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Despite the numerous advantages of allogeneic hematopoietic stem cell transplants

(allo-HSCT), there exists a notable association with risks, particularly during the

preconditioning period and predominantly post-intervention, exemplified by the

occurrence of graft-versus-host disease (GVHD). Risk stratification prior to symptom

manifestation, along with precise diagnosis and prognosis, relies heavily on clinical

features. A critical imperative is the development of tools capable of early

identification and effective management of patients undergoing allo-HSCT. A

promising avenue in this pursuit is the utilization of proteomics-based biomarkers

obtained fromnon-invasive biospecimens. This review comprehensively outlines the

application of proteomics and proteomics-based biomarkers in GVHD patients. It

delves into both single proteinmarkers and protein panels, offering insights into their

relevance in acute and chronic GVHD. Furthermore, the review provides a detailed

examination of the site-specific involvement of GVHD. In summary, this article

explores the potential of proteomics as a tool for timely and accurate intervention in

the context of GVHD following allo-HSCT.
KEYWORDS

allogenic stem cell transplantation, graft-versus-host-disease, biomarker,
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1 Background on graft-versus-
host-disease

In hematology, precision medicine has made strides,

particularly in bone marrow transplants (BMT) and targeted

therapies transforming blood disorder management. BMTs recent

safety profile, with transplant-related mortality below 30% and a 30

to 70% risk of graft-versus-host disease (GVHD), positions it as a

universal option. However, advances in genetics, molecular biology,

and immunology have led to targeted therapeutics, reducing BMT

necessity in some cases.

Currently, allogenic hematopoietic stem cell transplants (allo-

HSCT), using bone marrow, peripheral blood stem cells (PBSCs), or

cord blood, are increasingly performed globally. Allo-HSCT holds a

great potential of curing many malignant and non-malignant

hematologic disorders, subjected to specific conditions (1). Risk

factors include human leukocyte antigen (HLA) mismatch, female

donors for male recipients, and total body irradiation.

Complications post-allo-HSCT involve infections, GVHD, and

relapse, with risk assessment relying on clinical characteristics

(2, 3).

GVHD is a life-threatening complication that can occur after

the allo-HSCT. About 30 to 80% of allo-HSCT recipients develop

acute GVHD (aGVHD) and around 50% chronic GVHD (cGVHD)

(4). In this context, GVHD arises when immunocompetent T cells

from the donated tissue (the graft) identify the recipient (the host)

as foreign. This recognition triggers an immune response that

activates donor T cells, enabling them to develop cytolytic

capacity and attack the recipients cells carrying foreign antigens

(5). In hematological malignancies, there is a fine balance between

the harmful consequences of GVHD and the therapeutic effects

produced when donor lymphocytes attack recipient malignant cells,

in graft versus leukemia/tumor (GVL) effect.

In aGVHD, the skin, liver or gastrointestinal tract can be

affected in about 2 to 12 weeks after allo-HSCT, but there are

situations when aGVHD appears before or after this interval. A

cascade of events initiated by the activation of innate immune cells

and subsequent tissue injury induces aGVHD, which is additionally

exacerbated by the engagement of adaptive immune responses. The

hallmark of aGVHD is the infiltration of activated donor T cells,

predominantly CD4+ cells, into host tissues, driven by their

recognition of the recipients tissues as allo-antigenic. This process

results in severe inflammation that further amplifies the immune

response, leading to a cytokine storm. In cytokine storm, elevated

levels of circulating cytokines and immune cell hyperactivation

occurs. The intricate interplay between innate and adaptive

immunity during aGVHD underscores the multifaceted nature of

this condition, necessitating a comprehensive understanding of the

underlying immunological mechanisms for the development of

effective therapeutic strategies. The dynamics of aGVHD

pathogenesis, particularly the contributions of specific immune

cell subsets and the cytokine storm, is crucial for both

understanding the disease and for identifying new biomarkers to

help early diagnosis, prognosis and targeted interventions to

improve clinical outcomes.
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Additionally, cGVHD can develop within 4 to 6 months post-

allo-HSCT, following aGVHD or in patients without any prior

complications. This condition is similar to an autoimmune disease,

involving, besides donor T cells, extensive B cell activation, the release

of pro-inflammatory cytokines that can affect the skin, mouth, eyes,

gastrointestinal tract and the liver. The pathophysiology of cGVHD

involved 3 stages (1): high production of inflammatory cytokines

(interleukin-1 (IL-1), IL-6, TNF-a) and expression of antigens of the

major histocompatibility complex (MHC) that stimulate antigen-

presenting cells to interact with the donor T cells (2), this interaction

leads to the activation of T cells which then release additional

inflammatory cytokines (IL-2, Interferon- g (INF-g)) and (3) the

migration of cytotoxic T lymphocytes and natural killer cells to

specific organs, producing tissue damage (6).

GVHD is an important cause of non-relapse mortality (NRM),

accounting for about 11% deaths in patients receiving allo-HSCT

(7). The need for risk stratification for GVHD is high, due to

problems associated with immunosuppression. It is either not

aggressive enough leaving patients with a high GVHD risk

vulnerable, or it is too aggressive leading to infections and other

complications (3, 8).

A major concern consists in the development of tools capable of

(i) timely identification of patients at risk for GVHD, (ii) invasive

procedures avoidance and (iii) timely intervention, one such option

could be a biomarker. Currently, there is no validated specific

biomarker for GVHD. In the clinical scenario the diagnosis is

confirmed through analysis of the biospecimen of the involved site.

