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Despite significant advances in our knowledge regarding the genetics and

molecular biology of gliomas over the past two decades and hundreds of

clinical trials, no effective therapeutic approach has been identified for adult

patients with newly diagnosed glioblastoma, and overall survival remains dismal.

Great hopes are now placed on combination immunotherapy. In clinical trials,

immunotherapeutics are generally tested after standard therapy (radiation,

temozolomide, and steroid dexamethasone) or concurrently with

temozolomide and/or steroids. Only a minor subset of patients with

progressive/recurrent glioblastoma have benefited from immunotherapies. In

this review, we comprehensively discuss standard therapy-related systemic

immunosuppression and lymphopenia, their prognostic significance, and the

implications for immunotherapy/oncolytic virotherapy. The effectiveness of

immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically

depends on the activity of the host immune cells. The absolute counts, ratios,

and functional states of different circulating and tumor-infiltrating immune cell

subsets determine the net immune fitness of patients with cancer and may have

various effects on tumor progression, therapeutic response, and survival

outcomes. Although different immunosuppressive mechanisms operate in

patients with glioblastoma/gliomas at presentation, the immunological

competence of patients may be significantly compromised by standard

therapy, exacerbating tumor-related systemic immunosuppression. Standard

therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+,

natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived

suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit
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the immune system’s ability to target glioblastoma. Changes in the standard

therapy are required to increase the success of immunotherapies. Steroid use,

high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total

lymphocyte count (TLC) are significant prognostic factors for shorter survival in

patients with glioblastoma in retrospective studies; however, these clinically

relevant variables are rarely reported and correlated with response and survival

in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and

oncolytic viruses). Our analysis should help in the development of a more rational

clinical trial design and decision-making regarding the treatment to potentially

improve the efficacy of immunotherapy or oncolytic virotherapy.
KEYWORDS

glioblastoma, immunotherapy, lymphopenia, oncolytic virotherapy, radiotherapy,
steroid dexamethasone, temozolomide chemotherapy, total lymphocyte count
1 Introduction

The principal therapeutic armamentarium for patients with

newly diagnosed glioblastoma (grade IV glioma) includes maximal

safe resection, conventionally fractionated radiotherapy with the

concurrent and adjuvant DNA-alkylating drug temozolomide, and

the corticosteroid dexamethasone to treat vasogenic cerebral edema.

Despite multifaceted standard therapeutic interventions, five-year

overall survival remains dismal (≤7% overall by age) (1, 2).

Clinical trials of immunotherapies, including vaccines and

oncolytic viruses, have demonstrated encouraging efficacy in

minor subsets of patients with progressive/recurrent glioblastoma

(3–8). Different patient selection criteria, recombinant viruses,

protocols for vaccine preparation, and schedules and routes of

vaccine or virus administration have been applied in trials.

However, within individual studies, some patients exhibited

significant, moderate, or no therapeutic response and infiltration

of lymphocytes to the tumor site following treatment, indicating

that some patients’ intrinsic factors may determine a response to

therapy. Several pretreatment variables, such as age, performance

status, extent of tumor resection, O-6-methylguanine-DNA

methyltransferase (MGMT) promoter methylation status, and

isocitrate dehydrogenase (IDH) mutation status, are known

independent prognostic and/or stratification factors in patients

with glioblastoma/gliomas (9–11). However, increasing clinical

evidence suggests that additional intrinsic factors in patients,

which may determine the efficacy of immunotherapeutics and

correlate with overall survival, are immune-related.

The largely negative results from phase I/II, II and III clinical

trials of oncolytic viruses, vaccines, and immune checkpoint

inhibitors in glioblastoma are supposed to be due to a number of

potential barriers to the efficacy of immunotherapeutics, including

inter- and intratumoral spatial and temporal cellular genetic and

phenotypic heterogeneity and plasticity, insufficient immunogenicity,

neoantigenic loss under therapy pressure (e.g., epidermal growth
02
factor receptor variant III, EGFRvIII), the low expression of major

histocompatibility complex, upregulation of diverse immune

checkpoint inhibitors on infiltrating T lymphocytes, and increased

levels/ratios of tumor-infiltrating immunosuppressive immune

subsets [e.g., macrophages, neutrophils, myeloid-derived suppressor

cells (MDSCs), and regulatory T cells (Tregs)] (12–20). Although the

blood-brain barrier in glioblastoma is partially disrupted (21), leading

to the infiltration of innate and adaptive immune cells (20),

glioblastoma is nonetheless largely characterized by the absence or

exclusion of T cells in the tumor microenvironment (“cold”,

“immune-desert”/”immune-excluded” phenotype) (22, 23) and T

cell dysfunction, including tolerance and exhaustion (23, 24). In

addition to hypoxia, the glioblastoma cell metabolism contributes to

immunotherapy resistance (25). In the tumor microenvironment,

anti-tumor immune cells compete with tumor cells for various

nutrients (e.g., glucose, glutamine, arginine, and lipids). Increased

tumor glycolysis and glutaminolysis, altered tryptophan (via the

kynurenine pathway), arginine, and lipid metabolism are associated

not only with limited availability of critical nutrients for immune cell

functions in the tumor microenvironment but also lead to acidosis,

increased accumulation of lactic acid, a-ketoglutarate, and

kynurenine metabolites, negatively affecting metabolism and

effector function of cytotoxic lymphocytes and promoting

recruitment, differentiation, and function of immunosuppressive

immune cells (25). Separately, it is worth highlighting the unique

immunemicroenvironment of IDH-mutant gliomas that produce the

oncometabolite R-2-hydroxyglutarate. These tumors are

characterized by reduced infiltration of T lymphocytes,

macrophages, and neutrophils, and R-2-hydroxyglutarate was

shown to impair effector functions of dendritic cells, T cells, and

NK cells but promote immunosuppressive phenotype of

macrophages (26, 27). Finally, glioblastoma-related systemic

immunosuppression involves reduced lymphocyte counts

(lymphopenia), increased neutrophil, MDSCs, and Tregs counts,

and defective functions of antigen-presenting, helper, and effector
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immune cell subsets due to altered expression of different soluble and

membrane proteins (28–36).

The goal of immunotherapy is to break immunological

tolerance, enhance antigen presentation, re-engage innate and

adaptive immune effectors in the tumor, and establish a long-

term persistent population of cytotoxic tumor-specific memory T

cells. Treatment efficacy may critically depend on tumor

immunogenicity and the baseline systemic immunological

competence of a patient, including the counts, ratios, and

functional states of different circulating and tumor-infiltrating

immune cell subsets. Differentiating between immunological

responders and non-responders before immunotherapy/oncolytic

virotherapy is clinically relevant. It is very likely that patients with

low systemic immune suppress ion may benefi t f rom

immunotherapy/oncolytic virotherapy much better than severely

immunocompromised patients who might be non-responsive to

any extent. Is the response to immunotherapy/oncolytic

virotherapy correlated with the degree of lymphopenia,

neutrophilia, distinct immune cell subset ratios, or other systemic

and local tumor immune-related signatures or biomarkers? In

clinical trials, immunotherapeutics are typically tested

concurrently with, or after, standard therapy. However, standard

therapy-related (iatrogenic) systemic immunosuppression, long-

lasting lymphopenia, and contraction of T cell receptor repertoire

diversity may negatively impact the efficacy of immunotherapy/

oncolytic virotherapy. In this review, we comprehensively discuss

standard therapy-promoted immunotoxicity and its implications

for immunotherapy/oncolytic virotherapy clinical trials. In our

accompanying review in Frontiers in Immunology (Systemic and

local immunosuppression in glioblastoma and its prognostic

significance), we focused on immunological data from patients

with glioblastoma/gliomas before standard therapy, namely,

tumor-related immunosuppression at baseline and the prognostic

significance of different circulating and tumor-infiltrating immune

cell subsets [CD4+ and CD8+ T cells, natural killer (NK) cells,

neutrophils, macrophages, MDSCs, and Tregs], including

neutrophil-to-lymphocyte ratio (NLR), and specifically discussed

the immune landscape of IDH-mutant gliomas, proneural, classical,

and mesenchymal molecular subtypes, as well as the features of

immune surveillance of the brain.
2 Standard therapy-related
immunosuppression in glioblastoma

