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The effectiveness of tumor therapy, especially immunotherapy and oncolytic

virotherapy, critically depends on the activity of the host immune cells. However,

various local and systemicmechanisms of immunosuppression operate in cancer

patients. Tumor-associated immunosuppression involves deregulation of many

components of immunity, including a decrease in the number of T lymphocytes

(lymphopenia), an increase in the levels or ratios of circulating and tumor-

infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-

derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as

well as defective functions of subsets of antigen-presenting, helper and

effector immune cell due to altered expression of various soluble and

membrane proteins (receptors, costimulatory molecules, and cytokines). In this

review, we specifically focus on data from patients with glioblastoma/glioma

before standard chemoradiotherapy. We discuss glioblastoma-related

immunosuppression at baseline and the prognostic significance of different

subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+

and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages,

MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR),

focus on the immune landscape and prognostic significance of isocitrate

dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal

molecular subtypes, and highlight the features of immune surveillance in the

brain. All attempts to identify a reliable prognostic immune marker in

glioblastoma tissue have led to contradictory results, which can be explained,

among other things, by the unprecedented level of spatial heterogeneity of the

immune infiltrate and the significant phenotypic diversity and (dys)functional

states of immune subpopulations. High NLR is one of the most repeatedly

confirmed independent prognostic factors for shorter overall survival in

patients with glioblastoma and carcinoma, and its combination with other

markers of the immune response or systemic inflammation significantly

improves the accuracy of prediction; however, more prospective studies are

needed to confirm the prognostic/predictive power of NLR. We call for the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1326753/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1326753/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1326753/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1326753/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1326753&domain=pdf&date_stamp=2024-02-28
mailto:a.a.stepanenko@gmail.com
https://doi.org/10.3389/fimmu.2024.1326753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1326753
https://www.frontiersin.org/journals/immunology


Stepanenko et al. 10.3389/fimmu.2024.1326753

Frontiers in Immunology
inclusion of dynamic assessment of NLR and other blood inflammatory markers

(e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio,

lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and

systemic immune response index) in all neuro-oncology studies for rigorous

evaluation and comparison of their individual and combinatorial prognostic/

predictive significance and relative superiority.
KEYWORDS

glioblastoma, glioma, lymphopenia, macrophages, myeloid-derived suppressor cells,
natural killer cells, neutrophil-to-lymphocyte ratio, regulatory T cells
1 Introduction

In the United States, glioblastoma (diagnosed during 2013–

2017) accounts for 48.6% (all ages combined) of all malignant brain

and other central nervous system tumors, and five-year survival for

patients diagnosed with glioblastoma in 2009–2015 is 7% (3–27%,

varied by age) (1). Although the incidence of glioblastoma among

primary brain tumors in different countries varies greatly

(from ≈8.5% to 69%) (2, 3), five-year relative survival estimates

are comparable and are <7% overall (4). The standard of care for the

treatment of glioblastoma (maximal safe resection followed by

radiotherapy with temozolomide chemotherapy) has not changed

much since 2005 (Stupp protocol) (5, 6), and glioblastoma remains

incurable (1) despite significant advances in our knowledge of its

genetics and molecular biology over the past two decades.

The blood brain barrier is thought to be a key factor limiting the

effectiveness of chemotherapy, including targeted agents, in the

treatment of glioblastoma/glioma (7–9). Even temozolomide, with

features such as 100% oral bioavailability, rapid absorption, excellent

biodistribution, and ability to cross the blood-brain barrier because of

its small size and lipophilic properties (10), reaches levels in tumor

tissue that are only 20% of systemic drug levels (11). In 2016, of the

ongoing 98 phase I/II and II glioma clinical trials, 63 studies (64.29%)

were reported to include at least one drug able to pass the blood brain

barrier (12). Unfortunately, according to systematic reviews and

meta-analyses, almost all clinical trials involving targeted drugs and

personalized chemotherapy in adult patients with glioblastoma have

been unsuccessful (13–17). However, recent phase II trials

(NCT02684058 and NCT04775485) found that dabrafenib plus

trametinib could be an effective therapy as first-line treatment for

pediatric patients with low-grade glioma with BRAF V600 mutations

(18), and type II RAF inhibitor tovorafenib could be an effective

therapy for BRAF-altered, relapsed/refractory pediatric low-grade

glioma (19). Moreover, patients with IDH1 wild-type high-grade

gliomas harboring BRAF or NF1 mutations and receiving trametinib

monotherapy or in combination with dabrafenib had longer

progression-free and overall survival than patients who did not

receive genotype-matched targeted therapy (20).
02
Great hopes are currently placed on combination immunotherapy,

including oncolytic virotherapy (16, 21–25). The immune system plays

a primary role in the control of tumor development and the

effectiveness of anticancer therapy (26–28). Historically, the brain has

been considered an immune-privileged organ based on the lack of

traditional lymphatic vessels in the brain and experiments with

transplantation of foreign tissue into brain tissue and lack of

rejection, as well as experiments with peripherally injected dyes that

stain peripheral organs, but not the brain, due to the blood-brain

barrier, restricting the access of macromolecules and cells into the brain

parenchyma (29). Increasing evidence demonstrates that meningeal

lymphatic vessels draining to the cervical lymph nodes play an

important role in immune surveillance of the brain (30–32) and are

essential for mounting an efficient immune response to brain tumors

(33, 34). Various types of immune cells, including T cells and dendritic

cells, were observed within meningeal lymphatics in both normal and

pathological conditions (30–32). In mice with intracranial glioma or

metastatic melanoma, dorsal meningeal lymphatic vessels were found

to undergo extensive remodeling, and their specific pharmacochemical

ablation impaired intratumoral fluid drainage, dendritic cell trafficking,

and the efficacy of immunotherapy (33). Despite the partial disruption

of the blood-brain barrier in glioblastoma (7), which promotes the

infiltration of immune cells (25), nevertheless, human glioblastoma

exhibits a predominantly “cold” (“immune-desert”/”immune-

excluded”) phenotype, characterized by the absence or exclusion of T

cells in the tumor microenvironment (33, 35) and T cell dysfunction,

including tolerance and exhaustion (36, 37).

A tumor subdues the immune system, exerting both a local

complex inhibitory effect on the tumor tissue microenvironment and

systemic immunosuppression through the secretion of many soluble

factors (38, 39). Profound immunosuppression and lymphopenia pose

a challenge to current treatment strategies, including chemotherapy

(38, 40, 41) and especially immunotherapy, the effectiveness of which

may critically depend on the state of the patient’s immune system (41,

42). This review focuses on understanding the state of the immune

system and the prognostic significance of different immune cell

subtypes in patients with glioblastoma before standard therapy. In

our accompanying review in Frontiers in Immunology (43), we
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comprehensively discuss the prognostic significance of standard

therapy-related (iatrogenic) systemic immunosuppression and its

implications for immunotherapy and oncolytic virotherapy. We

provide compelling clinical data indicating that standard therapy

affects various immune cell subsets, promoting tumor-related

immune deficiency in patients with glioblastoma. Low post-

treatment total lymphocyte count (TLC) is a prognostic factor for

shorter survival in glioblastoma, and radiation-induced lymphopenia is

a prognostic factor for mortality in virtually all solid cancers.