As such, fast and organ-specific diagnosis of GVHD based on

biomarkers can lead to targeted interventions, and prognosis

biomarkers can assist in the process of decision making for

treatment. Until recently, biomarkers were identified by

hypothesis-driven approaches, considering the pathophysiologic

role of specific molecules in GVHD, such as miRNAs and cellular

biomarkers for GVHD (2, 9).

The aim of this paper is to review the potential candidate

biomarkers derived from unbiased approaches, facilitated by the

recent advancements in proteomics a robust high-throughput

technique. These biomarkers may or may not have a direct

pathophysiologic link to GVHD; instead, they might emerge due

to the condition itself or other unexplored interactions.
2 Proteomics as the key strategy for
maximizing minimally invasive
biopsies towards biomarker discovery

A biomarker is defined by the Food and Drug Administration -

National Institute of Health (FDA-NIH) Biomarker Working

Group as “a characteristic that is measured as an indicator of

normal biological processes, pathogenic ones, or a response to an

exposure or intervention” (10). Biomarkers have diverse

applications, guiding healthcare interventions for maximum

patient advantage. They are commonly utilized for disease

diagnosis, risk-based population screening, evaluating disease

complications and therapy effectiveness. Furthermore, they
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facilitate disease trajectory prediction, aid therapy selection, and

assess novel drug effectiveness and safety. Thus, biomarkers can be

diagnostic biomarkers, prognostic biomarkers and theranostic

biomarkers (11).

An ideal biomarker should be easily quantifiable, allowing for

simple procurement of biological specimens and employing a

financially viable quantification method. It is crucial for a

biomarker assay to demonstrate reproducibility, sensitivity (SEN),

and specificity (SPE), providing accurate results for clinicians to

make informed therapeutic decisions. The efficacy of a biomarker

depends on its strong correlation with treatment responses. To

establish clinical applicability, a comprehensive series of assays in

both preclinical and clinical settings is necessary. Following

the identification of a prospective biomarker candidate,

validation processes, rigorous evaluation, and refinement through

clinical investigations are conducted before approval and

commercialization (11).

In the development of GVHD biomarkers, optimizing statistical

test performance and determining cut points are critical. Bidgoli

et al. (12) emphasized the importance of Receiver Operating

Characteristic (ROC) curves and Area Under the Curve (AUC) in

assessing assay performance. SEN and SPE, represented by ROC

curves, reflect true positive and true negative rates, respectively.

Positive and negative predictive values are calculated considering

both cut points and GVHD incidence, with the latter being

particularly relevant in HCT. Tailoring biomarker cut points for

clinical use involves testing multiple values to balance intervention

efficacy and toxicity. Hazard ratio (HR) is another key parameter

used to gauge the impact of an intervention on a specific outcome

over time. In biomarker discovery, HR helps evaluate the link

between a biomarkers expression and the timing of an event,

suggesting its potential as a prognostic indicator (13). Clinical

trials using biomarkers for patient selection have a higher

likelihood of success compared to those lacking biomarkers (14).
2.1 Proteins as a valuable biomarker source

Despite advances in genomics and technology, clinical biomarker

discovery faces persistent challenges. Solely focusing on genetic

abnormalities does not fully capture the complexity of disease

biology, involving interactions between genetic anomalies,

epigenetics, post-translational modifications, and immune responses

(15). Proteins, as structural and signaling entities, are pivotal in

understanding disease characteristics and serve as key drug

intervention targets. Exploring the proteome, representing the entire

set of proteins expressed under specific conditions, provides valuable

insights into their functions, interactions, and roles in biological

systems. Notably, identifying proteins and monitoring their levels in

biological samples dynamically reflects the cumulative impact of

genetic and epigenetic changes, crucial for understanding functional

disease biology and guiding therapeutic strategies (16, 17).

Exploring biomarkers from both membrane-bound and soluble

protein forms is intriguing. Membrane-bound proteins are crucial

for signaling, transport, and adhesion, with changes indicating

disease signatures (18). Simultaneously, measuring soluble
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proteins in bodily fluids offers a non-invasive and dynamic

approach for biomarker discovery, providing real-time insights

into physiological states. This versatile method applies across

diseases, identifying diagnostic, prognostic, and therapeutic

indicators. Soluble biomarkers, exemplified by soluble immune

checkpoints, have emerged as dynamic molecules with significant

physiological roles. The intricate network of immune checkpoints,

encompassing diverse stimulatory and inhibitory pathways, plays a

pivotal role in fine-tuning immune responses. Notably, molecules

like Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-

lymphocyte associated protein 4 (CTLA4), and their ligands have

emerged as focal points for anti-cancer immunotherapy, while

other checkpoint pathways contribute to the immunopathogenesis

of human diseases as critically analyzed by Riva A (19). Beyond the

traditional view of membrane-bound systems, immune checkpoints

also manifest as soluble forms (sCRs), actively regulating immune

responses both locally and systemically. In a comprehensive review

by Niu et al. (20), the roles of sPD-1 and sPD-L1 in cancer are

explored, shedding light on their synthesis, release, and alternative

mRNA splicing mechanisms. The study suggests that PD-1 may

function as an immune stimulator, in contrast to its membrane-

bound counterpart, while sPD-L1 retains suppressive activity. The

review also proposes the intriguing idea that sCRs could act as

decoy sponges for therapeutic blocking antibodies, impacting

resistance to immunotherapy and disease progression. The

complexity of sCR networks, disease-specific signatures, and the

persistence of sCR “imprinting” post-treatment pose challenges

(21–24). The articles collectively support the hypothesis that

soluble isoforms of immune checkpoints may exhibit distinct

functions compared to their membrane-bound counterparts.

