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Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells

of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor

microenvironment within which the cancer cells reside. Tumor-associated

macrophages (TAMs) primarily differentiate from peripheral blood monocytes

and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have

been shown to promote tumor growth, tissue remodeling, and angiogenesis.

Furthermore, they can actively suppress acquired immunity, leading to a poorer

prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a

myriad of biologically active molecules including lipids, proteins, mRNA, and

noncoding RNAs, have emerged as key mediators of communication between

tumor cells and TAMs. The exchange of these molecules via exosomes can

markedly influence the tumor microenvironment and consequently impact

tumor progression. Recent studies have elucidated a correlation between

TAMs and various clinicopathological parameters of GC, such as tumor size,

differentiation, infiltration depth, lymph node metastasis, and TNM staging,

highlighting the pivotal role of TAMs in GC development and metastasis. In this

review, we aim to comprehensively examine the bidirectional communication

between GC cells and TAMs, the implications of alterations in the tumor

microenvironment on immune escape, invasion, and metastasis in GC,

targeted therapeutic approaches for GC, and the efficacy of potential GC drug

resistance strategies.
KEYWORDS
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1 Introduction

GC is a malignant tumor originating from the epithelium of the

gastric mucosa, which can be detected in any part of the stomach,

but commonly in the antrum, greater curvature, lesser curvature,

and anterior and posterior wall of the stomach (1, 2). The causative

ingredients of GC are too varied to be fully identified. Among

different elements, Helicobacter pylori (Hp) infection is thought to

be a significant pathogenic key player for GC (3, 4). In the diagnosis

of GC, the early symptoms of GC are not clear; only symptoms such

as epigastric discomfort bear a strong resemblance between diverse

chronic diseases like gastritis and gastric ulcer without specificity,

leading to a very low detection proportion of early GC (5, 6), which

is as high as 90%, so more specific and effective ways of GC

diagnosis are necessary. Nowadays, the therapy for GC is mainly

surgical, combined with perioperative neoadjuvant chemotherapy,

adjuvant chemotherapy, radiotherapy, targeted therapy, and other

comprehensive means (7, 8). However, the initial manifestation of

GC often involves subtle clinical symptoms, which, combined with

the absence of distinctive diagnostic indicators, implies that a

considerable number of patients have already advanced to

intermediate and advanced stages of the disease before being

diagnosed. Consequently, the prognosis for these patients remains

particularly unfavorable, with a low 5-year survival rate. While the

meaning of the paragraph remains the same, the revised version

incorporates more formal language and restructures the sentences

for improved logic and flow (9, 10). Thus, it is extremely significant

to investigate the pathogenesis of GC and seek diagnostic markers

with high specificity for the diagnosis and treatment of GC.

The tumor microenvironment (TME) consists of physical,

biochemical, and cellular components that are linked with

biological processes such as tumor development and tumor

immune escape (11, 12). The function of immune cells in the

tumor microenvironment and tumor malignant progression is of

great importance (13, 14). Different types of cytokines can be

produced by immune cells as a means of exerting negative

regulation on immune function and promoting tumor growth.

Among these, tumor-associated macrophages (TAMs) are the

most abundant (15, 16). Macrophages in the normal body have

valued biological functions, including processing and presenting

antigens, regulating immunity, resisting microorganisms, clearing

foreign bodies, phagocytosis, and tissue remodeling (17–20). In

specific microenvironments, macrophages polarize into subtypes

with various biological capabilities, i.e., M1-type macrophages and

M2-type macrophages (21–23). Inflammatory responses are a

prominent part of the microenvironment of GC immunity.
Abbreviations: GC, gastric cancer; TAMs, tumor-associated macrophages; TME,

tumor microenvironment; Hp, Helicobacter pylori; miRNA, microRNA; lncRNA,

long noncoding RNA; mRNA, messenger RNA; CSCs, cancer stem cells; ECM,

extracellular matrix; TEX, tumor-derived exosomes; PMN, premetastatic niches;

GC-LM, GC liver metastases; MLT, melatonin; mJPYZ, modified JPYZ; GC-exo,

GC-derived exosomes; ERK, extracellular signal-regulated kinase; ApoE,

apolipoprotein E; JPYZ, Jianpi Yangzheng decoction; M2-exos, M2

macrophages; PD-L1, programmed death ligand 1.
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TAMs, among the inflammatory cells involved in the response,

have a prominent role in enhancing the development of GC.

Investigations have found that a large number of various immune

cells can infiltrate both primary and metastatic tumors, in which the

number of TAMs tends to have a momentous predominance (24,

25). The majority of the TAMs have an M2-type phenotype with a

weak antigen-presenting capacity, whose antitumor influences are

inhibited, benefiting tumor growth and metastasis (26). Despite the

fact that the tumor-promoting mechanism of TAMs is not well

understood, the number of TAMs is usually negatively connected

with the prognosis of tumor patients.