Chemotherapy and corticosteroids may exacerbate radiation-induced

lymphopenia. Dexamethasone use is a prognostic factor for shorter

survival in glioblastoma. In addition, there is growing evidence that

immunosuppression associated with standard therapy may be a barrier

to immunotherapy, and lymphopenia is significantly associated with

response and survival outcomes in patients with advanced cancer

receiving immune checkpoint inhibitor therapy. Finally, we discuss

how detailed blood and/or tumor immunophenotyping may be

valuable for immunotherapy/oncolytic virotherapy research in terms

of identifying new or validating the proposed immunological-based

prognostic/predictive variables, and suggest what changes/

interventions to the standard therapy paradigm should be considered

to maintain lymphocytes counts. These reviews should help inform

more rational clinical trial design and treatment decisions to potentially

improve the effectiveness of immunotherapy/oncolytic virotherapy.
2 Glioma/glioblastoma-related
changes in circulating immune cells

Analysis of peripheral blood obtained from patients with glioma

showed shifts in the normal CD4+/CD8+ T cell ratio (from 2:1 closer

to 1:1) (44–46). Among 300 chemoradiotherapy- and surgery/biopsy-

naïve patients with glioblastoma (median age: 66; range: 21–91),

lymphopenia (<1000 cells/µl) was present in 24.7% of patients (18.2%

of steroid-naïve and 37.1% of steroid-experienced) (47). Deng et al.

reported that 11.9% (out of n=469) of patients with glioblastoma

(median age: 60.3; range: 19–94) had grade 3/4 lymphopenia (<500

cells/µl) preoperatively and 15.4% (out of n=628) postoperatively and

before standard radiochemotherapy (48). In the elderly group

(median age: 71 years), only 57% (out of n=72) of patients had

normal baseline total lymphocyte counts (49). In another study,

lymphopenia at baseline was detected in 24.3% (out of n=562) of

elderly patients with glioblastoma (≥65 years) and was associated

with worse overall survival (HR 1.30; 95% CI 1.05–1.62; p=0.02),

regardless of O-6-methylguanine-DNA methyltransferase (MGMT)

promoter methylation status (50). Similarly, studies reported that

lymphopenia or absolute lymphocyte count at baseline in patients

with glioblastoma were associated with worse overall survival in

univariate and multivariate analysis, independent of the extent of

resection, IDH mutation status, and adjuvant therapy (51, 52).

However, absolute lymphocyte count at baseline was not correlated

with overall survival in univariate or multivariate analysis of other

studies (53–59).
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In addition to baseline (preoperative/pretreatment)

lymphopenia and shifts in the CD4+/CD8+ T cell ratio, it has

been repeatedly documented that patients with glioma have

decreased serum levels of Th1-type cytokines (IL-2, IL-6, IL-12,

TNF-a, and IFN-g) and increased serum levels of Th2-type

cytokines (IL-4 and IL-10) (46, 60–64). Serum, cerebral spinal

fluid, or tumor cyst fluid from patients with glioma may suppress

the proliferation and/or function of lymphocytes and other immune

cells from healthy donors (61, 63, 65, 66).

One of the contributors to systemic immunosuppression is

CD4+CD25+FOXP3+ regulatory T cells (Tregs), which are

involved in immune tolerance of tumors and compromise

cytotoxic T cell function (67). In the majority of studies, elevated

Treg fractions were documented among peripheral blood CD4+ T

cells of patients with glioblastoma (60, 68–70), even in cases with

severe CD4+ T cell lymphopenia (<200 cells/mL) and regardless of

steroid use (70). Patients with elevated Treg fractions but not

normal Treg fractions showed significant proliferative dysfunction

of CD4+ T cells, reduced quantities of Th1-type cytokines, and

increased quantities of Th2-type cytokines (70).

Another contributor to systemic immunosuppression is

myeloid-derived suppressor cells (MDSCs), a heterogeneous

population of early myeloid progenitors and precursor cells that

can suppress immune responses mediated by CD4+ and CD8+ T

cells (71). The number of circulating MDSCs is higher in patients

with glioblastoma than in healthy donors or patients with low-grade

gliomas (72–75).

In contrast to changes in the counts of T cell subsets, MDSCs,

and neutrophils (discussed below), natural killer (NK) cells (45, 46,

76–78) and natural killer T (NKT) cells (79, 80) were within the

normal range in patients with glioblastoma/glioma before standard

therapy in the majority of studies, although their cytotoxic activity

may have been impaired (44, 81, 82).
3 A high neutrophil-to-lymphocyte
ratio is an independent prognostic
factor for shorter survival

3.1 Factors influencing the ratio of
neutrophils and lymphocytes

Neutrophils account for 50–70% of circulating leukocytes in

humans (83). The neutrophil-to-lymphocyte ratio (NLR), derived

from the absolute neutrophil and lymphocyte counts of a full blood

count, is an easily accessible and measurable marker (84). Changes

in the balance between neutrophils and lymphocytes reflect an

increase in systemic inflammation and a decrease in anti-tumor

adaptive immunity (84). Baseline NLR increases with glioma

progression (grade I-IV glioma), with the highest NLR values

observed in patients with grade IV gliomas, followed by grade III

and grade I-II gliomas (85–92). In addition, in a retrospective study

of adult patients with not otherwise specified subtype of
frontiersin.or
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glioblastoma (n=89), a weak positive association was found between

tumor size and preoperative NLR values (Spearman r=0.3212,

p=0.0493) (93). In another retrospective study of patients with

glioma (n=64), higher pretreatment NLR was significantly

associated with larger tumor diameter (p=0.02) (94). Similarly,

a positive correlation between NLR and tumor size in patients

with papillary thyroid carcinoma has been repeatedly documented

(95). In carcinomas in general, NLR is higher in patients with

more advanced or aggressive disease, as evidenced by increased

tumor stage, nodal stage, and number of metastatic lesions (84).

This correlation might be due to the fact that tumor cells secrete

granulocyte colony-stimulating factor (G-CSF) and/or granulocyte-

monocyte colony-stimulating factor (GM-CSF), which are not only

direct growth factors for tumor cells but may also contribute to

increased NLR in patients, shifting bone marrow hematopoiesis

from the lymphocyte lineage toward the granulocyte lineage

(96–98).

Any type of damage to brain tissue, including surgery- and

therapy-related damage, tends to enhance G-CSF/GM-CSF

synthesis (96). In addition, patients with glioblastoma treated

with steroids have higher neutrophil counts and NLR (48, 54, 55,

78, 99, 100); however, no significant influence of steroid use on

neutrophil counts (101) or only a weak correlation between

dexamethasone dose and NLR (53, 57) were also reported. It is

advisable to measure NLR prior to surgery or other treatments that

may increase the neutrophil count. It should also be noted that

NLR may change not only under the direct influence of tumor

progression, surgery, or steroid treatment, but also of local or

systemic infection; inflammatory diseases; thyroid, renal, or hepatic

dysfunction; diabetes mellitus; heart diseases; hypertension;

obesity; psychologic stress; and other complications in cancer

patients (102, 103).