Furthermore, the existence of various isoforms for each sCR and

soluble receptor-ligand complexes underscores the need for

standardized measurement criteria and open comparisons of

antibody clones. In conclusion, unraveling the intricacies of the

sCR system holds promise for advancing both basic and

translational research, providing valuable insights into their roles

as disease biomarkers and potential targets for pharmacological

interventions and immunotherapy. Nevertheless, analyzing both

forms enhances our understanding of disease biology, supporting

precision medicine. This dual approach boosts the potential for

discovering robust biomarkers, influencing disease diagnosis,

prognosis, and treatment (12).
2.2 Proteomics as a discovery instrument

Proteomics, an ‘omics strategy, is crucial for profiling and

quantifying proteins in a biospecimen under specific conditions.

This involves investigating protein abundances, protein-protein

interactions, and the functional roles of proteins in diverse

conditions. Proteomics methodologies are classified as low-

throughput and high-throughput. Low-throughput approaches

include antibody-based techniques like Enzyme-Linked

Immunosorbent Assay (ELISA) and Western blotting (WB),

relying on antigen-antibody interactions for protein detection.

Electrophoresis methods, such as two-dimensional gel
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electrophoresis and sodium dodecyl-sulfate polyacrylamide gel

electrophoresis (SDS-PAGE), separate proteins based on

characteristics like mass, charge, or isoelectric point, followed by

identification using molecular weight standards or mass

spectrometry (MS). Chromatography, another separation

technique, aids in isolating and purifying proteins through ion-

exchange, size exclusion, and affinity chromatography.

Downstream analyses, including MS, contribute to protein

identification and quantification post-separation (25).

High-throughput methodologies in proteomics involve affinity

binder techniques and MS. Affinity binder techniques, such as

microarrays and multiplex arrays, use specific antibodies and

aptamers to capture target proteins (26). Microarray research,

particularly in the context of cancer and hematologic disorders,

has identified candidate diagnostic biomarkers for GVHD. MS,

employed in both top-down (intact protein analysis) and bottom-

up (protein digestion to peptides before analysis) settings, involves

ionization, separation, and detection of proteins or peptides.

Ionization modes like electrospray ionization and matrix assisted

laser desorption/ionization (MALDI), along with mass analyzers

like time-of-flight and quadrupole, contribute to accurate protein

identification, including isoforms and posttranslational

modifications. MS-based protein quantification, especially with

tandem MS (MS/MS), is highly accurate and relies on mass

spectra matched to sequence databases (27). Best practices for

protein-based biomarker discovery and validation are discussed

elsewhere (28). The preferred high-throughput approaches for

biomarker discovery, including those for GVHD, involve bottom-

up proteomics and affinity-based methods (29). Figure 1 illustrates

the advantages and disadvantages of these proteomics methods in

the context of GVHD biomarker discovery. Proteomics, as a

prominent ‘omics technology, has witnessed significant progress,

overcoming challenges and contributing to the pursuit of protein-

based biomarkers for precision medicine in recent years (30).
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2.3 Biomarker panels

Efficiently measuring multiple markers can be achieved through

multiplexing techniques, which allow simultaneous detection of various

biomolecules in a single assay. Multiplexing enhances throughput,

conserves sample volume, and reduces costs compared to running

individual assays for each marker. Technologies such as multiplex

immunoassays, microarrays, and MS enable the detection of multiple

markers within a single experimental run. Additionally, advances in

high-throughput screening methods and automation contribute to

efficiency by streamlining the workflow. Choosing an appropriate

multiplexing platform based on the characteristics of the markers and

the research objectives ensures a comprehensive and resource-effective

approach to measuring multiple biomarkers simultaneously (31).

Measurements of individual candidate levels are not always

relevant or specific. That is why their use in combination of multi-

marker panels can bring an increase in SEN and SPE. MS based

proteome studies towards biomarker discovery for GVHD accurately

distinguished GVHD samples from both posttransplant non-GVHD

samples and pretransplant samples. Furthermore, distinct serum

proteomic signatures were identified to distinguish pretransplant

from posttransplant non-GVHD samples, opening up new insights

towards biomarker panel discoveries (32). For aGVHD protein-based

biomarker panel discovery, saliva and plasma were the non-invasive

biofluids investigated and the identified panels are further presented.
2.4 Valuable biomarker sources

Proteome analysis of biospecimens offers insights into

physiological processes, aiding the identification of actionable

approaches, including biomarkers applicable at the bedside.

Primary sources of protein markers include tissues and body fluids

such as serum, plasma, saliva, urine, and bone marrow. While bone
FIGURE 1

Advantages and disadvantages of methods used for proteome-based biomarker discovery studies for GVHD.
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marrow provides heightened diagnostic precision, non-invasive

biospecimens, like plasma and serum, present advantages in terms

of patient compliance and reduced procedural risks.

Plasma and serum, being popular biofluids for biomarker

discovery, offer easy acquisition and broad molecular

representation due to systemic circulation. Challenges like sample

standardization and accessing low-abundance proteins can impact

proteomics studies, but the Human Proteome Organization

(HUPO) provides Biomarker Discovery Protocols for addressing

these issues (33). Tears, a non-invasive biospecimen, are gaining

attention, particularly for ocular involvement in GVHD. In

gastrointestinal GVHD, feces can serve as a useful biospecimen,

providing insights into intestinal inflammation. Skin biopsies,

obtained minimally invasively, are valuable for identifying specific

biomarkers related to skin manifestations of GVHD. Urine, an

alternative to blood samples, offers advantages such as ease of

collection, larger quantities, and a less complex protein mixture

with low abundance variation. However, its limitation lies in

providing information primarily about diseases in the organs

directly involved in its production and excretion, like the kidneys,

rather than systemic diseases.