2.1 A low post-treatment total lymphocyte
count is a prognostic factor for
shorter survival

Standard therapy is a major cause of immune deficiency in

patients with glioblastoma, exacerbating tumor-related systemic

immunosuppression. Analysis of peripheral blood before, during,

and after completing chemoradiotherapy showed that standard

therapy may significantly affect diverse immune cell subsets

(Table 1) (37–42). Patients with recurrent glioblastoma have

lower levels of total immune effector cells, including circulating
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CD3+, CD4+, and CD8+ T cell subsets, B cells, and NK cells, with

reductions in naïve, central memory, and effector memory subsets,

activated T cells, and proliferating Ki67+ cells, than patients with

newly diagnosed glioblastoma (43). Interestingly, despite its

lymphocyte-depleting effect, standard therapy (34, 37, 38, 40) or a

dose-intensified temozolomide regimen (44, 45) increases the

proportion of circulating Tregs.

The total lymphocyte count (TLC) is classified as normal

(≥1000 cells/mm3) or abnormal (<1000 cells/mm3), and grade 3/4

lymphopenia (<500 cells/mm3 for CD8+ T cells and <200 cells/mm3

for CD4+ T cells) is considered severe. Although the number of

affected patients with grade 3/4 versus 1/2 lymphopenia varied

significantly between studies, lymphopenia was among the most

frequent hematologic adverse effects in patients with glioblastoma/

gliomas during or after standard radio- and/or chemotherapy (46–

54). A lower TLC before therapy predicts severe lymphopenia

during treatment (46, 48, 55, 56). Furthermore, increasing age is

an important factor that significantly contributes to the severity of

therapy-induced lymphopenia; in the elderly group of patients

(median age, 71 years), only 57% (out of n=72) had a normal

baseline TLC (50) versus 97% (out of n=336) in the adult group

(median age, 58 years) (57). Older age is independently associated

with severe lymphopenia in patients with glioblastoma (55). Sex is

another confounding factor of therapy-related lymphopenia. In two

large cohort studies (n>700 and n>2000), women were found to be

more likely to develop lymphopenia than men (29, 58). Remarkably,

21-47% of patients with glioblastoma/gliomas treated with

radiochemotherapy developed long-lasting grade 3/4 lymphopenia

(29, 47–52, 58–60), although there were studies reporting a less

frequent occurrence of grade 3/4 lymphopenia during or after

standard therapy (2.9-10%) (53, 61, 62). Moreover, patients with

recurrent glioblastoma exhibited a significantly lower TLC

compared with patients with newly diagnosed glioblastoma (63),

and lymphopenia reached 76.5% for a standard temozolomide

regimen in patients with recurrent glioblastoma (64). The post-

treatment TLCs remained significantly lower than the baseline

counts, even after 12 months, in adult (52) and elderly (50)

patients with glioblastoma and in children with central nervous

system tumors (65). Patients who developed severe CD4+

lymphopenia during standard therapy experienced higher

hospitalization and infection rates (66, 67). However, the major

cause of death in patients with grade 3/4 lymphopenia was tumor

progression rather than infection (67).

It is widely accepted that lymphocytes are key effector cells in

the immune response to tumors, and that anti-cancer T cell-

mediated immunity is key to improving survival outcomes,

although the contribution of other immune cell types should not

be underestimated (68). Unsurprisingly, standard therapy-related

grade 3/4 lymphopenia was associated with shorter overall survival

in multivariate analyses (Table 2) (50, 56, 57, 60, 67) and meta-

analysis (69). However, in Byun et al.’s study (57), severe

lymphopenia was an independent prognostic factor only when

the authors included patients with grade 3/4 lymphopenia at 3-

month time of therapy but not when patients were included at any

time point within 3 months of therapy. Similarly, Le Rhun et al. (29)

reported that grade 3/4 lymphopenia during concomitant
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radiochemotherapy but not during maintenance temozolomide

chemotherapy was significantly associated with inferior overall

survival in univariate and multivariate analysis. Deng et al. (29)

reported that lymphopenia during standard therapy was associated

with overall survival in a multivariate analysis; however, no

association was found between overall survival and lymphopenia
Frontiers in Immunology 04
at other time points (preoperative, pre-radiotherapy, or first

recurrence). It may be concluded that the recovery rate from

severe lymphopenia and the use of different time points to define

treatment-related lymphopenia may be important modifiers of the

prognostic power of TLC (57).
2.2 Radiation-induced lymphopenia is a
prognostic factor for mortality in virtually
all solid cancers

Lymphocytes are one of the most radiation sensitive cells in the

body (70). T lymphocytes are more sensitive to radiation than

neutrophils, monocytes, NK cells, dendritic cells, or macrophages

(71, 72). Only 30-50% of the T cells were found viable 48-72 hours

post-exposure ex vivo to a single dose of 2 Gy (73). Exposure to low

single dose radiation (0.3-0.5 Gy) also decreased the number of

peripheral blood T lymphocytes (73). It also should be noted that

not only total lymphocyte counts but also lymphocyte diversity and

activity are affected by radiation (72). For instance, helper T cells

(CD4+) are more radiosensitive than cytotoxic T cells (CD8+) (72).

A comprehensive discussion of the effects of radiation on various

immune cell populations in humans and mice is presented

elsewhere (72).

A significant drop in the peripheral lymphocyte counts after

extracorporeal irradiation of the circulating blood was observed in

calves (74). Similarly, radiation given only to circulating blood

within a dialysis unit in humans awaiting kidney transplants

produced severe and long-lasting lymphopenia (75, 76). The

standard radiotherapy regimen for glioblastoma (60 Gy delivered

in 30 fractions to a partial brain field) may cause toxicity in up to

98% of circulating lymphocytes (77). The development of severe

lymphopenia after radiation without concurrent chemotherapy or

steroids use has been reported in patients with brain, head and neck,

breast, pancreatic, esophageal, cervical, uterine, and lung cancer (52,

78). Notably, according to systematic reviews and meta-analyses,

post-radiation lymphopenia is associated with shorter survival in

pancreatic and lung cancer (79–81), head and neck and esophageal

cancer (79, 82–84), urological cancer (85), nasopharyngeal and

cervical cancer (47) and many other solid tumors (69, 78, 79, 86–

88). In agreement, a meta-analysis including 16 cancer types

supports that radiation-induced lymphopenia is a significant

prognostic factor for mortality in virtually all solid cancers (79).

Taken together, radiotherapy per se is a strong and primary inducer

of lymphopenia regardless of the type of chemotherapy received by

cancer patients.
2.3 Chemotherapy and corticosteroids may
exacerbate radiation-induced lymphopenia

Temozolomide and dexamethasone are also lymphodepleting

agents that may exacerbate radiation-induced lymphopenia in

patients with glioblastoma/gliomas (43, 59, 89). In patients with

grade II-III glioma (n=151), concurrent radiochemotherapy and the

duration of adjuvant chemotherapy were significantly associated
TABLE 1 Standard therapy adversely affects different immune
cell subsets.