Regional anesthesia for patients with glioma has been proposed

as a strategy to reduce postoperative systemic and local inflammatory

responses (104). In a retrospective study of patients with glioblastoma

(n=119) (104), local anesthesia of the nerves of the scalp during

craniotomy, referred to as a “scalp block” (105), was shown to reduce

postoperative NLR (104). This reduction was associated with longer

median progression-free survival (16.7 versus 6.5 months for patients

without a scalp block) (104). However, in another retrospective large

cohort study (n=808), the use of a scalp block in glioma resection was

not associated with improved progression-free and overall survival

(106). Moreover, the use of different anesthetics, including isoflurane,

desflurane, and propofol, during glioblastoma surgery is not

associated with overall survival (107, 108).
3.2 A high neutrophil-to-lymphocyte ratio
is a prognostic factor in solid tumors

In retrospective studies, lower neutrophil counts before

radiochemotherapy were associated with better overall survival

(n=164, n=369, and n=2002) (55, 57, 99) independent of steroid

use (55). Higher neutrophil counts at relapse were also prognostic
Frontiers in Immunology 04
for worse overall survival, but only in patients who did not receive

bevacizumab (109). However, there are studies that report no

prognostic role for neutrophil counts in patients with

glioblastoma (52, 56, 58, 59).

Higher NLR was a significant prognostic factor for shorter

progression-free survival in some glioblastoma/glioma retrospective

studies (110–113) but not in others (51, 54, 114–116) on univariate

and/or multivariate analyses. In large meta-analyses, higher NLR in

patients with carcinomas was a significant prognostic factor of

cancer-specific, progression-free and/or disease-free survival

(117, 118).

High baseline (preoperative/pretreatment) NLR was established

as an independent predictor of shorter overall survival in patients with

glioblastoma/gliomas (Table 1) (51, 52, 54, 56–59, 85, 90–92, 112, 114,

119–128), and this was confirmed by meta-analyses (131–133).

However, the independent prognostic significance of NLR remains

debatable (55). High NLR during standard therapy was also

associated with worse overall survival regardless of steroid use in

multivariate analysis (48), and a decline of NLR during or post-

therapy was associated with longer overall survival of patients with

glioblastoma in multivariate analyses in prospective (53) and

retrospective studies (57, 119, 134). NLR was prognostic in patients

with recurrent glioblastoma (119, 135). However, in some

glioblastoma studies, baseline NLR was not correlated with overall

survival (114, 136), or correlated with overall survival in univariate

analysis but not in multivariate analysis (55, 56, 85, 127), or vice versa

(121). Similarly, postoperative NLR was not correlated with overall

survival in either univariate (56, 58) or multivariate analyses (57, 115,

127). It should also be noted that assessment of dynamic changes of

NLR (e.g., preoperative, pre-treatment, during and/or post-treatment)

may provide more accurate prognostication or prediction of response

to therapy in glioma (53, 57) and carcinoma (137–144).

In the majority of glioblastoma/glioma studies (Table 1), high

NLR was established as an independent factor for worse outcomes

without includingMGMT promoter methylation status, steroid use,

IDH mutation status, or other prognostic variables in multivariate

analyses. Nevertheless, baseline NLR was still prognostically

independent of MGMT promoter methylation status (58, 129),

IDH mutation status (51, 92, 121), and steroid use (122, 124) in

patients with glioblastoma, and patients with increased NLR and

requiring steroids had the poorest outcomes (73). Moreover, in a

recent prospective glioma study (n=73, 37% with grade III

astrocytoma and 63% with grade IV glioma), patients were

divided into four groups based on the median baseline NLR

and NLR decrease during chemoradiotherapy (53). Patients

with baseline NLR <3.5 with NLR decrease during treatment

(n=14), baseline NLR <3.5 without NLR decrease during

treatment (n=23), baseline NLR ≥3.5 with NLR decrease during

treatment (n=24), and baseline NLR ≥3.5 without NLR decrease

during treatment (n=12) had median overall survival of 36.5, 19.2,

14.7 and 7.1 months, respectively (53). On univariate analysis,

patients with baseline NLR <3.5 and NLR decrease during

treatment had lower mortality risk than those with baseline NLR

≥3.5 (HR 0.512; 95% CI 0.291–0.904) or no decrease during
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TABLE 1 High NLR is an independent prognostic factor for overall survival in patients with glioblastoma/gliomas.

Study
(year)

Patients

A NLR
value

associated
with

overall
survival

Correlation with
overall survival in
univariate and
multivariate
analysis

Limitations/comments

Bambury
et al.
(2013) (59)

• Total: 84
• Male: 65 (77%);
female: 19 (23%)
• Median age: 58
(18-79)
• Grade IV:
84 (100%)

• >4 vs. ≤4
• Median
NLR (range):
3.1 (1.1-34.6)
• NLR >4: 30
(35.7%);
NLR ≤4:
54 (64.3%)

• 7.5 vs. 11.2 months,
HR 1.6, 95% CI 1.00-
2.52, p=0.048
• Multivariate: HR
1.81, 95% CI 1.08-
3.01, p=0.025

• Retrospective
• Relatively small sample size
• No data on steroid use, MGMT promoter methylation status, and IDH
mutation status (patients diagnosed between 2004 and 2009)
• Neutrophil and lymphocyte counts in isolation were not prognostic
• Multivariate analysis adjusted for age, gender, ECOG performance status,
extent of resection, tumor location, full Stupp protocol, and second
line therapy

Alexiou et al.
(2014) (112)

• Total: 51
• Male: 30 (58.8%);
female: 21 (41.2%)
• Mean age: 59.2 ±
14.2
• Grade IV:
51 (100%)

• >4.73 vs.
≤4.73
• Mean NLR:
6.7 ± 4.6
• NLR >4.7:
29 (56.8%);
NLR <4.7:
22 (43.2%)

• 11 vs. 18.7 months,
p=0.01
• Multivariate: 95% CI
1.4-17.3, p=0.011

• Prospective
• Relatively small sample size
• No data on steroid use, MGMT promoter methylation status, and IDH
mutation status (patients diagnosed between 2007 and 2013)
• No data on confounding variables in multivariate analysis

McNamara
et al.
(2014) (119)

• Total: 107 (95
analyzed)
• Male: 76 (71%);
female: 31 (29%)
• Median age
(range): 52 (20-76)
• Grade IV: 100%

• >4 vs. ≤4
• Median
NLR (range): 6
(1.3-27.7)
• NLR >4: 60
(63.2%);
NLR ≤4:
35 (36.8%)

• 5.9 vs. 9.7 months
(p=0.02); TR 1.86, 95%
CI 1.18-2.93, p=0.01
• Multivariate: TR
1.65, 95% CI 1.15-
2.35, p<0.01

• Retrospective
• Relatively small sample size
• Blood sampling time: post-therapy prior to second surgery
• 67.3% of patients used steroids prior to second surgery
• No data on MGMT promoter methylation status and IDH mutation status
(patients diagnosed between 2004 and 2011)
• No data on confounding variables in multivariate analysis

Han et al.
(2015) (58)

• Total: 152
• Male: 95 (62.5%);
female: 57 (37.5%)
• Mean age: 50.4 ±
15.4
• Grade IV:
152 (100%)

• ≥4 vs. <4
• Mean NLR:
4.1 ± 3.8;
Median NLR
(range): 2.54
(0.7-20.6)

• 10.6 ± 9.8 vs. 17.9 ±
11.0 months, HR 2.139,
95% CI 1.464-3.125,
p<0.001
• Multivariate: HR
2.068, 95% CI 1.304-
3.277, p=0.002