Proteomics, aiming to translate discoveries into clinical

practice, focuses on uncovering minimally invasive biofluid-based

biomarkers (34, 35). Examples of biospecimens for GVHD

biomarker studies are detailed in the following sections.
3 Protein-based biomarkers for GVHD
following allo-HSCT

Technological advancements have facilitated the comprehensive

profiling of proteins within a given biological system. Unbiased

investigations have yielded intriguing findings that might have been

overlooked using narrower analytical approaches. Diverse biomarkers,

when evaluated prior to BMT, play a pivotal role in the selection of

suitable candidates for intervention, particularly in cases of

unfavorable prognostics, resistance to chemotherapy, or heightened

susceptibility to drug-induced toxicities. Furthermore, post- HSCT

biomarkers offer valuable information regarding prognosis and the

likelihood of complications. The diagnosis of GVHD is still dependent

on clinical criteria in most of the part and requires the realization of

skin biopsy, colonoscopy, bronchoscopy and bronchoalveolar lavage.

aGVHD is the main cause of morbidity after transplant, being

responsible for 15 to 40% of the post-transplant deaths. Mortality in

GVHD is caused by the difficulty in giving a diagnosis and planning

the optimal moment for therapy start (1, 36). As previously

mentioned, GVHD markers can facilitate quick diagnosis of this

complication and quick start of the therapy, which would increase

the survival rate. Also, based on stratification biomarkers, the patients

can get a more or less aggressive immunosuppressive regime reducing

the costs and the long-term toxicity (34). Different strategies have been

approached towards GVHD biomarker discovery targeting proteins.

Strategies include single biomarker as well as multi-marker panel

scouting and using different biospecimen. A comprehensive overview

is further presented.
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3.1 Protein based biomarkers for aGVHD

3.1.1 Cytokine-based biomarkers for aGVHD
Cytokines are important in both protection after HSCT, notably

in graft-versus-leukemia and in disease, notably in GVHD. Acute

GVHD is a complex pathologic process that involves many types of

T-cells that secrete cytokines: Th1, Th2, TH17 and CD8+ T cells.

Most cytokines associated with aGVHD include ILs, TNF-a and

IFN-g. Many cytokines are also important in the inflammatory

cytokine storm that is specific to aGVHD, including the

proinflammatory cytokines IL-12, IL-17, IL-21, IL-33, and the

protective cytokines IL-10, IL-22, and TGF-b (37). Even more,

the involvement of soluble interleukin-2 receptor (sIL-2R) in the

physiopathology of GVHD has led to the development of targeted

therapies with monoclonal antibodies, like daclizumab and

conjugates like denileukin diftitox (38). The administration of

anti-IL-6 receptor antibodies was associated to a drop in GVHD

mortality (39). Thus, because of the role of cytokines in systemic

inflammation during aGVHD, they were studied as potential

biomarkers with diagnostic or predictive value. Mostly, they were

studied from serum or plasma by employing ELISA methods. The

cytokine-based biomarkers for aGVHD are presented in Table 1.
3.1.2 Other emerging protein-based biomarkers
for aGVHD

In addition to cytokines, extensive research has been conducted

on various protein-based biomarkers, and their promising utility as

potential indicators of aGVHD is currently on the rise. The

suppression of tumorigenicity 2 (ST2) is a receptor included in

the IL-1 family, which binds specifically to IL-33. ST2 has two

isoforms: a transmembrane (mST2) and a soluble form (sST2).

During aGVHD, an increase in IL-33 has been observed, leading to

specific inflammation and tissue damage (45). The sST2 receptors

are expressed in different cells and act as decoy receptors,

sequestering free IL-33, thereby preventing IL-33-mediated

proinflammatory actions (46). Studies have found an increase of

sST2 which could be correlated with GVHD severity in patients. A

possible explanation given by earlier studies was that the release of

sST2 in the serum occurs very late in the inflammatory response

resulting in the inability of sST2 to sequester circulating IL-33. This

could make sST2 an interesting biomarker for aGVHD and NRM

(47). Also, Vander Lugt et al. found by quantitative liquid

chromatography coupled with MS/MS and further ELISA

validation that ST2 could be a prognostic marker for GVHD with

endpoints such as treatment resistance or death 6 months after

therapy, with SEN and SPE for six-month post-transplant NRM in

an independent set of 70 and 64 respectively (48).

Another marker is vascular endothelial growth factor (VEGF).

Studies that have evaluated the prognostic value of VEGF levels in

GVHD presented with controversial results (49). Some studies have

reported that high VEGF levels were associated with the

development or severity of GVHD in a mouse model study (50),

whereas others have found that VEGF either has a protective effect

against severe aGVHD (AUC 0.69) (51) or no correlation with

GVHD (52). Low VEGF levels after allo-HSCT were found to be
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associated with NRM due to severe exacerbation of aGVHD,

implying the biomarker utility of VEGF. VEGF monitoring after

allo-HSCT might identify those patients at risk of severe transplant-

related mortality (53).