References Patient
characteristics

Time
points of
blood

collection

Main
findings

Chiba et al.
(2010) (37)

• Total: 22
• Male: 10; female:
12
• Mean age (range):
51 (19–77)
• Grade III: 5; grade
IV: 17

Baseline, the
6th week of
RT+TMZ

Decrease in the
mean numbers of
lymphocytes, NK,
and NKT cells;
no significant
change in the
mean number
of Tregs

Fadul et al.
(2011) (38)

• Total: 25
• Male: 17; female: 8
• Median age
(range): 64 (23–78)
• Grade IV: 25

Baseline, 4
weeks post-
RT+TMZ

Decreased
absolute counts
of CD3+, CD4+,
CD3-CD56+ NK,
CD8+CD56+
NKT, and CD19+
B cells but not
CD8+ cells; no
significant change
in the absolute
Tregs counts

Ellsworth et al.
(2014) (39)

• Total: 11
• Male: 8; female: 3
• Median age
(range): 63 (32–74)
• Grade III: 8; grade
IV: 3

Baseline, 4
and 12 weeks
post-
RT+TMZ

Decreased
absolute counts
of CD4+ T cells
and CD19+ B
cells but not
CD8+ T cells and
CD56+ NK cells;
no significant
change in
absolute
Tregs counts

Campian et al.
(2015) (40)

• Total: 10
• Median age
(range): 55.5 (40–67)
• Male: 8; female: 2
• Grade III: 3; grade
IV: 7

Baseline, 6
weeks post-
RT+TMZ

Decreased counts
of CD4+, CD8+
T cells, and NK
cells; no
significant change
in absolute
Tregs counts

Campian et al.
(2017) (41)

• Total: 20
• Male: 10; female:
10
• Median age
(range): 56.5 (27–70)
• Grade III: 6; grade
IV: 14

Baseline, the
end of RT
+TMZ and 1,
3, 5, and 8
months post-
RT+TMZ

Decreased
absolute counts
of Tregs, CD3+,
CD4+, and CD8+
T cells, including
naïve, central
memory, and
effector
memory subsets

Pellegatta et al.
(2018) (42)

• Total: 24
• Male: 16; female: 8
• Mean age: 54±10.7
• Grade IV: 24

Baseline, post-
RT+TMZ

Decreased counts
of CD4+, CD8+
T cells, and
NK cells
RT, radiation therapy; NK, natural killer; NKT, natural killer T cells; TMZ, temozolomide;
Tregs, regulatory T cells.
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with lymphopenia in multivariate analysis (62). In a cohort of 39

patients with advanced metastatic neuroendocrine tumors who

received temozolomide (no radiation, minimal use of concurrent

steroids by 6/39 patients), the incidence of severe lymphopenia was

46% after 4 months and >60% after 6 months of temozolomide

treatment, and persisted in at least 30% of patients during the 12

months following treatment discontinuation (90). The majority of

patients with melanoma (>60-70%) developed lymphopenia after

serial treatment cycles with different temozolomide dosing
Frontiers in Immunology 05
regimens and schedules (91–93). The development of

lymphopenia by temozolomide can be caused by the negligible

expression of MGMT and/or multidrug resistance proteins in

peripheral blood lymphocytes. It should be noted that not only

temozolomide may cause or promote long-term lymphopenia. For

instance, in patients with primary breast cancer receiving other

types of chemotherapy regimens without radiotherapy and steroids,

CD4+ T cells remained significantly depleted even 9 months post-

chemotherapy (reaching medians of only 60% of initial levels) (94).
TABLE 2 Standard therapy-related grade 3/4 lymphopenia is a predictor of shorter overall survival in patients with glioblastoma/gliomas.

References Patient
characteristics

Baseline and
post-therapy

lymphocyte counts

Correlation with overall survival Limitations/comments

Grossman et al.
(2011) (67)

• Total: 96
• Mean age (range):
57.4 (28-85)
• Male: 48 (50%);
female 48 (50%)
• Grade IV: 84%

• Baseline CD4 count range
(median): 90-2010 (664)
cells/mm3

• Patients with baseline
CD4 >1000 cells/mm3:
>90%
• CD4 count range
(median) at 2 months of
therapy: 8-1580 (255) cells/
mm3

• Patients with CD4 <200
cells/mm3 at 2 months of
therapy: 40%

• CD4 <200 vs >200 cells/mm3: mOS 13.1 vs.
19.7 months, p=0.002
• HR 1.66, 95% CI 1.05-2.64, p=0.03 after
adjustment for age, KPS, grade, and extent
of surgery

• Prospective
• 82% of patients were taking steroids
• No data on MGMT promoter
methylation status

Huang et al.
(2015) (56)

• Total: 183
• Median age
(range): 54 (21-82)
• Male: 115 (63%);
female: 68 (37%)
• Grade III: 41
(22%); grade IV:
142 (78%)

• Baseline TLC range
(median): 500-6400 (1200)
cells/mm3

• Patients with TLC <500
cells/mm3 during
therapy: 29%

• TLC <500 vs >500 cells/mm3: mOS 12.5 vs.
20.2 months; 2-year OS: 19% vs. 42%, p<0.001
• No multivariate analysis

• Retrospective
• 70% of patients were taking
dexamethasone
• No data on MGMT promoter
methylation status and IDH mutation
status (patients diagnosed between 2007
and 2012)

Mendez et al.
(2016) (50)

• Total: 72
• Median age
(range): 71 (65-86)
• Male: 34 (47%);
female: 38 (53%)
• Grade IV: 100%

• Baseline TLC range
(median): 300-3200 (1100)
cells/mm3

• Patients with baseline
TLC >1000 cells/mm3: 57%
• TLC range (median) at 2
months after therapy: 200-
2200 (650) cells/mm3

• Patients with TLC <500
cells/mm3 at 2 months of
therapy: 21%

• TLC <500 vs ≥500 cells/mm3: mOS 4.6 vs.
11.6 months, p=0.003
• HR 2.76, 95% CI 1.30-5.86; p=0.008 after
adjustment for extent of surgery, MGMT
methylation status, steroid use, and RT dose

• Retrospective
• Relatively small sample size
• 56% of patients were >70 years
• 85% of patients were taking steroids
• No data on IDH mutation status (patients
diagnosed between 2000 and 2013)

Rahman et al.
(2016) (60)

• Total: 196
• Median age
(range): 59 (23-90)

• Patients with TLC <500
cells/mm3 during
therapy: 47%

• TLC <500 vs >500 cells/mm3: crude OS 14.1
vs. 18.2 months, p=0.003
• HR 1.80, p=0.023 after adjustment for age,
KPS, and MGMT methylation status

• Conference abstract
• Retrospective
• No data on steroid use
• No data on IDH mutation status (patients
diagnosed between 2006 and 2010)

Byun et al.
(2019) (57)

• Total: 336
• Median age
(range): 58 (16-79)
• Male: 187 (55.7%);
female: 149 (44.3%)
• Grade IV: 100%

• Baseline TLC range
(median): 300-3740 (1370)
cells/mm3

• Patients with baseline
TLC >1000 cells/mm3: 97%
• TLC range (median) at 3
months after therapy: 170-
3070 (1120) cells/mm3

• Patients with TLC <500
cells/mm3 within 3-months
of therapy: 35.5%

• TLC <500 vs >500 cells/mm3: mOS 18.2 vs.
22.0 months, p=0.028
• HR 1.04, 95% CI 0.81-1.35, p=0.756 after
adjustment for age, total resection, IDH1
mutation, and MGMT methylation status

• Retrospective
• No data on steroid use
• 5.4% of patients had IDH mutation and
20.2% had unknown status (patients
diagnosed between 2006 and 2017)
• No correlation in multivariate analysis
TLC, total lymphocyte count; MGMT – O6-methylguanine-DNA-methyltransferase; mOS, median overall survival.
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2.4 Steroid-induced immunosuppression

Dexamethasone has comparatively low mineralocorticoid

properties, high glucocorticoid potency, and a long biological half-

life. However, corticosteroids exhibit adverse systemic effects, the most

common of which are immunosuppression, hyperglycemia,

hypertension, osteoporosis, myopathy, diabetes, and thromboembolic

events (95, 96). The severity of these adverse effects is usually correlated

with the total daily dose and duration of steroid application.

