector T cells of IL-2 (90–92). An

additional suppressing mechanism of Tregs is mediated by the

release of high levels of adenosine in the extracellular environment

(93). Tregs, in contrast to conventional T cells, express high

amounts of CD39 and CD73 on the cell surface, which are

nucleotidases capable of producing extracellular adenosine from

adenosine triphosphate (ATP) (94–96). Thus, the coordinated

action of CD39 and CD72 allows Tregs to generate extracellular

adenosine from ATP. The interaction of extracellular adenosine

with the adenosine A2A receptor on conventional T cells results in

increased cyclic adenosine monophosphate (cAMP) levels,

subsequent activation of protein kinase A, and inhibition of T-cell

activation (97–99).
3 Mechanisms of Breg-
mediated immunosuppression

B cells are typically known for their role in the adaptive immune

response, including antigen presentation, cytokine secretion, and

production of pathogen-specific antibodies (100). However, a

subset of B cells with immunomodulatory activity has been

identified and termed Bregs (15, 16). Identifying specific

phenotypic markers for Bregs has been a challenge, and the

characterization of these cells is an area of ongoing research
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(101). However, several B-cell subsets with regulatory functions

have been reported in humans and mice based on their capacity to

inhibit effective immune responses in vivo or in vitro (102). The

main Breg subsets identified in humans include CD19+CD24

+CD38+ (103) and CD19+CD24hiCD27+ (104), and in mice,

CD19+CD5+CD1dhi (105), CD5+CD19+B220low (106), and

CD19+CD25+CD1dhi IgMhiCD5−CD23−Tim-1− (107) .

Nevertheless, it is important to note that, rather than relying

solely on surface markers, the identification of Bregs is often

based on functional assays, such as the ability to produce IL-10 or

inhibit immune responses. Ongoing research is focused on gaining

a deeper understanding of Breg biology, refining phenotypic

markers and identifying markers that are consistently associated

with regulatory functions across different contexts.

Generation of Bregs has been reported in a number of infectious

diseases, including bacterial, viral, and parasitic infections (108).

For example, Bregs have been shown to be involved in the

pathogenesis of chronic HBV infection (109) and also to inhibit

CD8+ T-cell proliferation and production of IFN-g in patients

infected with HIV (110). Bregs have been implicated in hampering

the clearance of hepatitis B virus through the production of IL-10

(111). Also, during bacterial infections such as that by L.

monocytogenes, expansion of Bregs that inhibit pathogen

eradication has been observed in experimental infection in mice

(112). A rapid accumulation of Bregs has also been detected in mice

infected with Salmonella typhimurium, which was detrimental for

the course of infection because they inhibited the protective activity

mediated by CD4+ T cells, NK cells, and neutrophils (113).

Several mechanisms underlying the regulatory activity of Bregs

have been described, including skewing T-cell differentiation

toward Tregs (114–116). This skewing process seems to take

place by a direct cell–cell interaction between Bregs and T cells as

suggested by the requirement of the expression of CD40 and MHC

class II (105, 117, 118). It has also been reported that Bregs enter the

T-cell zone in lymphoid organs and make more frequent and longer

contacts with both CD4+ and CD8+ T cells through direct cognate

interaction compared to non-Breg (119). The increased and

prolonged interaction between Bregs and T cells reduces the

subsequent contacts between T cells and dendritic cells and

thereby hinders the process of antigen presentation and

subsequent T-cell activation (119). Bregs can also regulate

humoral immunity by modulating the activity of follicular helper

T cells, which is a population of T cells involved in the activation

and differentiation of B cells into antibody-producing plasma cells

(120). This effect is mediated by the expression of high levels of

programmed death-ligand 1 (PD-L1) on Bregs that binds to PD-1

on T cells (120, 121). Binding of PD-1 to its ligand PD-L1 induces

inhibition of the functionality and proliferation of effector T cells

(122). However, most of the suppressive activities of Bregs are

mediated by the release of high amounts of IL-10. Thus, Bregs can

thwart differentiation of T cells toward Th1 or Th17 by inhibition of

cytokine production by dendritic cells (123, 124) and promote Th2

cells and Foxp3+ Tregs by producing IL-10 (125, 126). It has been

shown that Bregs produce IL-10 after interaction with Leishmania

major, which leads to downregulation of IL-12 production by

dendritic cells, thereby supporting Th2 responses that are
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detrimental for the proper control of this pathogen (127). Other

studies have indicated that direct interaction between Bregs and

dendritic cells results in IL-10-mediated deactivation of the

dendritic cells, which can result in the suppression of CD8+ T

cells (128). Accordingly, by producing IL-10, Bregs have been

shown to contribute to the T-cell impairment observed during

HIV (110) and chronic hepatitis B virus (109) infections.