Another interesting molecule is T cell immunoglobulin and mucin

domain 3 (TIM3). TIM3 is a transmembrane receptor protein

expressed on T cells that produce IFN-gamma, Tregs, myeloid cells,

natural killer cells, and mast cells, where it inhibits cytokine expression

(54). Although the physiopathology concerning the involvement of

TIM3 in aGVHD is not fully understood, and only preclinical studies

have given hints regarding the regulation of hepatic CD8+ T cells by

TIM3 (55), clinical proteomics studies have shown that the levels of the

soluble extracellular domain of Tim-3 exhibited an elevation in the

bloodstream of individuals preceding the clinical manifestation of

aGVHD. Furthermore, these levels demonstrated a correlation with

the severity of gut GVHD (AUC of 0.79) (56).

Finally, macrophage migration inhibitory factor (MIF), a

pleiotropic protein, is known to participate in inflammatory and

immune responses by regulating TNF-a production. Elevated peak

serumMIF at acute GVHD onset and increased mean serumMIF in

patients developing extensive cGVHD within 6 months suggest

heightened MIF levels during active phases of both GVHD

types (57).

3.1.3 Salivary protein panels for aGVHD
Towards salivary protein panel discovery, the salivary proteome

was analyzed by gel electrophoresis with subsequent MS/MS analysis

and ELISA. MS identified significant salivary protein fluctuations

lasting at least 2 months posttransplant. High salivary levels of

lactoferrin, cystatin SN, albumin and salivary amylase have been

identified in patients with GVHD with oral cavity involvement. High

levels of these proteins indicate pathophysiological processes that take

place in GVHD with oral cavity involvement, like salivary glands

infiltration, activation of immunomodulatory processes and increasing
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the permeability of the oral cavity mucosa and plasma extravasation

(58). Also by MS, proteins from the S100 protein family was found to

play a role in aGVHDdiagnosis: S100A8, S100A7 and S100A9 showing

SEN of 60% and SPE of 88% (59).
3.1.4 Plasma protein panels for aGVHD
Another strategy to identify biomarker panels was to screen a

large set of proteins by antibody array and to validate the results by

ELISA. This was done for four plasmatic diagnostic markers: IL-2-

receptor-alpha (IL-2Ra), tumor-necrosis-factor-receptor-1

(TNFR1), IL-8 (IL-8), and hepatocyte growth factor (HGF). The 4

biomarkers panel confirmed their potential for diagnosis of GVHD

in patients at onset of clinical symptoms and provided prognostic

information independent of GVHD severity with AUC of 0.86 (60).

Elafin, a skin-specific marker and regenerating islet-derived 3-a
(Reg3a), a gastrointestinal tract-specific marker was added later to

the 4-parameter panel. The panel was studied for its potential to

discriminate between therapy responsive and nonresponsive

patients and predict survival in patients receiving GVHD therapy.

Even more, the 6 biomarker panel demonstrated potential to be

used for early identification of patients at high or low risk for

treatment non responsiveness or death, and provided opportunities

for early intervention and improved survival after HSCT (61). Also

in pediatric patients with aGVHD a biomarker panel of TNFR1, IL-

2Ra, HGF, CCL8, IL-8 and IL-12p70 demonstrated its utility

following HSCT (62). Another combination of proteins, namely a

panel composed of ST2 and REG3a was found to be able to identify

patients at high risk for lethal aGVHD and NRM with an AUC of

0.68, SEN of 40% and SPE of 83% (63). Including also cells to sIL-

2R, a 5-parameter biomarker score based on CD4+ T cells, CD8+ T

cells, CD19− CD21+ precursor B cells, CD4/CD8 T cell ratio, and

sIL-2R was used to predict GVHD onset with AUC of 0.90, SEN of

88.2% and SPE of 66.7% (64). Aiming to identify and evaluate
TABLE 1 Cytokine-based biomarkers for aGVHD.

Cytokine Specimen Method Clinical relevance SEN/
SPE

Ref.

Diagnostic biomarker

IL-7 serum ELISA Raised serum IL-7 at 7 to 14 days after transplant are associated with aGVHD. 86/100 (40)

sIL-7, sIL-7R plasma ELISA Reduced sIL-7R levels may indicate an elevated risk of GVHD, suggesting insufficient availability
for the IL-7 ‘buffer system. Assessing plasma sIL-7R levels, along with IL-7, could help identify
individuals at higher risk for GVHD and potentially CMV infection.

– (41)

IL-8, IFN-g plasma ELISA Reduced levels of IL-8 on day +7 and IFN-g post-engraftment were linked to the occurrence of
grade II-IV aGVHD and severe aGVHD. Additionally, decreased IFN-g after engraftment was
connected to a higher risk of NRM.

– (42)

IL-12, IFN-g mononuclear
cells

microbead
array
technology

Donor IL-12 and IFN-g were associated with aGVHD. IL-12:
100/50
INF-
g:
96.8%/-

(43)

Prognostic biomarker

IL-18 serum ELISA Increased pre-transplant levels of free IL-18 correlated with lower risks of both NRM (HR 1.24) and
overall mortality (HR 1.22) following allo-HSCT.

– (44)
frontier
SEN, sensitivity; SPE, specificity; -, not available; CMV, Cytomegalovirus infection; HR, hazard ratio; Ref, reference.
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candidate biomarkers potentially predictive of response to

treatment with itacitinib plus corticosteroid in aGVHD, plasma

monocyte-chemotactic protein (MCP)3, pro-calcitonin/calcitonin

(ProCALCA/CALCA), REG3a, ST2, and TNFR1 were found (65).

aGVHD treatment relies on corticosteroid immunosuppression,

with initial response guiding further decisions. Analysis of 507

patients from 17 Mount Sinai Acute GVHD International

Consortium (MAGIC) centers revealed a validated biomarker

algorithm, consisting of ST2 and REG3a measured by ELISA,

predicting outcomes in steroid resistant GVHD. MAGIC

biomarker probabilities after 1 week of systemic GVHD treatment

outperform clinical criteria (AUC 0.82), aiding in the development of

improved treatment strategies (66).
3.2 Protein based biomarkers for cGVHD

cGVHD usually starts more than 3 months after a transplant

and can last for as long as a lifetime (67). Preclinical studies and

translational research on human biospecimen have revealed some

possible biological pathways in cGvHD. This has opened the way

for the exploration of diagnostic, prognostic and predictive

biomarkers in both hypothesis-driven and discovery-based testing

(68). Biomarkers for cGVHD are presented in Table 2.