In vitro and ex vivo studies have shown that steroids alter the

maturation of dendritic cells, inducing tolerogenic cells that express

low levels of major histocompatibility complex, costimulatory

molecules, and cytokines, resulting in hypo-responsiveness and an

anergic state in naïve and memory T cells primed by such dendritic

cells (97–100). Steroids impair T cell receptor signaling and the

expression of many cytokines, chemokines, and adhesion molecules,

affecting the development, polarization, activation, and migration of

T cells, and promoting the formation of Tregs (97–100).

In chemoradiotherapy- and resection-naïve patients with

glioblastoma, baseline lymphopenia is more frequently observed in

dexamethasone-treated patients than in dexamethasone-naïve

patients (28). In general, dexamethasone use is significantly

associated with lower lymphocyte counts in patients with

glioblastoma (43, 89). Dexamethasone use >2 versus ≤2 mg/day

was independently associated with severe lymphopenia (3-month

rate: 43.7% versus 19.8%; p<0.001) (101). To elucidate how short-

term dexamethasone treatment affects the immune system of patients

with glioblastoma, Gustafson et al. analyzed peripheral blood samples

collected perioperatively and before radiochemotherapy (102). The

CD4+ cell count was significantly lower in dexamethasone-treated

patients than in dexamethasone-naïve patients (102). Changes in the

expression of costimulatory and antigen-presenting molecules in

peripheral monocytes were more pronounced in patients receiving

dexamethasone (102). Patient-derived CD14+ monocytes had an

immunosuppressive phenotype with defective direct T cell

stimulation and dendritic cell differentiation capacity (102). In

another study, dexamethasone treatment before glioblastoma

resection affected the main immune cell populations, including

CD4+ and CD8+ T cells, CD66b+ neutrophils, CD14+ monocytes,

non-Vd2 gdT cells, and NK cells (especially CD56high) (103).

Similarly, analysis of pre-surgery blood samples revealed that

patients with glioma (n=139) who received dexamethasone (45.3%)

had the lowest B, NK, monocyte, CD4+, and CD8+ T cell, and total

lymphocyte counts (104). Cook et al. examined peripheral blood

samples from patients with malignant pleural mesothelioma who

received 4 mg dexamethasone thrice prior to undergoing standard

chemotherapy (105). The authors observed substantial

immunomodulatory effects in response to dexamethasone

administration, particularly affecting CD4+ and CD8+ T cells and

dendritic cell subtypes. The proportion of Tregs did not change;

however, a significant increase in their proliferation and activation

was observed (105). In contrast, the absolute number of Tregs was

significantly lower in dexamethasone-treated patients with

glioblastoma than in normal controls or dexamethasone-untreated

patients (102, 103).
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Moreover, patients with glioblastoma receiving steroids had higher

counts of bloodMDSCs than those who did not receive steroids (35) or

were on steroids for a shorter period (36). Dexamethasone has been

also shown to induce MDSCs in preclinical transplantation models,

and its dose positively correlated with the absolute number of MDSCs

in transplant recipients (106). In addition, patients with glioblastoma

receiving steroids had significantly higher neutrophil counts (58, 69, 89,

103, 104, 107). However, other research groups found no significant

difference in neutrophil counts in patients receiving or not receiving

steroid therapy (108) or revealed only a weak correlation between the

dexamethasone dose and NLR (109). Finally, perioperative

corticosteroid treatment impaired tumor-infiltrating dendritic cells in

patients with newly diagnosed gliomas (110). Altogether, in accordance

with in vitro and ex vivo studies, dexamethasone (without

radiochemotherapy) adversely affects the immune system of patients

with cancer.
2.5 Dexamethasone use is a prognostic
factor for shorter survival

Steroid use as a negative prognostic indicator of survival in

patients with glioblastoma/gliomas was recognized approximately

three decades ago (111, 112) and confirmed by modern

retrospective research (Table 3) (9, 55, 113–119). In congruence,

a large cohort study (n=2002) (58) and meta-analysis (120) reported

that steroid use was associated with worse overall survival.

However, some studies have demonstrated no association

between steroid use and outcomes in patients with newly

diagnosed glioblastoma in univariate or multivariate analyses (50,

67, 107, 121–124). In some retrospective studies, steroid use was

associated with worse overall survival in patients treated with

radiotherapy only but not in those treated with both radiation

and chemotherapy (9, 116), and vice versa (116). Nevertheless,

when the patient cohorts were analyzed as a whole, dexamethasone

use was associated with a negative prognosis (Table 3).

In addition, multivariate analyses revealed that there were

negative associations between baseline corticosteroid use and

overall survival in patients with glioblastoma receiving checkpoint

inhibitors (125, 126). In systematic reviews and meta-analyses,

administration of steroids for supportive care (e.g., disease-related

symptoms) or brain metastases was associated with significantly

worse overall survival in non-small cell lung cancer and melanoma

patients receiving immune checkpoint inhibitors (127, 128). In

contrast, steroids used to mitigate adverse events did not

negatively affect overall survival (128). However, steroid timing

for immune-related adverse events may be associated with survival

in patients receiving immune checkpoint inhibitor therapy. In large

multicenter retrospective cohort study (n=20163), systemic steroids

for immune-related adverse events were associated with

significantly improved survival compared with those who received

steroids for other reasons or no steroid treatment (mOS, 21.3 versus

13.6 versus 15.8 months; P<0.001) (129). However, among those

who received steroids for immune-related adverse events, early

steroid use (<2 months after immune checkpoint inhibitor
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TABLE 3 The use of dexamethasone is a predictor of shorter overall survival in patients with glioblastoma/gliomas.

References Patient
characteristics

% of patients on
corticosteroid
therapy (Yes
versus No)

Correlation with median overall survival in
multivariate analysis

Limitations/comments

Gorlia et al.
(2008) (9)

• Total: 573
• Median age
(range): 56
(19-71)

71% vs. 29% N=547; HR 1.36, 95% CI 1.11-1.67, p=0.003 after
adjustment for age, sex, WHO performance status, extent
of resection, MMSE score, and treatment assignment

• Retrospective
• 64% of patients had unknown MGMT
promoter methylation status
• No data on IDH mutation status (patients
diagnosed between 2000 and 2002)

Gorlia et al.
(2012) (113)

• Total: 300
• Median age
(range): 53.5
(18-78)
• Male: 196
(65.3%); female:
104 (34.7%)

65.3% vs. 34.7% N=189; HR 2.01, 95% CI 1.40-2.88, p=0.0001 after
adjustment for WHO performance status, presence of
neurological deficits, number of target lesions, tumor size,
frontal tumor location, and prior chemotherapy with TMZ

• Retrospective
• Recurrent patients were from eight
multicenter phase I and II trials and received
the heterogeneous treatments
• No data on MGMT promoter methylation
status
• No data on IDH mutation status (patients
diagnosed between 1999 and 2010)

Michaelsen
et al.
(2013) (114)

• Total: 225
• Median age
(range): 59.2
(22.6-75.4)
• Male: 145
(64.4%); female:
80 (35.6%)

73.3% vs. 25.3% HR 2.06, 95% CI 1.47-2.87, p<0.0001 after adjustment for
age and ECOG performance status

• Retrospective
• 27.5% of patients had unknown MGMT
promoter methylation status
• No data on IDH mutation status (patients
diagnosed between 2005 and 2010)

Tieu et al.
(2015) (115)

• Total: 196
(derivation
cohort)
• Average age:
54
• Male: 125
(64%); female:
71 (36%)

95% vs. 5% HR 1.04, 95% CI 1.01-1.07, p=0.02 after adjustment for
age, ECOG performance status, and extent of resection

• Retrospective
• No data on MGMT promoter methylation
status
• No data on IDH mutation status (patients
diagnosed between 2004 and 2011)
• A correlation between survival and time-
weighted mean dexamethasone dose, calculated
by regularly measuring dexamethasone dose
from start of RT to 4 weeks following
completion of RT, was analyzed• Total: 197

(validation
cohort)
• Average age:
54
• Male: 126
(64%); female:
71 (36%)