In addition to the release of IL-10, Bregs can also modulate the

immune response through the production of other suppressive

cytokines such TGF-b and IL-35 (106, 129) as well as other

immunomodulatory molecules such as adenosine (130, 131) and

heat shock protein 70 (132). The different inhibitory mechanisms of

Bregs are illustrated in Figure 2.
4 Suppressive mechanisms of MDSCs

MDSCs are considered an atypical population of myeloid cells

that appear in many pathological disorders, including cancer,

autoimmune diseases, and chronic infections, and exert strong

suppressive activity on T cells (133). MDSCs originate from

common myeloid progenitors but they do not undergo full

maturation and remain in an immature differentiation status (19,

134). Phenotypically, MDSCs are commonly divided into two

different subsets, monocytic and granulocytic, based on the

expression of CD14+CD11b+CD33+HLA-DR− and CD15

+CD11b+CD33+HLA-DR-, respectively, in humans (135). The

phenotypic markers for murine monocytic MDSCs are CD11b

+Ly6C+Ly6Glow and CD11b+Ly6ClowLy6G+ for granulocytic

MDSC (135). However, these markers are not exclusive to

MDSCs and are also expressed by mature monocytes, neutrophils,

and other hematopoietic precursor lineages (136). Additional

markers such as the chemokine CCL6 have been identified in the

murine system that enable to discriminate immature granulocytes

precursors (Ly6G+CCL6−) from mature neutrophils (Ly6G+CCL6+)

(134). Despite the additional markers, differentiation of MDSCs

from other myeloid cells based on these phenotypic markers is

rather challenging and functional assays that confirm their

immunosuppressive activity are essential for a more definitive

assessment. Furthermore, while monocytic and granulocytic

subsets are commonly recognized, additional subsets and

phenotypic variations have been described in various studies

(137). The high degree of heterogeneity within the MDSC

population has been clearly illustrated in the single-cell RNA

sequencing (RNA-seq) analysis of MDSCs generated in mice

during chronic Staphylococcus aureus infection performed in our

laboratory. This analysis shows that the population of MDSCs

comprised a continuum of myeloid cell precursors in different

differentiation stages (134). The spectrum of myeloid cell

precursors within the MDSC population can extend to earlier

stages of myeloid differentiation, involving common myeloid

progenitors. Expansion of MDSCs in the context of infection may

be associated with emergency granulopoiesis, which involves a

rapid release of immature myeloid cells into the circulation in

response to the need for an elevated production of myeloid cells to

combat the infection (134).
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MDSCs are known for their ability to suppress various

components of the immune system, extending beyond T cells

(138–142). They can exert inhibitory effects on other immune cell

types, including B cells and NK cells (138–142). Many pathogens,

including bacteria and viruses, promote expansion of MDSCs as a

means of suppressing the immune response mounted by the host

(20). In this regard, expansion of MDSCs has been associated with

tuberculosis progression in humans (143) and mice (144, 145). The

induction of MDSCs in response to M. tuberculosis has been

implicated in the impaired ability of the host to eliminate the

bacterium, thereby contributing to the development of tuberculosis

disease (143). MDSCs have been reported to play an important role

in chronic infections caused by S. aureus, a notorious pathogen

known for its ability to cause challenging and difficult-to-treat

chronic infections (146, 147). Thus, expansion of MDSCs has

been linked to progressive dysfunction of T cells and failure to

eliminate S. aureus in murine models of staphylococcal chronic

abscess (146). In infected prosthetic joints, MDSCs have been

shown to inhibit the pro-inflammatory activity of monocytes/

macrophages, thereby facilitating the chronicity of S. aureus

orthopedic biofilm infection (147). Increased frequency of

MDSCs that inhibit protective T-cell responses via nitric oxide

production has been also reported in mice infected with Salmonella

enterica serovar Typhimurium (148).

The generation of MDSCs in many viral infections seems to

contribute to the establishment of a chronic course (149, 150). Thus,

immunosuppression of T-cell responses mediated by reactive

oxygen species (ROS) produced by MDSCs has been shown to

initiate and maintain HCV persistence (151). MDSCs also inhibit

the production of IFN-g, a key cytokine involved in anti-viral
Frontiers in Immunology 06
defense, by natural killer cells in patients infected with HCV via

an arginase-1-dependent mechanism (140). Several studies have

also reported elevated numbers of MDSCs in patients with chronic

HIV infection, which dampen anti-HIV T-cell-mediated immune

responses (152, 153) and promote the development of Tregs (154).