3.2.1 Biomarker panels for cGVHD
Besides the identification of individual biomarkers for cGVHD,

efforts are being made to validate panels of biomarkers (Table 3),

with a much higher accuracy of diagnosis or prognosis.
3.3 Protein based biomarkers for site-
specific involvement in GVHD

Site-specific involvement represents a critical facet of GVHD

and manifests in distinct anatomical regions, such as the skin,

gastrointestinal tract, the eyes, and the lungs, with varying degrees

of severity. The skin, often the initial site of presentation, can exhibit

rashes, blistering, and itching (79). Clinical aspects of skin lesions in

GVHD are illustrated in Figure 2.

Ocular symptoms of GVHD can include dry eyes, redness, and

sensitivity to light. Oral symptoms of GVHD can manifest as painful

mouth sores and difficulty in swallowing (80). Gastrointestinal GVHD

may lead to diarrhea, abdominal pain, and even malabsorption. Liver

involvement may result in elevated liver enzymes and jaundice. Cough,

shortness of breath, and lung inflammation are frequent manifestations

of pulmonary site involvement of GVHD (36).

Understanding the site-specific manifestations of GVHD is

essential for early diagnosis and tailored treatment strategies, as the

severity and response to therapy can differ significantly depending on

the affected organ. In this context, site-specific involvement represents a

critical aspect of managing GVHD to optimize patient outcomes, one

potential option being the protein-based biomarker deciphered below.
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3.3.1 Protein biomarkers of GVHD with
skin involvement

Tissue biopsies can help identify useful GVHD biomarkers, that

can ultimately be sought in biofluids that can be sampled in a less

invasive way. For example, skin biopsies can be used for skin

GHVD biomarker identification.

Elafin, also known as skin-derived antileukoprotease (SKLP), is

an inhibitor of epidermic protease induced by TNF-a and identified

at the level of inflamed epidermis in autoimmune diseases such as

psoriasis (1, 81).Mahabal et al. used skin biopsies and revealed that

tissue elafin could be a useful biomarker of aGVHD with skin

manifestations (SEN and SPE of 100% and 75%, respectively) (82).

Additionally, proteomics studies have highlighted the potential of

elafin as a plasmatic biomarker for skin GVHD (83), although the

results may be controversial and need further evaluation in larger

patient groups (84). Paczesny et al. found by quantitative liquid

chromatography coupled with MS and further ELISA validation

that elafin exhibited increased expression in GVHD skin biopsies.

Elevated plasma elafin levels at skin GVHD onset, correlating with

the maximum GVHD grade, were linked to a higher mortality risk

(HR 1.78). This underscores the diagnostic and prognostic

significance of elafin as a biomarker for skin GVHD (85).
3.3.2 Protein biomarkers of GVHD with
ocular involvement

Another non-invasive biospecimen, the tears, is in the spotlight of

researchers (86, 87). In a recent study focused on cGVHDwith ocular

symptoms, a team of researchers identified a tear cytokine panel

comprising IL-8, IL-10, IFN-g, CXCL9, CCL17, and CCL19 as

promising biomarkers for early diagnosis of ocular GVHD.

Moreover, the levels of IL-10, IFN-g, and CXCL9 were found to be

indicative of the severity of ocular GVHD following allo-HSCT

(AUCs > 0.6) (88). Furthermore, in a separate investigation, the

prognostic role of cytokine levels in tears prior to HSCT was

examined in the context of ocular cGVHD. This pilot study

included 25 patients who were prospectively monitored, with 19

cytokines measured using a multiplex bead assay. A multistate model,

considering four states (HSCT, systemic cGVHD, ocular cGVHD,

and death), was constructed to pinpoint cytokines linked to each

transition probability. Fractalkine, IL-1Ra, and IL-6 emerged as key

contributors with optimal prognostic value (AUC 67% to 80%) for

predicting the development of ocular cGVHD after HSCT (89). In

advancing understanding of ocular GVHD, a predictive model was

developed by multiplex-bead assay at the tear molecule level.

Analyzing a cytokine panels correlation with clinical features, the

best model, incorporating IL-8/CXCL8, IP-10/CXCL10 tear levels,

age, and sex, achieved an AUC of 0.9004, with 86.36% SEN and

95.24% SPE (87). Presence and role of autoantibodies after stem-cell

transplantation and their association with cGVHD was also

addressed (90) and anticardiolipin antibodies high plasmatic levels

have been found to correlate with cGVHD with ocular

involvement (91).
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3.3.3 Protein biomarkers of GVHD with
oral involvement

Because both aGVHD and cGVHD may present with oral

alterations such as gingivitis, mucositis, xerostomia, mucosal

atrophy, and ulcers, saliva is a target biofluid used in precision

medicine approaches. Modification in salivary function is

irreversible and reflects systemic GVHD, making saliva sampling

and analysis a useful source of diagnostic biomarkers. Salivary

proteins with potential biomarker role for oral cGVHD have been

studied by MS and confirmed by ELISA or targeted label-free

quantification. IL-1Ra and cystatin B distinguished oral cGVHD

with a SEN of 85% and SPE of 60%. Particularly, in newly diagnosed

patients assessed within 12 months of allo-HSCT, the markers

exhibited enhanced discrimination (SEN 92% and SPE 73%) (92).