Exosomes are lipid microvesicles of endocytotic origin (27, 28),

which play a crucial role in various diseases like cardiovascular

diseases, hematologic diseases, autoimmune diseases, and tumors

(29–32). Exosomes are present in almost all living cells and can exist

stably in diverse body fluids, like saliva, plasma, milk, urine,

cerebrospinal fluid, bile, etc. (33–35). Exosome cytoplasm involves

microRNA (miRNA), long noncoding RNA (lncRNA), messenger

RNA (mRNA), proteins, lipids, and lots of other active ingredients

(36–38). Exosomes may deliver the active ingredients, which they

convey to the target cells through mutual fusion with the cell

membranes of the recipient cells, cytosis, and other modes of

action to impact the function of recipient cells (39–41).

To sum up, this paper offers an overview of the

intercommunication between GC cells and TAMs and the

influence of alterations in the tumor microenvironment on GC

immune escape, invasion, and metastasis, GC-targeted therapeutic

strategies, and the effect on GC drug resistance.
2 The overview of exosomes

Extracellular vesicles (EVs) can carry substances such as

proteins, lipids, and nucleic acids and are structures enclosed by

unit membranes secreted by cells under physiological or

pathological conditions. According to the different secretion

methods, extracellular vesicles can be divided into microvesicles,

exosomes, apoptotic bodies, and migratory bodies. The common

classification of extracellular vesicles and classification criteria are

shown in Figure 1. Cells secrete exosomes with a particle size of

typically 30–150 nm, which are membranous extracellular vesicles

formed prominently through endosomal membrane invaginations

(42–46). Exosomes consist of diverse crucial biomolecules, such as

the four transmembrane protein family (CD9, CD63, CD81),

growth factors (TGFB 1, bFGF), major histocompatibility

complexes (MHC I/MHcII), adhesion proteins, heat shock

proteins, enzymes, lipids, nucleic acids, and a small portion of

genetic material, of which CD9, CD63, CD81, HSP70Alix, etc. have

been considered specific marker proteins in exosome isolation and

identification (47–49). During the formation of vesicles, numerous

biomolecules in the cytoplasm are also encapsulated in the vesicles.

It is a significant reason why exosomes can reflect the cellular status

and disease development process (50–52). Research has shown that

there are varying physiological functions exosomes have that are

derive from dissimilar tissues and cellular sources. Exosome-

mediated intercellular communication is not only involved in the
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regulation of normal physiological processes but also in the

pathological processes of different diseases, including cancer,

which has resulted in a great abundance of interest in the

investigation of tumor diagnosis and treatment (53–56). Scientists

found that TAMs can also exchange information with tumor cells

through exosomes and are instrumental in a variety of tumor

processes (57–59).

Since exosomes change morphology, purity, and biological

activity during isolation and preparation, the characterization of

exosomes becomes one of the key and most difficult issues in new

research (60, 61). Scientists have applied numerous modern

techniques to the characterization of exosomes, including

transmission electron microscopy, dynamic light scattering, nano-

tracking analysis techniques, protein concentration assays, protein

blotting, and flow cytometry (62–65). Transmission electron

microscopy is a kind of microscope that uses an electron beam to

evince the surface or interior of a sample, which allows the

observation of the size and morphology of exosomes without

specific proteins on the surface of the exosomes. Dynamic light

scattering can detect the particle size distribution of exosomes but is

sensitive to external conditions. The nanoparticle tracking analysis

technique is an approach that applies light scattering and Brownian

motion to count exosomes, but it cannot analyze the morphology

and characterize certain proteins of exosomes. Protein blotting and

flow cytometric analysis can take advantage of the principle of

antigen–antibody binding to analyze specific proteins on the surface

of exosomes, but the particle count cannot be known. As a result,

the present study and development of the components and

properties of exosomes still have a huge amount of space. More

modern and advanced technologies are necessary for their

characterization and analysis.
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3 The overview of TAMs