• Retrospective
• No data on IDH mutation status (patients diagnosed between 2010 and
2014) and steroid use
• NLR ≥4 was associated with increased tumor neutrophil infiltration/
decreased CD3+ infiltration
• Neutrophil and lymphocyte counts in isolation were not correlated with
survival
• Multivariate analysis adjusted for age, KPS, extent of resection, and
MGMT promoter methylation status

Auezova
et al.
(2016) (85)

• Total: 178
• Male: 93 (52.2%);
female: 85 (47.8%)
• Mean age (range):
41.58 ± 1.04 (18-72)
• Grade I/II: 77
(43.3%); grade III/IV:
101 (56.7%)

• ≥4 vs. <4
• Mean NLR:
4.66 ± 0.25
• NLR ≥4: 86
(48.3%);
NLR <4:
92 (51.7%)

• 17 vs. 28 months,
HR 1.385, 95% CI
1.020-1.881, p=0.037
• Multivariate:
no correlation

• Retrospective
• No data on the extent of resection, steroid use, MGMT promoter
methylation, and IDH1 mutation status (patients diagnosed between 2009 and
2012)
• Heterogeneity in patient population and treatment
• No data on confounding variables in multivariate analysis

Kaya et al.
(2017) (120)

• Total: 90
• Male: 51 (57%);
female: 39 (43%)
• Median age
(range): 58.5 (16-93)
• Grade IV:
90 (100%)

• ≥5 vs. <5
• NLR ≥5: 32
(35.6%);
NLR <5:
58 (64.4%)

• 11.8 ± 4.7 vs. 15.7 ±
2.5 months, p<0.05
• Multivariate: HR
2.41, 95% CI 1.26-
4.58, p<0.05

• Retrospective
• Relatively small sample size
• No data on steroid use, MGMT promoter methylation status, IDH
mutation status, and post-surgery therapy (patients diagnosed between 2011
and 2015)
• No data on confounding variables in multivariate analysis

Lopes et al.
(2017) (56)

• Total: 140 (117
analyzed)
• Male: 98 (70%);
female: 42 (30%)
• Mean age: 62.9 ±
10.0
• Grade IV: 100%

• >7 vs. ≤7
• Mean NLR:
9.48 ± 6.37

• HR 1.65, 95% CI
1.07-2.53, p=0.023
• Multivariate: HR
1.00, 95% CI 0.97-
1.03, p=0.868

• Retrospective
• No data on steroid use, MGMT promoter methylation status, and IDH
mutation status (patients diagnosed between 2005 and 2013)
• ≈50% of patients had comorbidities with potential impact on NLR
• No correlation of absolute neutrophil and lymphocyte counts with overall
survival
• Multivariate analysis adjusted for KPS, tumor location, first-line and
second-line therapy, and presence of comorbidities

(Continued)
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TABLE 1 Continued

Study
(year)

Patients

A NLR
value

associated
with

overall
survival

Correlation with
overall survival in
univariate and
multivariate
analysis

Limitations/comments

Mason et al.
(2017) (57)

• Total: 369
• Male: 238 (64.5%);
female: 131 (35.5%)
• Median age
(range): 55 (18-70)
• Grade IV: 100%

• ≥7.5 vs. <7.5
• Median
NLR (range):
7.3 (2.8-25.3)

• HR 0.628, p<0.0001
• Multivariate: HR
1.00, 95% CI 0.70-
1.44, p=0.9127

• Retrospective
• Blood sampling time: postoperative
• No data on MGMT promoter methylation and steroid use
• 4.3% and 75% of patients had mutant and unknown IDH status,
respectively (patients diagnosed between 2005 and 2013)
• Multivariate analysis adjusted for age, ECOG performance status, and total
TMZ cycles
• Lymphocyte counts were not associated with overall survival in
multivariate analysis

Wang et al.
(2017) (121)

• Total: 166
• Male: 96 (58%);
female: 70 (42%)
• Mean age (range):
52.1 (18-80)
• Grade IV:
166 (100%)

• >4 vs. ≤4
• NLR >4: 27
(16.3%);
NLR ≤4:
139 (83.7%)

• 12.80 ± 2.4 vs. 6.03
± 4.6 months, p=0.172
• Multivariate: HR
1.714, 95% CI 1.026-
2.858, p=0.039

• Retrospective
• No data on MGMT promoter methylation status and steroid use
• 31 patients had mutant IDH (patients diagnosed between 2009 and 2014)
• A disproportionate number of patients with NLR ≤4
• Multivariate analysis adjusted for age, sex, KPS, pathology, extent of
resection, standard treatment, and IDH mutation

Wiencke
et al.
(2017) (122)

• Total: 72
• Male: 52 (72%);
female: 20 (28%)
• Median age
(range): 47 (44-54)
• Grade II/III: 39
(54%); grade IV:
33 (46%)

• ≥4 vs. <4
• mdNLR ≥4:
28 (39%);
mdNLR <4:
44 (61%)

• 22 vs. 52 months,
HR 1.78, 95% CI 1.03-
3.07, p=0.038
• Multivariate: HR
2.02, 95% CI 1.11-
3.69, p=0.022

• Retrospective
• Relatively small sample size
• No data on MGMT promoter methylation status
• 58% of patients had TERT promoter mutation and 42% had IDH mutation
• mdNLR assessed by an immunomethylomic approach was associated with
survival independent of chemotherapy and steroid use
• Multivariate analysis adjusted for age, grade, and mutation status

Bao et al.
(2018) (123)

• Total: 219
• Male: 124 (56.6%);
female: 95 (43.4%)
• Aged ≥50 years:
66.7%
• Grade I/II: 57
(26%); grade III/IV:
162 (74%)

• ≥2.5 vs. <2.5
• NLR ≥2.5:
162 (74%);
NLR <2.5:
57 (26%)

• 12.0 ± 2.32 vs. 32 ±
5.17 months, HR 2.342,
95% CI 1.550-3.540,
p<0.001
• Multivariate: HR
1.758, 95% CI 1.157-
2.671, p=0.008

• Retrospective
• No data on performance status, steroid use, MGMT promoter methylation,
IDH mutation status, and post-surgery therapy (patients diagnosed between
2012 and 2017)
• Multivariate analysis adjusted for age, sex, grade, and other markers
of inflammation

Coleman
et al.
(2018) (124)

• Total: 100
• Male: 69 (69%);
female: 31 (31%)
• Median age
(range): 48 (18-70)
• Grade IV: 76%;
grade III/IV: 24%

• ≥4 vs. <4 • HR 1.82, 95% CI
1.15-2.88, p=0.010
• Multivariate: HR
1.73, 95% CI 1.02-
2.94, p=0.043

• Retrospective
• Relatively small sample size
• No data on MGMT promoter methylation and IDH mutation status
(patients diagnosed between 2004 and 2016)
• 63% were on steroids; steroid use did not modify the association between
NLR and overall survival
• 42 patients were on phase I trials
• Multivariate analysis adjusted for steroid and antiepileptic drug use, ECOG
performance status, RMH score, and trials

Wang et al.
(2018) (90)

• Total: 112
• Male: 70 (63%);
female: 42 (37%)
• Mean age: 50 ± 12
• Grade I/II: 59
(53%); grade III/IV:
53 (47%)