A decline in salivary lactoperoxidase, lactotransferrin, and various

proteins within the cysteine proteinase inhibitor family indicated

compromised oral antimicrobial host immunity in patients with

cGVHD (93). Also, high levels of lactoferrin and lactoperoxidase

have been identified in the saliva of patients with GVHD with oral

cavity involvement (92).
3.3.4 Protein biomarkers of GVHD with
gastrointestinal involvement

GVHD with gastrointestinal involvement has been considered

the major cause of morbidity, compared to all the other GVHD

manifestations. Several biomarkers have been evaluated for their
TABLE 3 MS-based biomarker panels for diagnosis and prediction
of cGVHD.

Biomarker
panel

Specimen Clinical relevance Ref.

sBAFF, anti-dsDNA
antibody, sIL-2Ra,
and sCD13

Plasma Useful for diagnosis, early
response evaluation,
disease management.

(76)

ST2, OPN,
MMP3, CXCL9

Plasma Useful for diagnosis, severity
prediction, and NRM.

(77)

cGvHD_MS14
comprising 14
differentially
excreted peptides,
including fragments
from thymosin b-4,
eukaryotic
translation initiation
factor 4g2,
fibrinogen b-chain,
or collagens.

Urine This pattern facilitates the
prediction of cGVHD with a
SEN and SPE of 84% and
76%, respectively.

(78)

When integrated with
relevant clinical variables in
a logistic regression model,
the SEN increased to 93%.

Notably, cGvHD_MS14
allowed for the prediction of
cGVHD up to 55 days
before clinical diagnosis and
did not recognize acute
GvHD. Serving as an
independent diagnostic
criterion, this pattern
showed the potential for
early
therapeutic intervention
Ref, reference.
TABLE 2 Diagnostic and prognostic plasma and serum biomarkers of cGVHD.

Biomarker Specimen Method Clinical relevance SEN/
SPE

AUC HR Ref.

Diagnostic biomarker

CXCL9 Plasma antibody
microarray

CXCL9 is a significant diagnostic biomarker for cGVHD. – 0.83 – (69)

IL-10 Plasma ELISA High plasmatic levels of IL-10 have been associated with the presence
of cGVHD.

– – – (70)

Fibronectin Plasma ELISA The level of plasma fibronectin, a ligand of CD29, correlated with the number
of IL-10 spot-forming cells.

– – – (70)

CD29 Plasma ELISA CD29 expression on monocytes in patients with active cGVHD was elevated. – – – (70)

CXCL9 Serum ELISA CXCL9 predicts development of severe cGVHD. – – 1.33 (71)

Prognostic biomarker

sBAFF Plasma ELISA sBAFF were found to correlate with the severity of cGVHD, but also with the
presence of autoimmune disease.

– – – (72)

sBAFF levels at the time of cGVHD diagnosis were also associated with NRM
and could be potentially useful for risk stratification.

– – 5 (73)

CD13 Plasma ELISA The presence of the soluble and active form of this protein in the plasma is
correlated with cGVHD. Currently, the implication of CD13 in cGVHD is
being studied and the possibility that actinonin, a specific CD13 inhibitor, can
be used as therapeutic agent.

– – – (74)

High CD163 concentration was associated with a higher cumulative incidence
of de novo-onset cGVHD.

0.73 (75)
frontier
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utility in gastrointestinal GVHD. Recently, the Reg3a has been

identified as a potential biomarker for GVHD with intestinal

involvement. Reg3a is a protein involved in cellular

differentiation and proliferation and in defense against Gram-

positive infections of the intestinal tract (1). Quantitative LC-MS

analysis identified plasma Reg3a as a valuable predictor for

diagnosing gastrointestinal aGVHD. Produced by Paneth cells in

the gastrointestinal tract, Reg3a serves as an antimicrobial peptide

with bactericidal properties against Gram-positive bacteria and

antiapoptotic effects for Paneth cells (94). IL-22, secreted by

lymphoid cells in the crypts of the gastrointestinal tract,

stimulates Reg3a secretion. In the context of gastrointestinal

GVHD, damage to the intestinal mucosa releases Reg3a into the

bloodstream, making it a biomarker for gastrointestinal GVHD.

Utilizing quantitative LC-MS, the predictive capability of plasma

Reg3a for diagnosing gastrointestinal aGVHD was confirmed

(AUC 0.80). Furthermore, combining Reg3a with clinical stage

and histologic grade enhances risk stratification for patients (95).

Additionally, elevated plasma levels of TIM3, IL-6, and sTNFR1

demonstrated predictive value for the development of peak grade 3-

4 GVHD (AUC 0.88). Plasma ST2 and sTNFR1 served as predictors

for NRM within 1-year post-transplantation (AUC 0.90). In a

landmark analysis, plasma TIM3 predicts subsequent grade 3-4

GVHD (AUC 0.76). Thus plasma levels of TIM3, sTNFR1, ST2, and

IL-6 proved to be valuable in predicting more severe GVHD and

NRM (96). In liver GVHD without gastrointestinal involvement, a

rare occurrence (3% of GVHD patients), REG3a and HGF

concentrations were elevated compared to asymptomatic patients

but were like liver gastrointestinal GVHD, non-GVHD

hyperbil irubinemia, and isolated skin GVHD. KRT18

concentrations were significantly higher in liver GVHD patients

than in others, except those with non-GVHD liver complications.