TAMs play a crucial role in the tumor microenvironment and

have been extensively studied in various types of cancer, including

gastric cancer (GC). Except for peripheral vasculature, molecules

involved in signal transduction, the extracellular matrix (ECM), and

tremendous cells without malignant functions are involved in the

complex processes that make up the TME (66–68). TAMs are a type

of immune cell that derives from monocytes and infiltrates the

tumor microenvironment, where they can support tumor growth,

angiogenesis, invasion, and immune suppression (69–71). The

ECM is a key constitutive part of the TME, consisting principally

of reactive tissue components including glycoproteins, collagens,

and many enzymes that have an impact on cell adhesion,

proliferation, and communication. These substances can change

their physical properties, composition, and the environment in

which they live to affect tumor cell migration, while the

concentration of ECM also determines the ratio of tumor cell

migration from one region to another (72–76). Additionally,

nonmalignant cells in the TME are prominently separated into

two primary groups, immune cells and mesenchymal stromal cells,

which stimulate and promote uncontrolled cell proliferation to

affect all stages of carcinogenesis (77–79). In the tumor

microenvironment, immune cells are made up of both adaptive

and intrinsic immune cells (80–82), and the two categories of

lymphocytes, T and B lymphocytes, are essential integrants of

adaptive immune cells. The two kinds of lymphocytes, T and B,

are key ingredients of adaptive immune cells, while DC cells, NK

cells, and macrophages are intrinsic cells involved in nonspecific

immunity. Moreover, the signals delivered by the tumor and taking

part in the responses and activities associated with tumor initiation
FIGURE 1

Classification of extracellular vesicles and classification criteria. (A) EVs are categorized into three main subtypes based on their origin, size, and
content: apoptotic bodies, microvesicles, and exosomes. Apoptotic bodies are larger vesicles released from dying cells during the process of
programmed cell death (apoptosis). Microvesicles, also known as ectosomes, are formed by outward budding and shedding of the plasma
membrane and are typically larger than exosomes. Exosomes, on the other hand, are small vesicles of endocytic origin, originating from the inward
budding of endosomal membranes. (B) The heterogeneity of EVs presents various criteria that can be used for their classification. EVs can be
classified based on factors such as size, density, biochemical composition, biological function, environmental conditions, or the cell of origin. These
classification criteria help in distinguishing and characterizing different types of EVs, which can vary in terms of their cargo, signaling molecules,
and functions.
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and progression can influence these immune cells. Mesenchymal

stromal cells, supportive cells recruited by cancerous tissues from

the adjacent tissue mesenchyme, are vital to tumor formation. The

composition of mesenchymal stromal cells varies among various

kinds of tumors, and they involve endothelial cells, adipocytes,

fibroblasts, and stellate cells, among which endothelial cells not only

form neovessels to draw nutrients from the body for the tumor to

grow but also, during tumor initiation and progression, endothelial

cells assist tumor cells to escape from the immune system and

prohibit them from harming the body’s immune system (83–85).

Another valued cellular component is fibroblasts, which move

tumor cells from the primary tumor site through the blood

system to all parts of the body. Providing a reliable conduit for

endothelial cells by fibroblasts can carry out angiogenesis (86–88).

Adipocytes are specialized cells that regulate energy homeostasis in

the body and can be involved in tumor progression through the

secretion of metabolites, hormones, growth factors, and cytokines

(89–91).

Macrophages exist in almost every tissue and organ of the

human body (92–94), originating predominantly from embryonic

precursors before birth and from monocyte precursors of grown-up

hematopoietic origin after birth. Macrophages, the staple part of the

human phagocytic system, have a host of functions, taking part in

physiological processes containing mammalian-specific and

nonspecific defense (95, 96). Early research has detected that

macrophages principally play a role in enhancing the progression

of inflammation in vivo by phagocytosing bacteria, cellular debris,

parasites, and senescent and abnormal cells, and by boosting the
Frontiers in Immunology 04
body’s self-healing process (97, 98). The proportion of macrophages

in the total mass of cellular tumors in the TME is 15%–20%. They

are the immune cells infiltrating the largest number of cells,

enabling the manipulation and coordination of multiple elements

intervening in tumor initiation, invasion, therapy resistance, and

systemic metastasis (99–101). Some cytokines or signaling

molecules in TME play a vital role in the polarization state and

functional phenotype of macrophages (102). Lymphocytes, natural

killer cells, and Th1 cells secrete IFN-g to transform macrophages

in the resting state into macrophages with antimicrobial

and regulatory phagocytosis capacity , producing the

immunostimulatory factors IL-12 and TNF-a to exert a

proinflammatory progression effect, which is primarily manifested

as inhibition of tumor progression in tumorigenesis, the M1-kind

macrophages. Meanwhile, cytokines secreted by Th2 cells can

activate resting macrophages, involving IL-4, IL-10, and IL-13, to

differentiate into anti-inflammatory macrophages and produce

diverse elements inhibiting inflammation, including IL-10, TGF-

b, and Arg-1, which chiefly facilitate tumor progression during

tumor initiation and progression, M2-type macrophages. M2-type

macrophages, also known as TAMs, are abundant in the tumor

microenvironment of cancer patients, with a predominance of M2-

type, which plays an immunosuppressive role. The polarization

process of macrophages and their characteristics are displayed in

Figure 2. The number of TAMs infiltrated is associated with the

tumor’s pathological stage and lymph node metastasis (103–105).

In boosting tumor metastasis, M2-type macrophages can produce

different sorts of enzymes in the form of paracrine secretion, which
FIGURE 2

Polarization of macrophages and their characteristics. Macrophages undergo differentiation from precursor monocytes into undifferentiated M0
macrophages. In response to various stimuli, M0 macrophages can further differentiate into distinct subpopulations with specific phenotypic markers
and cytokine secretion profiles. M1 macrophages, for instance, are typically induced by Th1 cytokines (e.g., IFN-g) or bacterial lipopolysaccharides
(LPS). This subset of macrophages displays elevated levels of proinflammatory cytokines, including TNF-a, IL-1a, IL-1b, IL-6, IL-12, and IL-23. On the
other hand, M2 macrophages can be further divided into four distinct subpopulations based on the specific activation stimulus received. The
induction of M2a macrophages involves IL-4, resulting in high levels of CD206 expression and increased secretion of TNF-b, IL-10, and IL-4, among
others. M2b macrophages, in contrast, can be induced by both immune complexes (ICs) and LPS, leading to the production of anti-inflammatory
and proinflammatory cytokines such as IL-10, TNF-a, and IL-6. M2 macrophages, induced by glucocorticoids and IL-10, exhibit strong anti-
inflammatory effects on apoptotic cells through the release of high levels of IL-10 and transforming growth factor-beta. Lastly, M2d macrophages
are induced by IL-6 alone and represent a distinct type of M2 macrophage.
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can arouse the destruction of collagen components involved in the

composition of ECM and disintegrate the structure of ECM, which

can benefit the migration of tumor cells (106, 107). Moreover, M2-

type macrophages can release angiogenic molecules and express a

string of enzymes involved in the regulation of angiogenesis to

engage in tumor neovascularization, thereby further contributing to

the malignant behavior of tumors (108–110).
4 Application of TAMs in GCs

In the early stages of GC, TAMs are recruited to the tumor site

through chemokine signals and contribute to the initiation of GC.