88% vs. 12% HR 1.08, 95% CI 1.04-1.11, p<0.0001 after adjustment for
age, ECOG performance status, and extent of resection

Pitter et al.
(2016) (116)

• Total: 622
• Mean age
(range): 56.5
(19-71)
• Male: 396
(63.7%); female:
226 (36.3%)

83.9% vs. 16.1% 12.9 vs. 20.6 months, p<0.0001;
HR 1.512, 95% CI 1.2058-1.8960, p=0.00034 after
adjustment for RTOG RPA Class and concurrent TMZ

• Retrospective

• Total: 832
• Median age
(range): 62 (19-
86)
• Male: 497
(59.7%); female:
335 (40.3%)

44.5% vs. 55.5% 12.1 vs. 15.7 months, p<0.001;
HR 1.18, 95% CI 1.02-1.37, p=0.024 after adjustment for
age, KPS, extent of resection, and treatment assignment

• Total: 573
• Mean age
(range): 55.8
(18.6‐70.8)

71.2% vs. 28.6% 12 vs. 17 months, p<0.0001;
HR 1.52, p=0.004 for the RT group; HR 1.2, p=0.2 for the
RT+TMZ group after adjustment
for age, extent of resection, and WHO performance status

van Linde
et al.
(2017) (117)

• Total: 299
(recurrent)
• Mean age
(range): 57 (19-
85)
• Male: 202
(67.6%); female:
97 (32.4%)

61.5% vs. 34.8% HR 1.85, 95% CI 1.33-2.59, p=0.001 after adjustment for
age, sex, extent of resection, tumor extent, ECOG
performance status, recurrence-free interval, and
treatment assignment

• Retrospective
• Patients received different systemic treatments
at recurrence
• No data on MGMT promoter methylation
status
• No data on IDH mutation status (patients
diagnosed between 2005 and 2014)

(Continued)
F
rontiers in Imm
unology
 07
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1326757
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stepanenko et al. 10.3389/fimmu.2024.1326757
initiation) was associated with reduced relative survival benefit in

comparison to later steroid use, regardless of immune checkpoint

inhibitor continuation or cessation following steroid initiation

(mOS after immune checkpoint inhibitor cessation, 4.4 versus

16.0 months; mOS after immune checkpoint inhibitor

continuation, 16.0 versus 29.2 months; P<0.001) (129).
2.6 Can corticosteroids compromise
survival in glioblastoma?

Dexamethasone treatment significantly decreased survival in

irradiated glioma-bearing mice in a genetically engineered mouse

model of glioma (116) and increased proliferation, invasion, and

angiogenesis in a human glioma stem cell-derived orthotopic tumor

model (130). However, in a pediatric low-grade glioma cohort

(n=191), no significant difference was observed in the short- or

long-term tumor growth rates or in the progression-free survival of

patients treated with or without perioperative dexamethasone,

irrespective of gross total or incomplete resection (131). The

negative correlation between dexamethasone use and overall

survival reported in most large cohort studies (Table 3) might be

due to less extensive surgery, more aggressive tumor growth, and

edema in patients requiring steroid treatment (116, 132). A higher

daily steroid dose (>2 mg/day) in comparison to a lower daily

steroid dose (≤2 mg/day) was independently associated with

median overall survival (n=319, 12.6 versus 17.9 months,

p<0.001); however, in patients with gross total resection, the

steroid dose was not prognostic for overall survival (55).

Moreover, overall survival of patients receiving ≤4 mg/day

dexamethasone did not differ significantly from that of patients

who did not receive steroids (55). These data suggest that tumor size

might still be a dominating confounding factor in the association

between dexamethasone use and overall survival. However, in

patients with recurrent glioblastoma receiving >4.1 versus ≤4.1

mg/day dexamethasone and treated with tumor-treating
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alternating electric fields (TTFields) (n=120), median overall

survival was 4.8 and 11.0 months (p<0.0001), respectively, and

tumor size did not differ statistically between patient cohorts (119).

Furthermore, the analysis of three large independent cohorts (total

n>2000) confirmed a negative association between dexamethasone

use and overall survival after adjustment for age, extent of resection,

and performance status (116). Overall, there can be confounding

factors other than tumor size that modify the prognostic

significance of steroid use. Steroid treatment-related systemic

immunosuppression or other steroid-related adverse effects, such

as the deregulation of blood glucose levels, may also affect patient

survival. Hyperglycemia before surgery, during radiation, or

radiochemotherapy was independently associated with poorer

progression-free and overall survival in patients with glioblastoma

after adjusting for the mean daily dexamethasone dose and other

prognostic variables (115, 133–138). As each patient receives

personalized dexamethasone treatment, it is not possible to

prospectively determine how dexamethasone use, its daily dose,

and the duration of treatment affect cancer patient survival.
2.7 Lymphopenia is significantly associated
with response and survival outcomes in
patients with advanced cancer on immune
checkpoint inhibitor therapy

Patients with solid tumors treated with programmed cell death

1 (PD-1) checkpoint inhibitors (n=167) with absolute lymphocyte

counts >2000 cells/ml at baseline had an increased risk of immune-

related adverse events on multivariate analysis (139). At the same

time, patients with lymphopenia at baseline and persistent

lymphopenia at three months (largely radiation-related) had a

shorter time to progression compared to those who had baseline

lymphopenia but recovered with absolute lymphocyte counts >1000

cells/ml at 3 months (HR 2.76, p<0.05) (139). These data suggest

that lymphopenia may dramatically reduce the incidence of
TABLE 3 Continued

References Patient
characteristics

% of patients on
corticosteroid
therapy (Yes
versus No)

Correlation with median overall survival in
multivariate analysis

Limitations/comments

Coleman
et al.
(2018) (118)

• Total: 100
• Median age
(range): 48 (18-
70)
• Male: 69
(69%); female:
31 (31%)

63.7% vs. 36.3% N=91; HR 1.84, 95% CI 1.05-3.24, p=0.034 after
adjustment for ECOG performance status, NLR, and
RMH score

• Retrospective
• Relatively small sample size
• 85% of patients had unknown MGMT
promoter methylation status
• 82% of patients had unknown IDH mutation
status (patients diagnosed between 2004
and 2016)

Hui et al.
(2019) (55)

• Total: 319
• Median age
(range): 57 (21-
82)
• Male: 195
(61%); female:
124 (39%)

High-dose cohort
(>2 mg/day, 47%)
vs. low-dose cohort
(≤2 mg/day, 53%)

N=231; HR 1.131, 95% CI 1.059-1.208, p<0.001 after
adjustment for age, sex, extent of resection, MGMT
methylation status, RT technique, and baseline ALC

• Retrospective
• 28% of patients had unknown MGMT
promoter methylation status
• No data on IDH mutation status (patients
diagnosed between 2007 and 2016)
ALC, absolute lymphocyte count; ECOG, the Eastern Cooperative Oncology Group; KPS, Karnofsky Performance Status; MGMT – O6-methylguanine-DNA-methyltransferase; MMSE, Mini-
Mental State Examination; NLR, neutrophil-to-lymphocyte ratio; OS, overall survival; RMH, Royal Marsden Hospital prognostic score; RT, radiotherapy; RTOG RPA, Radiation Therapy
Oncology Group Recursive Partitioning Analysis; TMZ, temozolomide; TTFields, tumor-treating alternating electric fields; WHO, World Health Organization.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1326757
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stepanenko et al. 10.3389/fimmu.2024.1326757
immune-related adverse effects but is associated with an efficiency

of immune checkpoint inhibitors. In support, pretreatment absolute

lymphocyte count (<600 cells/ml) was significantly associated with

response to PD-1 inhibitors in patients with head and neck

squamous cell carcinomas (n=34) (140). In another study,

lymphopenia (<1000 cells/ml) upon initiation of PD-1 inhibitor

nivolumab was not associated with poorer survival in patients with

head and neck squamous cell carcinomas (n=100), but persistent

lymphopenia under nivolumab was associated with poorer overall

survival in multivariate analysis (HR 3.96, 1.19-13.17, p=0.034)