An increased frequency of MDSCs has been observed in the

peripheral blood of patients infected with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), particularly those with

severe disease (155). The expansion of MDSCs in SARS-CoV-2-

infected patients appears to correlate with the severity of respiratory

symptoms and the need for intensive care (155).

The mechanisms implicated in the suppressive activity of

MDSC in the context of infections are described in the following

section and summarized in Figures 3A, B.
4.1 Suppression mediated by
arginine metabolism

L-Arginine is an essential amino acid that is critical for body

physiology because it is required for protein synthesis and for the

production of nitric oxide, creatine, and polyamines (156). L-

Arginine accessibility is crucial for activation and proper

functionality of T cells (157). Arginine can be metabolized either

to nitric oxide by the activity of the nitric oxide synthase or to urea

and L-ornithine by the activity of arginase enzymes (158).

Metabolism of L-arginine by arginase-1 has been reported to be a

substantial mechanism of MDSC suppression of T-cell responses by

depleting L-arginine in the T-cell microenvironment (159, 160). L-

Arginine starvation hampers T-cell responses by provoking an
FIGURE 2

Mechanisms of Breg immunosuppression. Bregs can inhibit the proliferation, differentiation, and functionality of CD4+ and CD8+ T cells via
production of IL-10. Bregs can regulate humoral immunity by modulating the activity of follicular T-helper cells via expression of programmed
death-ligand 1 (PD-L1) that binds to PD-1 on T cells. Bregs inhibit CD8+ and CD4+ T-cell proliferation and differentiation by producing inhibitory
molecules such as IL-10, TGF-b, adenosine, and heat shock protein 70. Bregs inhibit IFN-g production and suppress the cytotoxicity of CD8+ T cells
and NK cells. Created with BioRender.com.
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arrest in the proliferation of activated T cells (161) as well as by

reducing the expression of the CD3z chain (162, 163).
4.2 Suppression mediated by nitric oxide
and reactive oxygen species

Nitric oxide produced in large amounts by MDSCs via arginase

activity can suppress T-cell responses (164) and can obstruct T-cell

migration by inhibiting vascular expression of E-selectin (165).

Furthermore, nitric oxide has been suggested to trigger suppression

of T-cell responses by altering key molecules in the signaling

pathway induced after IL-2 binding to its surface receptor (166).

Nitric oxide can also affect the stability of the IL-2 messenger RNA

(mRNA), resulting in reduced IL-2 release by T cells (167).

MDSCs can also generate high levels of ROS, including

hydrogen peroxide (H2O2), peroxynitrite (ONOO−), and

superoxide (O2−), which can have damaging effects on nucleic

acids, lipids, and proteins (168). Thus, ROS produced by MDSCs

have been shown to suppress antigen-specific CD8+ T cells by

inducing alterations in the T-cell receptor that impair the capacity

of CD8+ T cells to bind MHC class I on antigen-presenting cells

(169). MDSCs are capable of avoiding the toxic effects of the high

levels of ROS that they generate by upregulating series of genes via

nuclear factor erythroid 2-related factor 2 (Nrf2) that mitigate

oxidative stress (170).

Similar to other regulatory cell populations described in the

previous sections, MDSCs can also suppress T-cell responses by

production of inhibitory cytokines such as IL-10 and TGF-b (141,

171, 172). For example, it has been reported that TGF-b produced

by MDSCs hinders the functionality of NK cells by inhibiting their

capacity to produce IFN-g as well as their cytotoxic activity (141).

Furthermore, MDSCs were shown to be able to induce other

immunosuppressive cells such as Tregs in HIV-infected

individuals (154).
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4.3 Suppression by altering
T-cell metabolism

Upon antigen recognition and activation via TCR, effector T cells

proliferate extensively and develop effector functions. Through the

activation process, T cells need to reprogram their metabolism from

oxidative phosphorylation toward aerobic glycolysis to ensure the

bioenergetic demands required for cell division and production of

effector molecules (173–175). Glycolysis is the major pathway of

glucose metabolism. In resting cells and under aerobic conditions,

glucose is usually converted into pyruvate, which is further oxidized to

generate acetyl-coenzyme A, which enters the mitochondria and

undergoes further oxidation in the citric acid cycle. In the absence of

oxygen, pyruvate is converted to lactate instead of entering the

mitochondria to undergo oxidation. In proliferating cells, a

significant portion of pyruvate is converted to lactate in the

cytoplasm even in the presence of oxygen rather than entering the

mitochondria and undergoing complete oxidation. This reaction is

known as “aerobic glycolysis” (175). This is considered an adaptation to

the rapid growth and high energy demands of proliferating cells (173–

175). By using aerobic glycolysis, cells can quickly generate ATP and

metabolic intermediates needed for the synthesis of macromolecules

such as nucleotides, amino acids, and lipids, which are crucial for cell

proliferation (173–175). During the conversion of pyruvate to lactate in

aerobic glycolysis, reduced nicotinamide adenine dinucleotide

(NADH) donates electrons to pyruvate, converting it to lactate and

regenerating oxidized nicotinamide adenine dinucleotide (NAD+)