They are generally of anM2-like phenotype, which is associated with

immunosuppression and tumor-promoting properties. TAMs

secrete growth factors such as vascular endothelial growth factor

(VEGF) and transforming growth factor-beta (TGF-b), promoting

angiogenesis and tissue remodeling. As the progression of tumor

invasion and metastasis, TAMs facilitate tumor invasion and

metastasis through various mechanisms. They promote the

epithelial-mesenchymal transition (EMT), a process that enables

tumor cells to acquire a more invasive phenotype. TAM-derived

factors, such as matrix metalloproteinases (MMPs), contribute to

extracellular matrix degradation, allowing tumor cells to invade

surrounding tissues and metastasize to distant sites. In the

advanced/metastatic GC, TAMs can create an immunosuppressive

microenvironment by inhibiting T-cell response, promoting

regulatory T-cell (Tregs) accumulation, and producing anti-

inflammatory cytokines like interleukin-10 (IL-10) and TGF-b.
This immune suppression hinders anticancer immune responses

and contributes to therapy resistance in the advanced stages of GC.

There is more research on exosomes, finding that exosomes are

valued in the crosstalk between tumor cells and macrophages.

Recent explorations have also verified that macrophages can

stably take up tumor cell-derived exosomes and can be induced

to shift toward an M2-polarized phenotype, thus affecting tumor

malignant progression, therapeutic resistance, immunosuppression,

and some other processes.
Frontiers in Immunology 05
4.1 Tumor-derived exosomes modulate
macrophage polarization

Rearrangement of cytoskeletal proteins activated by tumor-

derived exosomes (TEX) is a primordial feature of macrophage

activation and maturation, and the latter stimulates paracrine

signaling pathways to enhance tumor growth infiltration, tumor-

linked angiogenesis, tumor tissue inflammation, and immune

remodeling. TEX influences the number and degree of

macrophages that undergo polarization. While activated M1/M2-

type macrophages function through their host tumor, the tumor’s

immune microenvironment also plays a role, such as in tumor

growth, migration, premetastatic niche (PMN) formation, and

metastasis. The potential roles and mechanisms of tumor-derived

exosomes in macrophage polarization are listed in Table 1. Ma et al.

confirmed that ELFN1-AS1 was upregulated in GC tissues and cells

and enriched in GC-derived exosomes. Exosomal ELFN1-AS1

improves cellular capacity, stemness maturity, metastasis, and M2

polarization of GC. The consequences of mechanistic experiments

suggested that ELFN1-AS1 binds miR-4644 and boosts PKM

expression. On top of that, exosomal ELFN1-AS1 can modulate

PKM in a HIF-1a-dependent manner and promote M2 polarization

and macrophage recruitment to regulate glycolysis in GCs (111).

Xin et al. demonstrated that lncRNA HCG18 is enriched in GC-

Exos and is favorable to M2 macrophage polarization. The

outcomes of mechanistic investigations confirmed that lncRNA

HCG18 could decline miR-875-3p in macrophages to strengthen

the expression of KLF4 to inhibit the malignant progression of GCs

and thereby help M2 macrophage polarization (112). Li et al. found

that MIR4435-2HG expression was prominently boosted in GC and

negatively related to the survival of GC patients, and that inhibition

of MIR4435-2HG in cells decreased the viability and migration of

GC cells. On top of that, exosomes deliver MIR4435-2HG, which

induces macrophage M2 polarization by MKN45 cells, to

macrophages. The outcomes of mechanistic studies demonstrated

that MIR4435-2HG could benefit the Jagged1/Notch and JAK1/

STAT3 pathways in macrophages to promote the malignant

progress ion of GC (113) . Song et a l . detec ted that
TABLE 1 Potential roles and mechanisms of tumor-derived exosomes in macrophage polarization.

Molecular Parent
cell/

source

Target
cell

Target Biological function Reference

ELFN1-AS GC cells – ELFN1-AS1/miR-
4644/PKM

Enhance the cellular capacity, stemness, metastasis, and M2
polarization of GC, and regulate the glycolysis process

(111)

HCG18 GC cells TAMs HCG18/miR-875-
3p/KLF4

Promote M2 macrophage polarization (112)