(141). Similarly, patients with metastatic melanoma (n=116) with a

normal lymphocyte count at baseline but who developed

lymphopenia during immune checkpoint inhibitor therapy had

significantly shorter progression-free survival (13.3 versus 16.9

months, p=0.025) and overall survival (28.1 versus 36.8 months,

p=0.01) compared with patients who did not develop (142). In a

prospective, observational study of patients with advanced non-

small cell lung cancer (n=123) treated with immune checkpoint

inhibitors, high absolute lymphocyte count (>1.01×109/L) and

absence of liver metastases were significantly associated with a

durable clinical benefit defined as progression-free survival >6

months (143). Finally, a meta-analysis of patients with lung

cancer who were treated with immune checkpoint inhibitors

confirms that lymphopenia is associated with poor survival (144).
3 Implications of standard therapy-
related immunosuppression for
immunotherapy or oncolytic
virotherapy clinical trials

3.1 Standard therapy-related
immunosuppression is a barrier
to immunotherapies

It is rationalized that standard radio/chemotherapy is important

for reducing tumor mass and increasing neoantigenic tumor load,

and that it can enhance the immunogenicity of the tumor

microenvironment by inducing immunogenic cell death, which

promotes anti-tumor immunity (145). On the other hand,

radiotherapy induces systemic and intratumoral lymphopenia

(146). Furthermore, glioblastoma cells are intrinsically resistant or

acquire resistance to chemotherapy, which may promote

aggressiveness and enhance their immunosuppressive properties

(101, 147–149). Temozolomide is not a potent inducer of bona fide

immunogenic cell death in human glioblastoma cells (150–152) and

is not included in the shortlist of anti-cancer chemotherapeutics

with the capacity to consistently induce immunogenic cell death

(153). Although ionizing radiation can induce immunogenic cell

death, it is critical to realize that conventional radiation treatment

trigger a combination of cell death processes, such as apoptosis,

necrosis, autophagy, mitotic catastrophe, and senescence, eliciting

both immune-activating and suppressing responses (154).

Additionally, it is widely recognized that immunogenic cell death

cannot drive anti-cancer immunity in the presence of general
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immunological defects. A growing list of intrinsic and acquired

immune-related resistance mechanisms that limit the efficient

exploitation of immunogenic cell death in cancer immunotherapy

has emerged (153, 155, 156). In most studies, comparative analyses

of newly diagnosed and recurrent (matched or unmatched)

glioblastoma samples revealed no significant differences in the

density of immune cell subsets or exhaustion profiles of tumor-

infiltrating T cells (157–165). On the contrary, monocyte-derived

tumor-associated macrophages are incessantly recruited in

recurrent glioblastoma, and the macrophage/microglia ratio is

increased in both the central and marginal areas of the recurrent

tumors in comparison to newly diagnosed glioblastoma (159, 166).

The lack of significant changes in the immune infiltration profiles of

cytotoxic lymphocytes in recurrent glioblastoma questions the

putative positive immunomodulatory role of standard

radiochemotherapy within the tumor microenvironment.

Furthermore, T cell receptor sequencing demonstrated a

contracted T cell receptor repertoire diversity concomitant with

an increased frequency of activated memory T cells among tumor-

infiltrating lymphocytes in patients with recurrent glioblastoma

after standard therapy (63). The youngest naïve T cells are

continuously exported from the thymus as “recent thymic

emigrants” and maintain T cell diversity in the periphery with a

particularly important contribution in adults recovering from

lymphopenia (167, 168). There is emerging evidence that thymic

emigrants can mount robust immune responses (169). CD8+

thymic emigrants have been found to account for the majority of

tumor antigen-binding cells in peripheral blood mononuclear cells

in patients with glioblastoma (170). In patients vaccinated with

autologous tumor lysate-pulsed dendritic cells, the levels of

expanding CD8+ recent thymic emigrants strongly correlated

with vaccine-elicited cytokine responses and predicted survival

outcomes (170). As the thymus significantly degenerates with age

(thymus involution) (65, 171), in adult and elderly patients, the

restoration of heterogeneous populations of T cells and re-

establishment of T cell immunocompetence after standard

therapy is a slow and frequently incomplete process, which may

progress primarily through thymic-independent peripheral

expansion of the remaining mature T cell populations with

reduced T cell receptor repertoire diversity (63, 172). Therapy-

related contraction in the T cell receptor repertoire diversity may

potently decrease the chances of a successful anti-tumor response.

Since immunotherapeutics are tested in patients with

glioblastoma concurrently with or after standard therapy, standard

therapy-related immunosuppression presents a barrier to the success

of immunotherapies (86). It has been repeatedly reported that

systemic chemotherapy (173–177) or CD4+/CD8+ T cell depletion

(150, 178–186) abrogates the survival benefit of immunotherapies or

oncolytic virotherapy in preclinical models. Therefore, it appears

counterintuitive to combine lymphotoxic radiotherapy/

chemotherapy with immunotherapy or virotherapy. Pellegatta et al.

reported that standard therapy significantly decreased CD8+, CD4+,

and NK cell counts in patients with glioblastoma (n=24), and the

administration of adjuvant temozolomide had a negative effect on the

increase of the CD8+ T cell subset and the generation of CD8+ T cell-

associated anti-tumor memory elicited by dendritic cell vaccination
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(42). A negative effect on anti-tumor immunity of temozolomide

administration as an adjuvant to dendritic cell vaccination in patients

with recurrent glioblastoma was also observed in another clinical

study (187). It is also noteworthy that in patients with newly

diagnosed MGMT-unmethylated glioblastoma, personalized

neoantigen peptide vaccines induced circulating neoantigen-specific

T cell responses and a significant increase in infiltrating CD8+ T cells

at relapse only in those who did not receive dexamethasone during

vaccine priming (188). Conversely, the potential positive interaction

of radio/chemotherapy with immunotherapy or oncolytic

virotherapy was also demonstrated in many immunocompetent

rodent models, and the rationale for their combination and

possible limitations are intensively debated in the literature. A few

studies have argued that immunosuppression does not prevent

immune responses induced by a vaccine in patients with

glioblastoma (189) and have pointed to a putative positive

immunomodulatory role of temozolomide in dendritic cell

vaccination or multimodal immunotherapy (190, 191). However,

no large, well-designed randomized controlled trials have been

conducted to prove the positive effects of the addition of

immunotherapy or oncolytic virotherapy to standard therapy, and

only minor subsets of patients have benefited from conducted clinical

trials (3–7).
3.2 The need for shifting the
treatment paradigm

An increasing number of studies have reported an association

between the radiotherapy dose/volume and lymphopenia in

glioblastoma (56, 77, 192, 193). The severity of radiation-induced

lymphopenia depends on the technique of radiotherapy, fraction

number (fractionation regimen), dose per fraction (irradiation

dosage), field size, and other variables (78, 194–197).

Patients with glioblastoma treated with moderately

hypofractionated radiotherapy (58.5 Gy in 25 fractions, n=78) had

a significantly reduced rate of grade ≥2 lymphopenia at 6 months

post-radiotherapy in comparison with conventionally fractionated

radiotherapy (60 Gy in 30 fractions, n=145), with no difference in

overall survival between groups (27.2 versus 26.6 months) (198). In

addition, in patients with pancreatic cancer, hypofractionated

radiotherapy in comparison to standard radiotherapy also

considerably reduced the risk and severity of radiation-induced

lymphopenia (78, 199). In a study of patients with glioblastoma

aged ≥60 years (n=100), there was no difference in survival between

those receiving standard radiotherapy (60 Gy in 30 fractions over 6

weeks) or short-course radiotherapy (40 Gy in 15 fractions over 3

weeks) (200). In congruence, a meta-analysis of controlled trials

testing the impact of radiotherapy hypofractionation on the survival

of patients with glioblastoma reported comparable survival outcomes

between hypofractionation and standard radiotherapy (201).