• ≥4 vs. <4
• Mean NLR:
3.80 ± 1.48
• NLR ≥4: 48
(43%);
NLR <4:
64 (57%)

• 20.75 ± 7.68 vs.
26.91 ± 7.50 months,
HR 2.577, 95% CI
1.626-4.086, p<0.001
• Multivariate: HR
1.932, 95% CI 1.011-
3.694, p=0.046

• Retrospective
• No data on steroid use, MGMT promoter methylation, IDH mutation
status, and post-surgery therapy (patients diagnosed between 2010 and 2013)
• Multivariate analysis adjusted for tumor size, grade, KPS, and platelet-to-
lymphocyte ratio

Weng et al.
(2018) (92)

• Total: 105
• Male: 53 (50.5%);
female: 52 (49.5%)
• Mean age: 61.05 ±
12.86 and 57.74 ±
12.40 for NLR ≥4.0
and NLR <4.0 groups,
respectively
• Grade IV: 100%

• ≥4 vs. <4
• NLR ≥4: 44
(41.9%); NLR
<4: 61 (58.1%)

• 11.23 ± 6.28 vs.
18.56 ± 11.28, p<0.001
• Multivariate: HR
1.953, 95% CI 1.255-
3.039, p=0.003

• Retrospective
• No data on MGMT promoter methylation status and steroid use
• 24 patients had mutant IDH1 (patients diagnosed between 2011 and 2014)
• Multivariate analysis adjusted for age, KPS, extent of resection, full Stupp
protocol, and IDH mutation status
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TABLE 1 Continued

Study
(year)
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A NLR
value

associated
with

overall
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Correlation with
overall survival in
univariate and
multivariate
analysis

Limitations/comments

Yersal et al.
(2018) (114)

• Total: 80
• Male: 39 (48.7%);
female: 41 (51.3%)
• Mean age: 56.8 ±
13.1
• Grade IV: 100%

• >4 vs. <4
• Mean NLR:
6.3 ± 5.5

• 11.6 vs. 14.5 months,
p>0.05; HR 1.258, 95%
CI 0.727-2.179 p=0.412

• Retrospective
• No data on performance status, MGMT promoter methylation status, and
IDH mutation status (patients diagnosed between 2012 and 2017)
• The post-progression salvage treatments were heterogeneous

Gan et al.
(2019) (52)

• Total: 135
• Male: 89 (65.9%);
female: 46 (34.1%)
• Mean age (range):
70.61 ± 4.60 (65-91)
• Grade III: 22
(16.3%); grade IV:
113 (83.7%)

• ≥3 vs. <3
• Mean NLR:
3.98 ± 3.28
• NLR ≥3: 65
(48.1%); NLR
<3: 70 (51.9%)

• 9.6 vs. 17.1 months,
HR 2.298, 95% CI
1.552-3.403, p<0.001
• Multivariate: HR
1.712, 95% CI 1.071-
2.734, p=0.025

• Retrospective
• No data on steroid use, MGMT promoter methylation status, and IDH
mutation status (patients diagnosed between 2014 and 2018)
• 51 (37.8%) did not receive any postoperative treatment
• Lymphocyte counts but not neutrophil counts in isolation were prognostic
• Multivariate analysis adjusted for age, sex, extent of resection, KPS, tumor
grade, and therapy

Hao et al.
(2019) (125)

• Total: 187
• Male: 116 (62%);
female: 71 (38%)
• Mean age: 55 ±
13.55
• Grade IV: 100%

• ≥4.1 vs. <4.1
• NLR
(range): 4.59
± 5.06

• HR 2.574, 95% CI
1.849-3.581, p<0.001

• Retrospective
• No data on steroid use, MGMT promoter methylation status, and IDH
mutation status (patients diagnosed between 2012 and 2017)
• No multivariate analysis

Lv et al.
(2019) (126)

• Total: 192
• Male: 113 (58.9%);
female: 79 (41.1%)
• Mean age: 53.25 ±
13.9
• Grade IV: 100%

• >2.7 vs. ≤2.7
• NLR >2.7:
85 (44.3%);
NLR ≤2.7:
107 (55.7%)

• HR 1.650, 95% CI
1.182-2.304, p=0.003
• Multivariate: HR
0.637, 95% CI 0.454-
0.894, p=0.009

• Retrospective
• 37 (19.3%) patients had methylated MGMT promoter status; 127 (66.1%)
with unknown status
• No data on steroid use
• 38 (19.8%) patients had mutant IDH1; 124 (64.6%) with unknown status
(patients diagnosed between 2006 and 2018)
• Multivariate analysis adjusted for age and adjuvant therapy

Maas et al.
(2019) (127)

• Total: 497 (479
analyzed)
• Male: 297 (59.8%);
female: 200 (40.2%)
• Median age
(range): 62.2 (21-88)
• Grade IV: 100%

• >4 vs. <4
• Median
NLR (range):
6.8 (0.1-46.9)
• NLR >4: 336
(67.6%);
NLR <4:
143 (28.8%)

• 12.5 vs. 15.1 months,
HR 1.27, 95% CI 1.01-
1.58, p=0.037
• Multivariate: HR
1.11, 95% CI 0.75-
1.65, p=0.607

• Retrospective
• No data on MGMT promoter methylation status and steroid use
• 20 (4%) had mutant IDH1; 201 (40.4%) with unknown status (patients
diagnosed between 2005 and 2013)
• Multivariate analysis adjusted for age, KPS, extent of resection,
and therapy

Yang et al.
(2019) (91)

• Total: 128
• Male: 71 (55.5%);
female: 57 (44.5%)
• Mean age: 47.84 ±
13.958
• Grade I/II: 67
(52.3%); grade III-IV:
61 (47.7%)

• ≥2.8 vs. <2.8
• NLR ≥2.8:
56 (43.75%);
NLR <2.8:
72 (56.25%)

• 22.78 ± 3.61 vs.
48.31 ± 4.01 months;
HR 2.525, 95% CI
1.611-3.957, p<0.001
• Multivariate: HR
2.037, 95% CI 1.264-
3.281, p=0.003

• Retrospective
• No data on steroid use, MGMT promoter methylation, IDH1 mutation
status, and post-surgery therapy (patients diagnosed between 2008 and 2012)
• Multivariate analysis adjusted for age, grade, extent of resection, albumin,
platelets, platelet-to-lymphocyte ratio, and nutritional index

Zhang et al.
(2019) (128)

• Total: 188 (170
analyzed)
• Male: 107 (56.9%);
female: 81 (43.1%)
• Age: >62 (138
(73.4%)); ≤62 (50
(26.6%))
• Grade IV: 100%

• >7.25 vs.
≤7.25
• NLR >7.25:
20 (11.8%)
NLR ≤7.25:
150 (88.2%)

• Multivariate: HR
2.228, 95% CI 1.329-
3.733, p=0.002

• Retrospective
• No data on MGMT promoter methylation status and steroid use
• 8 (4.4%) patients had IDH mutation only, 107 (59.1%) had TERT
mutation only, and 66 (36.5%) were triple-negative (without 1p/19q
codeletion, IDH, and TERT mutations); 103 (18.0%) were triple-positive
(patients diagnosed between 2011 and 2016)
• A disproportionate number of patients with NLR ≤7.25
• Multivariate analysis adjusted for age, extent of resection, and therapy

• Total: 404 (358
analyzed)
• Male: 228 (56.4%);
female: 176 (43.6%)

• >2 vs. ≤2
• NLR >2: 148
(41.3%)

• Multivariate: HR
1.502, 95% CI 1.007-
2.240, p=0.046

• Retrospective
• No data on MGMT promoter methylation status and steroid use
• 103 (26.3%) were triple-positive (1p/19q codeletion, IDH and TERT
mutations), 19 (4.8%) had both IDH and TERT mutations, 100 (25.5%) had
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treatment (HR 0.519; 95% CI 0.293–0.918) (53). Moreover, NLR

decrease during treatment was a significant predictor of overall

survival on multivariate analysis [HR 0.380; 95% CI 0.18–0.80)]

after adjustment for age, ECOG performance status, extent of

resection, IDH mutation status, grade IV tumor, and baseline and

time-weighted mean dexamethasone dose (53).