(175). This process is essential during glycolysis and other metabolic

pathways where NAD+ serves as a crucial cofactor for many enzymes

(175). At the same time, the excess of lactate produced during aerobic

glycolysis in proliferating cells needs to be exported from the cells to

prevent the buildup of lactate, which could otherwise inhibit glycolysis.

This export is facilitated by proton-linked monocarboxylate

transporters that are dependent on a concentration gradient. Our

group has reported that MDSCs generated during chronic S. aureus
A B

FIGURE 3

MDSC immunosuppressive mechanisms. (A) Granulocytic MDSCs (PMN-MDSC) preferentially use arginase 1 (ARG1), reactive oxygen species such as
superoxide (O2

−) and hydrogen peroxide (H2O2), and peroxynitrite (ONOO−) to inhibit effector T-cell (Teff) responses, whereas monocytic MDSCs
(Monocyte-MDSC) preferentially use nitric oxide (NO), inhibitory cytokines such as TGF-b and IL-10, and the receptors CTLA-4 and PD-1, which
induce anergy and apoptosis after binding their respective receptors in Teff. (B) MDSCs inhibit T-cell activation by excretion of high levels of lactate,
which results in discontinuous glycolysis and impedes NAD+ regeneration from NADH in Teff. LDH, lactate dehydrogenase; NAD+, oxidized
nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; MCT1, monocarboxylate transporter 1. Surface receptors of
human MDSCs are shown in green and red, and surface receptors for murine MDSCs are shown in yellow and red. Created with BioRender.com.
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infection in mice exhibit elevated glycolytic activity and release a high

amount of lactate in the extracellular microenvironment (134). In

further studies, we demonstrated that the high levels of lactate

discharged by MDSCs change the transmembrane concentration

gradient and inhibit lactate removal by activated CD4+ T cells (176).

This results in an intracellular buildup of lactate that hinders the

regeneration of NAD+, inhibits the activity of NAD-dependent

glycolytic enzymes, and discontinues glycolysis (176). Therefore, an

important mechanism of T-cell immunosuppression by MDSCs is

disturbing their capacity to undergo metabolic reprogramming.
5 Clinical relevance and
future perspectives

Targeting regulatory cells could be an attractive option for the

therapy of infectious diseases, in particular those with a chronic

course. However, elimination of regulatory cells could lead to

immune dysregulation, contributing to the development of

autoimmune diseases, inflammatory conditions, and risk of tissue

damage caused by an overactive immune system. Therefore,

modulation of the mechanisms mediating the immune-suppressive

effect of regulatory cells may provide a more nuanced approach

compared to direct elimination of these cells. For example, several

regulatory cell subsets often exert their suppressive effects through the

secretion of immunosuppressive cytokines, such as IL-10 and TGF-b.
Targeting these cytokines or their receptors could be a strategy to

modulate their suppressive activity. Surface molecules on regulatory

cells, such as CTLA-4 and PD-1, are involved in immune

suppression. Blocking these molecules or their ligands can disrupt

the inhibitory signals. These strategies would enable the fine-tuning

of the immune response to infection, promoting an appropriate and

controlled reaction to pathogens while maintaining immune

homeostasis. Additionally, targeting specific mechanisms should be

context specific and consider the individual characteristics of the

different infections. In this regard, precision medicine approaches

that target suppressive mechanisms in a controlled and selective

manner are desired. However, considering the wide spectrum of

immunosuppressive mechanisms with redundant and overlapping

functions in the different subsets of regulatory cells, it is possible to

anticipate that one single strategy might not be sufficient to mount

proper immune responses and effective immunotherapies will require

multifaceted approaches. Therefore, effective immunotherapies will

require combinatorial regimens to restore cell effector functions and
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improve the infection outcome by not only mitigating the effect of

immunosuppressive mechanisms but also incorporating methods to

control tissue damage produced by excessive inflammation.

The complexity of the regulatory network in most infections is a

challenging yet crucial area of research. Understanding the intricate

details of the immune regulatory mechanisms during infections can

unveil critically important features that can inform the development

of targeted therapies and enhance our ability to manipulate immune

responses for improved outcomes in infectious diseases, in

particular those with a persistent or chronic course.
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