However, none of the three biomarkers effectively distinguished

liver GVHD from non-GVHD liver complications. Including

patients with concomitant gastrointestinal and liver involvement

at GVHD onset, REG3a emerged as a stronger diagnostic

biomarker for liver gastrointestinal GVHD compared to HGF and

Keratin 18 (KRT18). REG3a, HGF, and KRT18 predicted day 28

nonresponse to therapy, while REG3a and HGF are good
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prognostic markers for 1-year NRM in liver-gastrointestinal

GVHD patients (97).

The predictive value of two biomarkers, ST2 and Reg3a, in the

case of NRM and GVHD, in allotransplant patients was highlighted.

High concentrations of the two biomarkers tested in day 7 after

transplant were associated with high GVHD related mortality and

more frequent intestinal GVHD, demonstrating their usefulness in

the prediction of GVHD before the clinical signs appear (63). Also,

another study showed that higher levels of plasma Reg3a were

found in patients with gastrointestinal-cGVHD, suggesting the

utility of Reg3a as a prognostic biomarker of gastrointestinal-

cGVHD (98).

Besides plasma, one more potentially useful source of

biomarkers in the context of gastrointestinal GVHD is feces.

Intestinal inflammation can be observed by accessing markers of

leukocyte activation into the mucosa. A trial aimed to assess the

dynamics of fecal biomarkers calprotectin and a1-antitrypsin (a1-
AT) in GVHD. Steroid-refractory patients initially exhibited higher

biomarker levels, which consistently increased throughout GVHD

progression. In cortico-sensitive GvHD, calprotectin and a1-AT
showed low and decreasing levels. Second-line treatment in

refractory patients did not have predictive biomarker levels, but

subsequent responders showed a progressive decrease in

calprotectin, while non-responders maintained high levels. a1-AT
values had a weaker correlation with treatment response, remaining

elevated in both non-responders and responders. Monitoring

calprotectin levels proved to be beneficial in managing

immunosuppressive treatment for gastrointestinal GVHD (99).

While there was a noticeable trend towards elevated serum

calprotectin levels in GVHD development and gut involvement,

statistical significance was not achieved, unlike fecal calprotectin.

Therefore, fecal calprotectin, rather than serum calprotectin, may be

considered a potential biomarker for gut GVHD as shown by

Metafuni et al. (100).

3.3.5 Protein biomarkers of GVHD with
pulmonary involvement

Pulmonary cGVHD can present with obstructive and/or

restrictive disease. Severity ranges from subclinical pulmonary
frontiersin.or
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impairment to respiratory insufficiency with bronchiolitis

obliterans, a feature of pulmonary cGVHD. Early diagnosis may

improve clinical outcome, and regular post-transplant follow-ups

are recommended (101).

In recent proteomics studies, regulatory proteins of the

extracellular matrix have been identified as candidate biomarkers

for the diagnostic and prognosis of bronchiolitis obliterans

syndrome (BOS) and GVHD with pulmonary involvement.

Plasmatic levels of matrix metalloproteinase 3 (MMP3) have been

associated with the presence of BOS and could be correlated with

disease severity (102). In another study, the diagnostic value of the

lead candidate, MMP3, was evaluated by ELISA in plasma and was

found to differ significantly between patients with and without BOS

(AUC 0.77) (102). Moreover, in another study, the specific BOS

biomarker potential of osteopontin (OPN) was explored in patients

with cGVHD. Using immunohistochemistry, Williams et al.

showed that elevated OPN plasma levels observed in patients with

BOS, potentially originating from alveolar macrophages, correlated

with disease severity. These findings, supported by lung

immunohistochemistry, could be valuable for diagnosing and

prognosing BOS after HSCT (103).
4 Conclusions

In summary, the exploration of protein-based biomarkers for

GVHD post-allo-HSCT is crucial for improving diagnostic accuracy

and treatment outcomes. Proteomics, with its ability to increase the

potential of minimally invasive biopsies, serves as a powerful strategy

for biomarker discovery by analyzing intricate protein profiles.

Proteins, ranging from cytokines to emerging candidates, play a

pivotal role as valuable biomarker sources. The strategies outlined,

such as focusing on cytokine-based biomarkers, emerging protein-

based markers, and biomarker panels for acute and chronic GVHD,

as well as for site specific involvement of GVHD, offer a roadmap for

future research, promising improved diagnostic precision and

personalized treatment approaches. Nevertheless, the existing

literature on GVHD protein-based biomarkers is characterized by

substantial heterogeneity in reports, a lack of standardized study

protocols, and inconsistent inclusion of patients. This heterogeneity

and variability in methodology represent significant challenges that

contribute to the observed disparity between the multitude of

promising biomarkers identified in individual studies and the

limited number of biomarkers poised for clinical translation.

Consequently, the immediate focus may not solely be on the

discovery of novel molecules and pathways, but rather on the

critical task of validating or exposing the efficacy of existing

methods. Addressing these challenges is imperative for bridging the

gap between bench side research and clinical application in the

near term.

However, the integration of proteomics into GVHD research

not only enhances our understanding of the disease but also

positions us at the forefront of transformative advancements in
Frontiers in Immunology 10
clinical practice. Collaborative efforts and technological

advancements in proteomic analysis are essential for realizing the

full potential of protein-based biomarkers, paving the way for a

future where GVHD diagnosis and treatment are increasingly

personalized and effective.
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