Systematic reviews and meta-analyses have provided evidence

that high baseline neutrophil count or high NLR were

independently associated with adverse overall survival in various

types of solid tumors (84, 117, 118, 145–151), while normalization

of post-treatment NLR was associated with improved survival
Frontiers in Immunology 08
(84). Moreover, systematic reviews and/or meta-analyses

examining the correlation between NLR and outcomes in

patients treated with immune checkpoint inhibitors have

reported that higher NLR is a prognostic factor of worse disease

control rate, objective response rate, progression-free survival,

and/or overall survival in patients with head and neck squamous

cell carcinoma (152, 153), gastric carcinoma (154, 155), melanoma

(156), metastatic renal cell carcinoma (157, 158), non-small cell

lung carcinoma (159), hepatocellular carcinoma (160) and cancer

patients in general (161–163). High post-treatment NLR has also

been associated with poor survival outcomes in cancer patients
TABLE 1 Continued

Study
(year)

Patients

A NLR
value

associated
with

overall
survival

Correlation with
overall survival in
univariate and
multivariate
analysis

Limitations/comments

• Age: ≤40 (146
(36.1%)); >40 (258
(63.9%))
• Grade II-III: 100%

NLR ≤2:
210 (58.7%)

IDH mutation only, 48 (12.24%) had TERT mutation only, 78 (19.9%) were
triple-negative, and 44 (11.2%) had other combinations (patients diagnosed
between 2011 and 2016)
• Multivariate analysis adjusted for age, grade, KPS, extent of
resection, radiotherapy

Marini et al.
(2020) (51)

• Total: 124
• Male: 65 (52.4%);
female: 59 (47.6%)
• Age: <60 (42
(33.8%)); ≥60 (82
(66.2%))
• Grade IV: 100%

• >4 vs. ≤4
• Mean NLR:
6.09
• NLR >4: 87
(70.1%); NLR
≤4: 37 (29.9%)

• HR 3.15, 95% CI
0.73-11.62, p=0.027
• Multivariate:
p=0.044

• Retrospective
• No data on MGMT promoter methylation status and steroid use
• 59 (47.6%) had mutant IDH1 (patients diagnosed between 2013 and 2019)
• Multivariate analysis adjusted for age, KPS, extent of resection, adjuvant
therapy, IDH1 mutation, and hematological parameters (albumin, platelets,
lymphocytes, platelet-to-lymphocyte ratio)

Garrett et al.,
2021 (115)

• Total: 79
• Male: 54 (62%);
female: 33 (38%)
• Median age
(range): 63 (51-73)
• Grade IV: 100%

• >5.07 vs.
≤5.07
• NLR >5.07:
44 (55.7%);
NLR ≤5.07:
35 (44.3%)

• 299 vs. 353
days, p=0.994

• Retrospective
• Relatively small sample size
• 23 (57.5% out of 40) had methylated MGMT promoter, and 5 (6.3%) had
mutant IDH (patients diagnosed between 2013 and 2019)
• 75.9% of patients received steroids, 59 (67.8%) were on pre-operative
steroids at data collection

Yang et al.,
2022 (129)

• Total: 208
• Male: 124 (%);
female: 84 (%)
• Median age
(range): 58.5 (51-65)
• Grade IV: 100%

• >2.1 vs. ≤2.1
• NLR >2.1:
139 (%)
NLR ≤2.1:
69 (%)

• HR 2.820, 95% CI
1.992–3.993, p<0.001
• Multivariate: HR
1.769, 95% CI 1.106–
2.829, p=0.017

• Retrospective
• 89 (42.8%) had methylated MGMT promoter,
• The status of IDH1 in a cohort was wild type (patients diagnosed between
2016 and 2021)
• No data on steroid use
• Multivariate analysis adjusted for age, tumor location, extent of resection,
KPS, radiochemotherapy, MGMT promoter methylation, and different blood
cell counts and ratios

Hsu et al.
(2022) (54)

• Total: 182
• Male: 112 (61.5%);
female: 70 (38.5%)
• Median age
(range): 57 (18.8-79.5)
• Grade IV: 69.2%;
grade II/III: 30.8%

• >4 vs. ≤4
• NLR >4: 122
(67%); NLR ≤4:
60 (33%)

• Multivariate: HR
1.847, 95% CI 1.218-
2.803, p=0.0039

• Retrospective
• No data on performance status; 162 (89.0%) patients had unmethylated
MGMT promoter; 43 (23.6%) had mutant IDH; 50 (27.5%) were on steroids
(patients diagnosed between 2010 and 2021)
• No data on confounding variables in multivariate analysis

Duan et al.
(2023) (130)

• Total: 281
• Male: 155 (55.2%);
female: 126 (44.8%)
• Age: >65 (58
(20.6%)); <65 (223
(79.4%))
• Grade IV: 100%

• ≥2.12
vs. <2.12

• HR 1.456, 95% CI
1.286-1.649, p<0.001

• Retrospective
• No data on MGMT promoter methylation status and steroid use
• 59 (21%) patients had mutant IDH (patients diagnosed between 2015 and
2018)
• No multivariate analysis
IDH1, isocitrate dehydrogenase 1; MGMT, O6-methylguanine-DNA-methyltransferase; NLR, neutrophil-to-lymphocyte ratio; TERT, telomerase reverse transcriptase.
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treated with immune checkpoint inhibitors (162). Combining

NLR assessment with other biomarkers of response to immune

checkpoint inhibitors, such as PD-L1 expression, tumor mutation

burden, or lymphocyte infiltration, has been shown to provide

additional predictive power in identifying patients who respond to

treatment (164–169). Finally, in meta-analyses, lower baseline

NLR was significantly associated with immune-related adverse

events (irAEs) resulting from the use of immune checkpoint

inhibitors in cancer patients (170, 171).

There is no standardized cutoff for the prognostic/predictive

NLR value. An NLR value ≥4 was associated with poorer overall

survival in the majority of the studies of patients with glioblastoma/

gliomas with statistically meaningful sample sizes (Table 1). Of

note, in a meta-analysis of 75 eligible studies covering more than 20

cancer types, the median cutoff for high NLR with the strongest

prognostic effect was 4.0 (range 1.9–7.2) (117), whereas in a

prospective study in an unselected general population (individuals

aged 45 years, n=8711), the reference NLR value (mean and 95%

intervals) was 1.76 (0.83-3.92) (172).