Patients with glioblastoma receiving intensity-modulated

radiotherapy (IMRT, n=150) had a significantly decreased incidence

of severe lymphopenia (20% versus 37%; p=0.005) compared with

patients treated with three-dimensional conformal radiotherapy (3D-

CRT, n=186) (57). Compared with standard-field radiotherapy
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(n=164), limited-field radiotherapy (n=46) was associated with less

grade 3/4 lymphopenia after radiochemotherapy, though not

statistically significant (15.5% versus 33.8%; p=0.12), and did not

adversely affect progression-free and overall survival in patients with

glioblastoma (193). In a prospective, randomized phase II glioblastoma

trial, a comparison of the Radiation Therapy Oncology Group (RTOG)

and The University of Texas MD Anderson Cancer Center (MDACC)

radiation treatment guidelines revealed that overall survival was

superior in the MDACC group (17 versus 12 months, p=0.015, n=25

per arm) (192). In locally advanced pancreatic cancer, 13.8% and 13.6%

of patients in the stereotactic body radiation therapy group versus

71.7% and 46.0% of patients in the conventional chemoradiation

therapy group had severe lymphopenia at 1 month and 2 months,

respectively, after starting radiotherapy (202).

In a randomized phase II glioblastoma trial of proton versus X-

ray (photon) therapy with concurrent temozolomide, the rates of

grade 3/4 lymphopenia occurrence were lower for proton therapy (4/

28, 14%) than for X-ray (photon) therapy (22/56, 39%, p=0.024)

(203). Grade 3/4 lymphopenia was significantly associated with

baseline absolute lymphocyte counts, whole-brain mean dose, and

brain volumes receiving 5–40 Gy (203). Similarly, in esophageal

cancer patients undergoing neoadjuvant chemoradiotherapy, a

greater proportion of patients in the intensity modulated radiation

therapy group (55/136, 40.4%) developed grade 4 lymphopenia

compared with patients in the proton therapy group (24/136,

17.6%, P<0.0001) (204). On multivariate analysis, proton therapy

was significantly associated with a reduction in grade 4 lymphopenia

risk (204). In a retrospective nonrandomized study of the

comparative effectiveness of proton (n=391) and photon (n=1092)

therapy as part of concurrent chemoradiotherapy for locally

advanced cancer, proton chemoradiotherapy was associated with

significantly reduced acute adverse events but with similar disease-

free and overall survival (205). Numerous comparative studies,

including prospective and/or randomized, support the hypothesis

that proton therapy is associated with improved toxicity and results

in outcomes at least equivalent to those of photon therapy (206, 207).

Results from the large randomized NRG BN001 (NCT02179086)

phase II trial comparing dose-escalated photon IMRT or proton

beam radiation therapy versus standard-dose radiation therapy and

temozolomide in treating patients with newly diagnosed glioblastoma

are awaited. Moreover, three phase III trials directly comparing

proton therapy to photon therapy across a broad variety of

malignancies are currently accruing (206).

Taken together, although all these studies should be currently

considered as hypothesis-generating rather than conclusive, and

require multi-center validation in larger cohorts of patients, they

clearly suggest that modifications in the standard radiation

treatment paradigm might reduce negative effects on the

immune system without compromising overall survival,

potentially strengthening the therapeutic efficacy of prospective

immunotherapies (208).

Temozolomide exerts a negligible therapeutic effect in patients

with glioblastoma with an unmethylated MGMT promoter (209)

and has been omitted from first-line therapy in some clinical trials

(87). Temozolomide therapy could be excluded for patients with

unmethylated MGMT promoter in immunotherapy/oncolytic
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virotherapy trials. The administration of immunotherapeutics as

neoadjuvants (210–212) and local administration of therapeutics to

the brain should also be considered (213).

Immunotherapy trials generally restrict steroid use at

enrollment. Interestingly, the proportion of patients with glioma

who were steroid-free at the end of chemoradiotherapy varied

significantly in different studies (e.g., 78%, 55.5%, 28.6%, 27%, and

16%) (214). There is no standard treatment regimen for the

steroid dexamethasone in neuro-oncology (215), which means

that the choice of daily dose, duration of treatment, and tapering

schemes are adapted for each patient. Body weight or patient age

were not considered a modifier of the daily dose (96). It is not

recommended to use high doses of dexamethasone for prophylaxis

in asymptomatic patients; instead, the lowest dose must be

considered to balance the desired effect and multiple adverse

effects (216, 217). To avoid toxicity associated with prolonged

exposure, dexamethasone should be tapered after achieving

maximum clinical benefit with decrements of the previous dose

until the lowest dose needed to maintain optimum neurological

function is reached. Since it is important to control steroid use in

patients with gliomas, the Response Assessment in Neuro-

Oncology (RANO) Working Group developed consensus

recommendations on steroid use endpoints in clinical trials in

both adults and children with brain tumors (218). Nevertheless,

based on accumulating clinical evidence, a less toxic and

comparably effective alternative to dexamethasone is urgently

required to treat edema in patients with brain tumors.

The search for methods to improve lymphocyte count

recovery following prolonged lymphopenia is another important

direction for clinical research (88). In patients with lymphopenia

before standard therapy, T cells are sequestered in the bone

marrow owing to decreased levels of sphingosine-1-phosphate

receptor 1 (S1PR1) on the surface of T cells (28). Pharmacological

stabilization of S1PR1 on the T cell surface has been suggested as a

potential strategy to ameliorate bone marrow T cell sequestration

and reverse baseline lymphopenia (28). However, S1PR1 plays a

role in both adaptive and innate immune responses by regulating

the recruitment, trafficking, and function of T cells and most

innate immune cells (219). Moreover, S1PRs are expressed in

glioblastoma and sphingosine-1-phosphate signaling is active in

glioblastoma cells, contributing to the pathobiology of brain

tumors (220). It is likely that modulators that stabilize S1PR1

might exert pleiotropic effects, including potentially adverse pro-

tumorigenic effects.

In patients with glioblastoma and lymphopenia after standard

therapy, neither the total lymphocyte count nor CD4+ cell recovery

was augmented by the reinfusion of autologous lymphocytes

harvested using apheresis prior to therapy (40). A recent

prospective correlative study of patients with glioblastoma after

radiochemotherapy (n=20) suggested that the expansion of

circulating MDSCs due to increased myelopoiesis in the bone

marrow may be associated with lymphopenia, which was supported

by preclinical in vivo data (221). Moreover, in patients with

glioblastoma and lymphopenia, a compensatory increase in the
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concentration of interleukin-7 (IL-7) and interleukin-15 (IL-15)

was not observed (39). IL-7 and IL-15 are essential for homeostasis

of circulating T lymphocytes (88). In a prospective cohort of patients

with hepatocellular carcinoma (n=98), post-radiotherapy IL-7 levels

were significantly positively correlated with total lymphocyte counts

at 2 months (222). hIL-7-hyFc is a homodimeric IL-7, fused to the

hybridizing IgD/IgG4 immunoglobulin domain. hIL-7-hyFc was

well-tolerated and increased absolute lymphocyte counts in healthy

humans after a single administration (223). In patients with recurrent

glioblastoma (n=18), treatment with rhIL-7-hyFc restored and

maintained total lymphocyte counts without serious toxicity and

irrespective of steroid use during treatment with salvage therapies,

such as temozolomide and/or bevacizumab (224). A large

randomized controlled trial is required to validate the clinical

benefits of rIhL-7-hyFc treatment in cancer. In general, based on

available clinical data for the treatment of severe lymphopenia in

cancer and non-cancer patients, rhIL-7 is a potent therapeutic

candidate for immune reconstitution (88).
3.3 Detailed blood and/or tumor
immunophenotyping may be valuable for
immunotherapy and oncolytic
virotherapy trials