MIR4435-2HG GC cells TAMs MIR4435-2HG-Jagged1/
Notch-JAK1/STAT3

Promote cell growth and migration and M2
macrophage polarization

(113)

hsa_circ_0017252 GC cells TAMs hsa_circ_0017252/miR-
17-5p

Inhibit cell migration and M2 macrophage polarization (114)

miR-519a-3p GC cells TAMs miR-519a-3p/DUSP2/
MAPK/ERK

Promote M2 macrophage polarization (115)
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hsa_circ_0017252 was notably downregulated in GC tissues, which

could sponge miR-17-5p to inhibit GC cell migration. Furthermore,

hsa_circ_0017252 was enriched in GC cell exosomes and could be

sent to macrophages to effectively inhibit macrophage M2-like

polarization (114). Qiu et al. suggested that miR-519a-3p

expression was markedly raised in the serum exosomes of

patients with GC liver metastases (GC-LM) and that high

expression of exosomal miR-519a-3p also predicted a poorer

prognosis for individuals. Mechanistic tests confirmed that exo-

miR-519a-3p could activate the MAPK/ERK pathway by targeting

DUSP2, resulting in M2-like polarization of macrophages. M2-

polarized macrophages further facilitate GC-LM formation by

inducing angiogenesis and accelerating the formation of

intrahepatic premetastatic niches (115).

Apart from ncRNAs, the regulatory effects of GC-derived

exosomes on TAMs can also be affected after curing GC cells

with drugs. Melatonin (MLT), a bioactive substance acting

physiologically, was first separated and extracted from the bovine

pineal gland (116, 117), which plays a valued role in the regulation

of circadian rhythm, immunity, antioxidant capacity, and lipid

metabolism in the organism (118, 119). Wang et al. detected that

MLT treatment of GC cells changed the expression of microRNAs

in cellular exosomes and regulated PD-L1 levels in macrophages,

hence inhibiting their antitumor activity. Moreover, MLT also

improved the secretion levels of TNF-a and CXCL10 in

macrophages, and the exosomes secreted by MLT-treated GC

cells promoted the recruitment of CD8+ T cells to the tumor site,

hence inhibiting tumor growth (120). Wu et al. verified that

modified Jianpi Yangzheng decoction (JPYZ) (mJPYZ) declined a

great number of serum exosome PKM2 in advanced GC patients

and xenograft tumor models. Furthermore, they are convinced that
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PKM2 is a packaging protein for GC cell exosomes, with mJPYZ

reducing the delivery of tumor cell exosomal PKM2 to macrophages

and alleviating exosomal PKM2-induced M2-TAM differentiation

in the tumor microenvironment, consequently inhibiting GC

progression. To conclude, macrophage-induced M2 differentiation

can be promoted by PKM2-containing GC exosomes. Meanwhile,

mJPYZ can inhibit the delivery of PKM2 to assist in the clinical

treatment of GC (121).

PD-1 is an essential immunosuppressive molecule, a member of

the CD28 superfamily, expressed on the surface of activated T and B

lymphocytes (122–124). PD-L1 is expressed by tumor cells,

bringing about the continuous activation of the PD-1/PD-L1

signaling pathway in the tumor microenvironment, in which

negative feedback inhibits the activity of T/B lymphocytes,

thereby mediating the occurrence of immune escape from tumor

cells (125–127). It has been confirmed that the PD-1/PD-L1

signaling pathway is involved in the mechanism of the

development of multiple solid tumors, and high expression of

PD-L1 is relevant to poor prognosis. The targeted therapeutic

strategies against TAM/M2 macrophages by regulating PD1/PD-

L1 are shown in Figure 3. Wang et al. identified a macrophage

primary subpopulation (PD1+ TAMs) constitutively expressing

PD1 and aggregates in advanced GCs. These PD1+ TAMs

exhibited M2-like surface features, in which the expression of

CD206, IL-10, and CCL1 was notably increased, whereas the

expression of MHC class II, CD64, and IL-12, as well as the

phagocytosis of ovalbumin, were markedly decreased. Moreover,

PD1+ TAMs triggered PD1 signaling, followed by inhibition of

CD8+ T-cell function. Further experiments detected that GC-

derived exosomes effectively induced PD1+ TAM production and

generated a large number of IL-10, which impaired CD8+ T-cell
FIGURE 3

Targeted therapeutic strategies against TAM/M2 macrophages. In the tumor microenvironment, it has been observed that T cells display a notable
level of PD-1 expression. This PD-1 molecule can interact with the ligand PD-L1, which is found on M2 macrophages as well as cancer cells. Such
interactions have been found to result in the deactivation of T cells. Therefore, an effective strategy to restore the anticancer activity of T cells
involves targeted inhibition of the PD-L1/PD-1 pathway. By suppressing this pathway, T cells can be reactivated, thereby reinstating their ability to
combat cancer. Additionally, it has also been shown that repolarizing M2 macrophages to adopt the M1 phenotype can lead to a reduction in PD-L1
expression within the tumor microenvironment. Consequently, this further supports the development of various drugs that aim to repolarize TAMs/
M2 macrophages.
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function and contributed to the malignant progression of GC (128).

Gu et al. verified that GC-derived exosomes (GC-exo) are numerous

in the lungs and can be taken up by macrophages .