Neutrophils are plastic populations of immune cells with different

functions (173). In rodent models, the immunosuppressive

neutrophil populations may promote tumor progression by

potentiating tumor invasion, angiogenesis, and metastasis (173). In

patients with cancer, the proportion of immunosuppressive

neutrophils is dramatically increased (173–175). Neutrophils can

suppress the activation and proliferation of cytotoxic T cells (173–

176). The predominance of immunosuppressive neutrophils over

lymphocytes, which demonstrate the disproportion of the CD4

+/CD8+/Treg ratio, provides a clue as to why NLR is a prognostic

marker of worse survival across many solid tumor types.
4 A composition and prognostic
significance of the immune infiltrate
of glioblastoma

It is worth noting that adult glioblastoma/gliomas in general

differ significantly from pediatric gliomas. An overview of the

composition of the tumor immune infiltrate across different types

of pediatric glioma is given elsewhere (177).
4.1 Neutrophils

Glioblastoma tissue is abundantly infiltrated by neutrophils

(178). Fossati et al. found a strong correlation between glioma

tumor grade, the extent of neutrophil infiltration, and the

preoperative circulating neutrophil counts (101). Over 70% of

all glioma samples analyzed (n=105) showed significant

neutrophil infiltration (40–50% of low grade gliomas and 87%

of glioblastomas) (101). In another study, neutrophil infiltration

was observed in 86% of II-IV glioma samples (n=232), and the

level of neutrophil infiltration was significantly correlated with
Frontiers in Immunology 09
glioma grade (179). Increased neutrophil infiltration was

associated with shorter overall survival in patients with

glioblastoma (n=152) (58). Tumor-infiltrating neutrophils are an

independent prognostic factor for overall survival across different

tumor types (146, 180).
4.2 Microglia, macrophages, MDSCs

Tumor-associated macrophages and microglia are the

dominant population of immune cells in the glioblastoma

microenvironment, and their heterogeneity and plasticity are

discussed extensively elsewhere (181). Microglia/macrophages

comprise of ≈10–50% of the glioblastoma mass (182–186). Both

M1- and M2-like microglia/macrophages (differentiated by pro-

inflammatory and anti-inflammatory polarization/phenotype

states, respectively) have been detected in human gliomas (72,

187–194). However, it should be noted that the M1/M2

dichotomy is oversimplified. MDSCs also infiltrate glioblastoma

(73, 74, 195, 196). Detailed flow cytometry analysis revealed that

MDSCs, microglia, and macrophages constituted approximately

40%, 40%, and 20% of the glioblastoma mass, respectively, and

that glioblastoma-associated myeloid cells presented a continuum

between the M1- and M2-like phenotypes, with closer alignment to

the non-polarized M0 macrophage phenotype (72).

Ionized calcium-binding adaptor molecule-1 (IBA-1) is a pan-

marker for all microglia and macrophages. High IBA-1 intensity

was correlated with longer survival (193). However, in another

study, the number of IBA+ cells was positively correlated with the

overall tumor size and edema but not with overall survival (72).

CD204+ (scavenger receptor) (193) or CD163+ (scavenger

receptor) (194) M2-like microglia/macrophage density was

correlated with worse survival, whereas lower expression of

CD163 and higher expression of CCL3 (C-C Motif Chemokine

Ligand 3), an M1 marker, was correlated with better survival (192).

In contrast, Zeiner et al. found that high levels of CD68+ (a pan-

macrophage marker), CD206+ (mannose receptor C type 1), and

CD163+ tumor-infiltrating macrophage subpopulations in the vital

tumor core of patients with IDH1R132H-non-mutant glioblastoma

(n=241) were associated with improved survival (187). Finally,

Karimi et al . revealed that increased levels of MPO

+CD163−P2Y12−CD68+ macrophages were associated with

prolonged survival of patients with glioblastoma (184).
4.3 NK and NKT cells

NK cells and invariant NKT cells are scarcely present in

glioblastoma/glioma tissue (60, 183, 184), and the role of these

immune cell subtypes has not been clearly established in patients

with glioblastoma/glioma. Nevertheless, there is increasing evidence

of NK or NKT cell-based immunotherapy efficacy in rodent glioma

models (197, 198). In addition, a local administration of activated

haploidentical NK cells (199) or irradiated CAR-NK cells (NK-92/
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5.28. z) targeting HER2 (200) in patients with recurrent

glioblastoma was feasible and safe.
4.4 Dendritic cells

There are plasmacytoid dendritic cells, type 1 and type 2

classical dendritic cells, monocyte-derived dendritic cells, and a

new dendritic cell subset, DC3 (201). The heterogeneity and

functionality of the dendritic cell compartment in patients with

glioblastoma (subsets, counts, and functionality) are poorly

characterized and reviewed elsewhere (202).
4.5 T lymphocytes

The density of tumor-infiltrating CD4+, CD8+, and Tregs

increases with glioma grade (203–206), with higher levels of

infiltrated CD4+ cells than CD8+ cells (203, 207). However,

Innocenti et al. reported no difference between CD4+ and CD8+

cell counts in glioblastoma tissue samples (n=59) (208). In general,

tumor-infiltrating lymphocytes are differentially distributed in

glioblastoma samples, from absent to abundant (183, 209–211). T

cell infiltrates are mainly located in the perivascular areas and zones

of tumor invasion into the surrounding brain parenchyma and are

only infrequently found within the tumor tissue and in the

perinecrotic areas (211–215). The percentages of immunological

synapses established by tumor-infiltrating lymphocytes with tumor

cells are very low (213), and the tumor-infiltrating lymphocytes

have a suppressed and functionally impaired state/phenotype

(described as tolerance and exhaustion) (36, 37, 60, 69, 216, 217).

These observations indicate that although the density of infiltrated

lymphocytes varies considerably between patients, tumor-

infiltrating lymphocytes cannot readily migrate into the

immunosuppressive tumor microenvironment, are mainly

arrested in the perivascular or peritumoral space, and are

functionally compromised.

There is no clear association between tumor-infiltrating

lymphocytes (CD3+, CD4+, or CD8+ T cell infiltrates) and

overall survival in patients with glioblastoma/glioma (Table 2)

(58, 60, 203, 205, 208–210, 218–230). In addition, based on the

FOXP3+ phenotype alone, there was no correlation between overall

survival and Treg infiltration in univariate and multivariate analyses

of most studies (203–205, 225, 226, 231–233). In meta-analyses,

inconsistent correlations between different tumor-infiltrating

lymphocyte subsets and overall survival have also been reported

for other types of solid cancer (234–243). Cytotoxic CD8+ T cells

and memory CD45RO+ T cells are strongly correlated with good

outcomes in most cancer types, whereas the prognostic value of

Th2, Th17, Tregs, MDSCs, macrophages, and NK populations is

inconsistent and varies depending on the cancer type, stage, or

study (234–243).
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4.6 CD4+ and CD8+ T lymphocytes are
highly heterogeneous immune
cell populations

The inconsistent correlations between tumor-infiltrating

lymphocytes and survival (Table 2) may stem from substantial

functional and phenotypic complexity and plasticity of CD4+ and

CD8+ T cell subsets discovered by high-dimensional single-cell

mass cytometry (cytometry by time-of-flight, CyTOF) (244).