In dendritic cell vaccinated patients with glioblastoma, CD8+ T

cells levels (170, 225), the maximum count of CD3+/CD4+ T cells

(226), the increased vaccination/baseline ratio of NK cells (227) and

fold change in Tregs frequency (228) in peripheral blood, post-

vaccination IFN-g T cell responsiveness (225, 229, 230), higher

tumor-infiltrating lymphocyte density (231), a low PD-1+/CD8+

ratio in tumor tissue (232), a low B7-H4 expression level in tumor

tissue (233), a low cytotoxic T-lymphocyte-associated antigen 4

(CTLA-4) expression level on T cells (228), and a low programmed

cell death 1 ligand 1 (PD-L1) expression level on myeloid cells (234)

predicted therapy responses and/or were correlated with overall

survival. In a phase II trial of a whole-cell lysate dendritic cell

vaccine combined with standard therapy for newly diagnosed

glioblastoma, patients with a low PD-1+/CD8+ ratio in tumor

tissue had a median overall survival of 61 versus 20.7 months for

patients with a high PD-1+/CD8+ ratio (232). Similarly, in a phase II

trial of autologous heat shock protein peptide vaccine combined with

standard therapy in newly diagnosed glioblastoma, a median overall

survival in patients with low PD-L1 expression on myeloid cells was

44.7 versus 18.0 months for patients with high PD-L1 expression

(234). There have also been attempts to identify responders by

hierarchical clustering of a set of post-vaccine lymphocyte

functional parameters (235). However, no prospectively validated

robust predictive biomarkers for immunotherapy in patients with

glioblastoma have been established.

The correlation between immune cell subsets, signatures, or

markers and response to immunotherapy/oncolytic virotherapy and

overall survival should be monitored in clinical trials to identify new

or validate the proposed immunological-based predictive and
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prognostic variables. The first prospective, explorative, and

observational IMMO-GLIO-01 trial (NCT02022384) was launched

to examine the immune status of approximately 50 patients with

glioblastoma or anaplastic astrocytoma during standard therapy. As

stated in the goals of the study, it would be useful to estimate

individual responses, stratify patients, and find suitable time points

for the inclusion of additional immunotherapy (236). Since only 21%

of patients with recurrent glioblastoma treated with the recombinant

oncolytic poliovirus PVSRIPO experienced long-term survival (>3

years), and 79% of patients did not respond (237), researchers

developed a robust method for cellular immunome monitoring to

identify biomarkers that predict the response to virotherapy (238).

This method is exploited in a phase II study in patients with recurrent

glioblastoma (NCT02986178) to assess baseline and therapy-

mediated changes in local and peripheral cellular immunomes.
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4 Conclusion

Delivering the right combinations with the right dosages at the

right place during the right time is a difficult task in cancer

treatment but may be highly relevant to immunotherapeutics.

Although the tumor itself is immunosuppressive, clinical data

provide compelling evidence that standard therapy exacerbates

immune deficiency in patients with glioblastoma by promoting

lymphopenia and systemic immunosuppression (Figure 1A). Prior

to the initiation of standard therapy, patients with glioblastoma/

gliomas display varying degrees of immunosuppression but rarely

have severe lymphopenia. In contrast, clinical data indicate that

standard therapy affects diverse immune cell subsets, with primary

immunodeficiency related to long-lasting T cell lymphopenia.

However, standard therapy differentially affects the immune
FIGURE 1

Standard therapy-promoted systemic immunosuppression may compromise the efficacy of immunotherapy/oncolytic virotherapy. (A) Prior to initiation
of standard therapy, patients with glioblastoma/gliomas display varying degrees of immunosuppression. However, standard therapy, which includes
radiation, a genotoxic drug temozolomide, and steroid dexamethasone, is a major cause of immune deficiency in patients, inducing long-lasting severe
systemic immunosuppression and lymphopenia with a poor survival prognosis. The standard therapy differentially affects the immune system of each
patient, with some patients developing moderate and some severe immunosuppression. Moreover, the rate and extent of lymphocyte count recovery
after standard therapy also differ significantly between patients. (B) Immunotherapy and oncolytic virotherapy rely on the activity of the host’s own
immune cells. The circulating and tumor-infiltrating CD4+, CD8+, NK, NKT, neutrophil, macrophage, myeloid-derived suppressor cell (MDSC), and
regulatory T cell (Treg) counts, and subsets, and their relative ratios determine the immunological fitness of a patient. In clinical trials, immunotherapy
and oncolytic virotherapy are largely tested in patients treated concurrently with or after standard therapy (in progressive/recurrent patients). Standard
therapy-promoted immunosuppression/lymphopenia may limit the ability of the immune system to target glioblastoma. It is very likely that patients with
lower systemic immune suppression may generally benefit from immunotherapy or oncolytic virotherapy much better than severely immune
compromised patients who might be non-responsive to any extent. A high baseline neutrophil to lymphocyte ratio (NLR), a low post-treatment total
lymphocyte count (TLC), and dexamethasone use are significant prognostic factors for shorter overall survival.
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system of each patient, and the rate and extent of lymphocyte count

recovery after standard therapy differ significantly between patients.

Most patients do not recover to baseline levels.

Standard therapy-promoted systemic immunosuppression and

lymphopenia may limit the immune system’s ability to target

glioblastoma (Figure 1B). Hence, changes in the standard therapy

paradigm are required to increase the success of immunotherapies.

Eligibility criteria, particularly relevant in neuro-oncology, and

inadequate phase II study designs have been critically reviewed

elsewhere (239). As for the design of clinical trials for glioblastoma

to improve the effectiveness of immunotherapy/oncolytic

virotherapy in general, the following aspects, supported by clinical

data, must be taken into account (196, 197, 240, 241). First, the

circulating blood within the blood vessels is recognized as an organ

at risk for radiotherapy. Photon therapy, larger planning target

volume, and higher brain dose were associated with increased risk

of severe lymphopenia in glioblastoma, which correlates with poor

survival. Therefore, the best efforts should be aimed to find and

implement an efficient lymphocyte-sparing radiation modality

(regimen and technique). Irradiation to the minimum necessary

target using high-precision imaging (a minimal target definition),

reduction of low-dose irradiation around the target (e.g., proton

therapy), and a smaller number of fractions (i.e., hypo-

fractionation) would be the strategy. Second, concurrent

temozolomide and overall corticosteroid exposure during

radiotherapy are contributing factors to lymphopenia. For trial

enrollment, particular consideration should be given to patients

without grade 2-4 lymphopenia, who are not expected to require

steroids, and with an unmethylated MGMT promoter, for whom

lymphotoxic temozolomide have to be completely omitted. Third,

absolute/total lymphocyte counts should be monitored after

radiotherapy, and appropriate effective interventions overcoming

radiation-induced lymphopenia should be established and applied.

Fourth, high NLR (31–33) and low post-treatment TLC are

significant prognostic factors for shorter survival in patients with

glioblastoma/gliomas. These and other cost-effective, widely and

easily available clinically relevant prognostic immune variables

associated with systemic inflammation and adaptive immunity

(e.g., platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte

ratio (LMR), systemic immune-inflammation index (SII), systemic

immune response index (SIRI), or combinations thereof) (33, 242–

248) should be reported and correlated with response and survival

in immunotherapy/oncolytic virotherapy studies. In addition, since

the use of different time points to define treatment-related
Frontiers in Immunology 13
lymphopenia has been reported to modify the prognostic power

of lymphocyte counts, uniform time-points in standard therapy-

related lymphopenia assessment should be established. Finally,

detailed immunophenotyping of blood and/or tumor samples to

assess the predictive/prognostic clinical significance of immune-

related variables may also be valuable for future therapy decision-

making in immunotherapy/oncolytic virotherapy trials.
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214. Dıéz Valle R, Becerra Castro V, Marigil Sánchez M, Gállego Pérez-Larraya J,
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