Immunosuppressive phenotypic differentiation of macrophages in

turn can be induced by them, which boosts the expression of PD-L1

through activation of the extracellular signal-regulated kinase

(ERK) signaling pathway. High-throughput sequencing showed

that miR-92a-3p was added to GC-exo and activated ERK

signaling by inhibiting PTEN expression. Inhibition of ERK

signaling with PD98059, a specific inhibitor, notably suppressed

PD-L1 express ion in macrophages and reversed the

immunosuppressive impact of PMN, greatly inhibiting GC cell

colonization in the lung (129).
4.2 Macrophage-derived exosomes are
involved in GC progression

As a key constituent of the TME, macrophages frequently

exhibit characteristics associated with an M2-like phenotype and

collaborate with cancer cells to promote tumorigenesis, tumor

progression, and resistance to therapy. The influence exerted by

macrophages on the therapeutic response of cancer cells has

garnered attention, leading researchers to explore their potential

as targets for anticancer treatment. However, precise details

regarding the intricate interactions between anticancer therapies

and TAMs remain largely unknown.

4.2.1 Regulating cancer proliferation, migration,
and invasion

Experiments have shown that TAMs can manage the growth

and metastasis of GC cells through exosomes and hereat encourage

malignant tumor progression (Table 2). Zheng et al. proved that

TAMs were enriched in GCs and could be converted to M2

polarization to foster the migration of GC cells. Otherwise,

apolipoprotein E (ApoE) was also increased in M2 macrophages

and could penetrate GC cells, activating the PI3K-Akt signaling

pathway in recipient GC cells to remodel the cytoskeleton to

support migration. To sum up, our findings indicate that

exosome-mediated transfer of functional apolipoproteins from

TAMs to tumor cells fosters GC cell migration (130). Zhang et al.

proved that treatment of GC cells with TAM-exos notably

promoted cell invasion and migration, while treatment with JPYZ

markedly inhibited the expression of miR-513b-5p in TAM-exos.

Mechanistic experiments indicated that miR-513b-5p could target

and inhibit PTEN and then activate the AKT/mTOR signaling
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pathway, thus encouraging GC invasion and metastasis in vivo and

in vitro. To conclude, TAM exosomes contain miR-513b-5p,

leading to GC invasion and migration, and JPYZ may be an

effective inhibitor (131). Yang et al. indicated that M2

macrophages encouraged GC cell proliferation while M1

macrophages did not, and using the exosome inhibitor GW4869

reduced the role of M2 macrophages. Also, miR-487a was increased

in the exosomes of M2 macrophages. Delivering miR-487a to GC

cells can induce cell proliferation and tumorigenesis. Mechanistic

analysis implied that miR-487a fostered GC proliferation and

tumorigenesis by targeting TIA1 (132).

Based on this, we can design targeted inhibitors to inhibit the

malignant progression of GC and make clinical therapy come true.

Previously, miR-21 could work as a pro-oncogenic factor in GC and

foster tumor progression by targeting multiple downstream genes.

Wang et al. detected that loading miR-21 inhibitors into

macrophage-derived exosomes and delivering them to BGC-823

cells inhibited the migration ability of BGC-823 GC cells and

encouraged apoptosis. Mechanistic investigations suggested that

miR-21 could target the expression of PDCD4 to hold back

apoptosis of GC cells, consequently boosting carcinogenesis.

Briefly, the exosome-mediated transmission of miR-21 inhibitor

possesses more functional inhibition and lower cytotoxicity with

high efficiency (133).
4.3 Generating drug resistance

Drug resistance is one of the most important challenges in

tumor therapy, which involves the resistance of tumor cells to the

drug, consequently impairing the therapeutic effect and even

causing treatment failure (134–136). This complex process

includes multiple elements such as genetic mutations, epigenetic

alterations, signaling pathway abnormalities, and the tumor

microenvironment (137–140). The potential roles and

mechanisms of TAM-derived exosomes in the drug resistance of

GC are displayed in Table 3. Zheng et al. found that exosomes from

M2 macrophages (M2-exos) facilitated DDP resistance in GC cells,

and miR-21 grew in exosomes and cell lysates isolated from

M2-polarized macrophages. Mechanistic experiments implied that

macrophages could send miR-21 to GC cells through exosomes,

which could downregulate the PTEN-activated PI3K/AKT signaling

pathway to inhibit apoptosis, incurring the development of DDP

resistance in GCs (145). Gao et al. discovered that both macrophage

and macrophage-derived exosomes prominently encouraged

doxorubicin resistance in GC cells, with miR-223 rising in
TABLE 2 Potential roles and mechanisms of TAM-derived exosomes in cell proliferation and migration of GC.

Molecular Parent cell/source Target cell Target Biological function Reference

ApoE TAMs GC cells ApoE/PI3K-Akt Promote GC metastasis (130)

miR-513b-5p TAMs GC cells miR-513b-5p/PTEN/AKT/mTOR Promote GC invasion and metastasis (131)

miR-487a TAMs GC cells miR-487a/TIA1 Promote cell proliferation and tumorigenesis (132)

miR-21 TAMs GC cells miR-21/PDCD4 Promote GC metastasis (133)
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macrophage-derived exosomes and being transmitted to GC cells.

Inhibition of exosomal miR-223 expression in macrophages

decreased the biological effects of exosomes on GC cells.

Mechanistic experiments found that exosomal miR-223 boosted

doxorubicin resistance in GC cells by inhibiting the expression of F-

box and WD repeat domain-containing 7 (FBXW7). Also, miR-223

is enriched in the plasma exosomes of GC patients and is highly

associated with doxorubicin resistance in GC patients (141). Cui

et al. found that M2-polarized macrophages were considered to

send exosomes of miR-588 to GC cells and strengthen the resistance

of GC cells to DDP, and overexpression of miR-588 improved the

growth of DDP-resistant GC cells. Mechanistic experiments

indicated that miR-588 could encourage the proliferation and

apoptosis of DDP-exposed GC cells by targeting CYLD. In

summary, M2 macrophage exosome-derived miR-588 strengthens

the resistance of GC cells to DDP by partially targeting CYLD (142).

Xin et al. proved that the expression of LncRNA CRNDE was

signally boosted in both cancer tissues and TAMs of GC patients,

which was enriched in M2-exo and conveyed from M2

macrophages to GC cells by exosomes. Inhibition of CRNDE

expression in M2-exo inhibited the proliferation and increase of

CDDP-treated GCs. The outcomes of mechanistic experiments

suggested that the ubiquit ination of developmental ly

downregulated protein 4-1 (NEDD4-1)-mediated phosphatases

and tensin homologs (PTEN) expressed was improved by

CRNDE in neural precursor cells. Anyway, silencing CRNDE in

M2-exo strengthened the sensitivity of GC cells to CDDP, whereas

inhibition of PTEN expression weakened this sensitivity (143). Yu

et al. confirmed that circ-0008253 is enriched in M2-Exos and can

be conveyed from M2-Exos to GC cells. Overexpression of circ-

0008253 signally improved cell viability, tumor size, and ABCG2

levels and weakened the sensitivity of GC cells to OXA (144).

4.3.1 Promoting immune escape of tumor cells
Tumor immune escape is a process in which tumor cells evade

the surveillance of the immune system, suppress the anti-tumor

immune response, and enhance the proliferation, invasion, and

metastasis of tumor cells (146–148). The elements (Table 4)

affecting tumor immune escape are composed of the tumor cells

themselves and the tumor-induced immunosuppressive

microenvironment (156–158). Li et al. proved that miR-16-5p

grew in M1 macrophage exosomes, was sent to GC cells, and
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inhibited tumor formation in vitro and in vivo by detecting PD-

L1. Also, exosomal miR-16-5p triggers T-cell immune responses

and thus inhibits GC progression (159). Wang et al. proved that

M2-GC cells can absorb and internalize exos, promoting cell

proliferation and migration and inhibiting apoptosis. The

consequences of mechanistic experiments demonstrated that M2-

Exos could improve the phosphorylation of P38 and the expression

of programmed death ligand 1 (PD-L1) and therefore help GC

progression, achieving immune escape through the increase in the

expression of PD-L1 (160).
5 Prospects and conclusion

The onset and progression of GC are complex and closely

linked with environmental factors, genetic factors, and H. pylori

infection (161, 162). Risk factors for the development of gastric

cancer include men, advanced age, H. pylori infection, dietary

structure, irregular eating, alcohol abuse, and genetic

susceptibility, while increased intake of vegetables and fruits rich

in vitamins and fiber can lessen the overall incidence ratio in the

population (163, 164). Therapeutically, the cure of gastric cancer is

primarily based on surgery combined with perioperative

neoadjuvant chemotherapy, adjuvant chemotherapy, radiotherapy,

targeted therapy, and other comprehensive means (165, 166). At

that moment, the treatment of gastric cancer, containing

immunotherapy, gene therapy, and targeted therapy, is widely

being investigated, which is necessary to reveal the molecular

mechanism of gastric cancer and identify more effective

therapeutic targets and new biomarkers.

Exosomes serve as primary mediators of intercellular

communication and possess the ability to alter the fate of both their

own and other cells. Their impact on tumors is evident through their

capacity to enhance tumor proliferation and drug resistance, initiate

the formation of myofibroblasts, promote angiogenesis, facilitate the

establishment of a premetastatic ecological niche, and induce

immunosuppression. Extensive investigation has demonstrated the

involvement of exosomes in numerous key biological processes,

including angiogenesis, proliferation, invasion, and migration, as

well as the recurrence of gastric cancer (GC). Furthermore,

exosomes play a significant role in regulating drug resistance in GC

cells, thereby contributing to the progression of GC. The presence of
TABLE 3 Potential roles and mechanisms of TAM-derived exosomes in drug resistance of GC.

Molecular Parent
cell/source

Target
cell

Target Biological function Reference

miR-21 TAMs GC cells miR-2/PTEN/
PI3K/AKT

Inhibit cell apoptosis and induce DDP resistance (130)

miR-223 TAMs GC cells miR-223/FBXW7 Promote doxorubicin resistance (141)

miR-588 TAMs GC cells miR-588/CYLD Promote cell growth and induce DDP resistance (142)

CRNDE TAMs GC cells CRNDE/NEDD4-
1/PTEN

Promote cell growth and induce CDDP resistance (143)

circ-0008253 TAMs GC cells circ-0008253/ABCG2 Promote cell viability, and tumor size, and reduce sensitivity
to OXA

(144)
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various biologically active substances within tumor cell exosomes

renders them potential candidates for early diagnosis of GC.

Moreover, their biocompatibility allows for their utilization as

carriers of chemotherapeutic and immunotherapeutic drugs,

facilitating drug delivery across biological barriers and improving

drug targeting, thereby minimizing undesirable side effects. The

promising capability of exosomes as carriers of drug-loaded cargo

directed toward target cells underscores their vast potential for

future applications.

As a chief infiltrating cell subpopulation in TME, the key role

of macrophages in tumor progression has attracted great attention.

TAM is an essential part of TME in diverse tumors and plays a

significant role in the genesis, progression, angiogenesis, and

immunosuppression of abundant cancers (167–170). Furthermore,

TAM infiltration, connected with the prognosis of many tumors, can

be taken advantage of as a prognostic indicator and a novel

therapeutic target for many tumors (171–173). As a result, further

comprehension of the interaction of TAM with tumor cells and the

specific mechanism of immunosuppression in TME can help optimize

the therapeutic regimen, and disrupting the malignant interactions

between TAM and tumor cells can benefit and inhibit tumor

progression. TAM is a vital part of the tumor microenvironment of

GCs, influencing the malignant biological behaviors of GCs and

playing an important role in the genesis and metastasis of GCs

(174–176). In the tumor microenvironment, TAM produces a lot of

inflammatory factors, growth factors, chemokines, and proteases

through mutual crosstalk with GC cells and a variety of other cells,

which play active roles in tumor growth, inhibition of apoptosis,

angiogenesis, and lymphatic metastasis (177–179). Additionally,

detecting the expression levels of these associated substances in GC
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patients helps judge the therapeutic effects and prognosis of GC. Thus,

an in-depth understanding of the role of TAM-secreted related

substances in GC is helpful in finding new ideas for the treatment

of GC. As a prominent communication medium between cancer cells

and immune cells, exosomes can contain changes in immune cells in

tumor patients, and alterations in immune cell phenotype and

function contribute to GC progression and immunosuppression.

Tumor progression can be accelerated by different cells in the

tumor microenvironment through different immune escape

mechanisms, like secretion of immunosuppressive factors,

impaired antigen presentation, or apoptosis induction (180, 181).

Exosomes play a dual role in GC progression, but the exact

mechanism of action of exosome-stimulated immune effects is

still unknown. As immune diagnosis and therapy progress in

leaps and bounds, in the research relevant to GC, exosomes, and

immunity, we should concentrate on the mechanism of exosomes

acting on tumor cells and immune cells, comprehend how

exosomes transport biomolecules to target cells and make

immune influences, search for more precise immunotherapeutic

targets, and provide a more solid and powerful experimental

research basis for the clinic (182–184). Moreover, the worth of

exosomes in the clinical diagnosis and treatment of GC, as well as in

the prediction of recurrence and metastasis, needs to be further

certified before translation to the clinic, with the target of offering a

new strategy for the early diagnosis and individualized treatment of

GC and a new hope for GC patients (185–187).

Briefly, this paper reviewed the interactions between GC cells

and TAMs and the effects of alterations in the tumor

microenvironment on GC, with an opinion to offer a theoretical

basis and foundation for the clinical diagnosis and therapy of GC.
TABLE 4 Exosome-mediated immune escape of tumor cells.

Secreted
cells

Recipient
cells

Target Role and mechanism in immune suppression Reference

Exosomal miRNAs

miR-1246 Colon cancer Macrophages TGF-
b signaling

miR-1246-expressing TAMs have enhanced TGF-b signaling, which increases
the Treg population in mouse tumors and promotes immune suppression.

(149)

miR-23a-3p Hepatocellular
carcinoma

Macrophages Akt-
PDL1

pathway

miR-23a-3p inhibits PTEN and induces PDL1 expression, which decreases the
CD8+ T-cell ratio and promotes T-cell apoptosis.

(150)

miR-208b Colorectal
cancer

T cells Cell death
factor

4 (PDCD4)

PDCD4 promotes CD4+ Treg expansion, which promotes CRC growth and
oxaliplatin resistance.

(151)

miR-107 Gastric cancer MDSC DICER miR-107 targets 3′UTRs of DICER and PTEN in MDSCs. DICER
downregulation promotes MDSC expansion, whereas PTEN inhibition

upregulates the PI3Kinase pathway and promotes proliferation.

(152)

Exosomal LncRNAs

TUC339 Hepatocellular
carcinoma

THP1
monocytes

IL-1b,
TNF-

a, CD86

TUC339 overexpression decreases production of proinflammatory cytokines IL-
1b and TNF-a, T-cell activator CD86 expression, and phagocytic activity in

THP1 cells.

(153)

RPPH1 Colorectal
cancer

Macrophages RPPH1 RPPH1 increases the expression of M2 macrophage markers CCL17, CCL18,
CXCL8, IL-10, and TGF-b. M2-polarized macrophages promote CRC

proliferation and metastasis.

(154)

CRNDE-h Colorectal
cancer

CD4+ T cells RORgT RORgT binds to IL-17 promotor and triggers CD4+ T-cell differentiation into
immunosuppressive IL-17-producing Th17 cells.

(155)
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