Detailed qualitative and quantitative assessments of tumor

immune infiltrates using mass cytometry to measure the

frequencies and ratios of immune cell subsets and their functional

and activation status may be required for accurate prognostication

(184, 245–247). Distinct subsets of T cells are anti-inflammatory,

pro-inflammatory, or both, and a dual role in cancer immunity has

been ascribed to CD3+CD4+ cell subsets (246). For example, in

follicular B-cell lymphomas, 12 subsets of intratumoral CD4+ T

cells were identified, and specific subpopulations were correlated

with poor or improved patient survival (246). In patients with clear

cell renal cell carcinoma, 22 subsets were identified among

infiltrating T cell lymphocytes, and a distinct immune

composition correlated with survival (247). In addition, different

prognoses may be obtained depending on the degree of infiltration

of immunosuppressive FOXP3(high) Tregs or non-suppressive

FOXP3(low) cells (248). For example, colorectal carcinomas with

abundantly infiltrated FOXP3(low) T cells demonstrated a much

better prognosis than tumors with predominant FOXP3(high) Treg

infiltration (248).

It is also evident that not only the density of tumor-infiltrating

lymphocytes but also the ratio between immunosuppressive

immune cell subsets and cytotoxic lymphocytes have an effect on

prognostic significance. In some studies, increased CD8+/CD4+,

CD4+/CD8+, CD3+/Treg, or CD8+/Treg ratios, rather than the

absolute counts of individual populations, were correlated with

survival outcomes in patients with glioblastoma/glioma (203, 229,

232). Furthermore, the immunosuppressive cellular immune

landscape in the glioblastoma/glioma microenvironment goes

beyond well-defined immune cell subtypes such as Tregs,

neutrophils, MDSCs, and tumor-associated macrophages (215,

249). Li et al. revealed that immunosuppressive CD3+CD4

+FOXP3− type 1 regulatory T cells occurred at high frequencies

within glioblastoma tissue (249). In addition, Waziri et al. found

that a great portion of CD3+ T cells within glioblastoma tissue was

represented by CD3+CD4+CD56+ T cells (215). However, these T

cells did not represent classical invariant NKT cells as they were

neither stained with antibodies against an invariant TCR Vb24 nor
with CD1d tetramer loaded with a-Gal-Cer (215). These

CD3+CD4+CD56+ T cells might be immunosuppressive, since

immunosuppressive CD3+CD4+CD56+CD25+FOXP3+ T cells

were identified at a high frequency in hepatocellular carcinoma,

and higher infiltration of these cells was inversely correlated with

survival (250).
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TABLE 2 Correlation between the density of tumor-infiltrating lymphocytes and overall survival of patients with glioblastoma/gliomas.

Study
(year)

Patient
characteristics

T cell subtype Correlation with
overall survival

Limitations/comments

Brooks
et al.
(1978)
(218)

• Total: 149
• Samples were
collected from 1962
through 1976

• Lymphocytes • Positive • Retrospective
• Samples were collected from 50th to 70th years
• Lymphocytes were identified morphologically
• Heterogeneity in patient cohorts and treatments

Palma
et al.
(1978)
(219)

• Total: 200
• Male: 128; female:
72
• Samples were
collected from 1952
through 1973

• Lymphocytes
• Graded as definite: 23
(11.5%); slight: 46 (23%);
absent: 131 (65.5%)

• Positive

Schiffer
et al.
(1979)
(220)

• Total: 324
• Mean age: 50.6 ±
10.7
• Grade IV: 269;
grade III: 55

• Lymphocytes • No correlation

Böker
et al.
(1984)
(221)

• Total: 199 • Lymphocytes • Positive

Safdari
et al.
(1985)
(222)

• Total: 342 • Lymphocytes • Negative

Rossi et al.
(1989)
(223)

• Total: 68 • CD4+ or CD8+ • No correlation

Yang et al.
(2010)
(210)

• Total: 108
• Grade IV: 100%

• CD8+ • Positive
• No multivariate
analysis

• Retrospective
• No data on other prognostic variables

Lohr et al.
(2011)
(205)

• Total: 44
• Male: 29 (65.9%);
female: 15 (34.1%)
• Mean age: 58.1 ±
11.29
• Grade IV: 100%

• CD8+ • Positive
• No multivariate
analysis

• Retrospective
• Relatively small sample size
• No data on other prognostic variables

Kim et al.
(2012)
(224)

• Total: 61
• Male: 32 (52.5%);
female 29 (47.5%)
• Median age
(range): 59 (14-80)
• Grade IV: 100%

• CD3+, CD4+ or CD8 • No correlation • Retrospective
• Relatively small sample size

Kmiecik
et al.
(2013)
(60)

• Total: 65
• Grade IV: 100%

• CD3+ or CD8+ • Positive
• No multivariate
analysis

• Retrospective
• Relatively small sample size

Rutledge
et al.
(2013)
(209)

• Total: 171 (from
The Cancer Genome
Atlas, TCGA)
• Grade IV: 100%

• CD3+
• Graded as absent: 93
(54%); present: 59 (35%);
abundant: 19 (11%)

• No correlation • Retrospective

Yue et al.
(2014)
(225)

• Total: 62
• Male: 43 (69.4%);
female: 19 (30.6%)
• Median age
(range): 56 (13-77)

• CD8+ • No correlation; HR
1.15, 95% CI 0.69-
1.93, p=0.597

• Retrospective
• Relatively small sample size

Han et al.
(2014)
(203)

• Total: 90
• Male: 46 (51.1%);
female: 44 (48.9%)

• CD4+ or CD8+ • No correlation • Retrospective
• Relatively small sample size
• The number of CD4+ and CD8+ cells did not vary significantly

(Continued)
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TABLE 2 Continued

Study
(year)

Patient
characteristics

T cell subtype Correlation with
overall survival

Limitations/comments

• Mean age: 45.7 ±
13
• Grade IV: 100%

according to age, sex, preoperative KPS, degree of resection, tumor
size, and MGMT promoter methylation

• High CD4+/low CD8+ • mOS 255 vs 568
days, p<0.001
• Multivariate: HR
1.508, 95% CI 1.162-
1.956, p=0.002

• Multivariate analysis adjusted for age, KPS, and MGMT
promoter methylation status

Han et al.
(2015)
(58)

• Total: 152
• Male: 95 (62.5%);
female: 57 (37.5%)
• Mean age: 50.4 ±
15.4
• Grade IV:
152 (100%)

• CD3+ • No correlation • Retrospective

Madkouri
et al.
(2017)
(226)

• Total: 186
• Male: 105
(56.5%); female: 81
(43.5%)
• Median age
(range): 64 (29-89)
• Grade IV: 100%

• CD8+ • HR 0.47, 95% CI
0.32-0.7, p=0.0001
• Multivariate: HR
0.59, 95% CI 0.39-0.91,
p=0.01

• Retrospective
• IL-17A+ T cells were associated with a poorer OS
• Foxp3 cells were associated with a good prognosis
• Multivariate analysis adjusted for sex, age, KPS, and surgery

Orrego
et al.
(2018)
(227)

• Total: 43
• Male: 22 (51.2%);
female 21 (48.8%)
• Median age
(range): 47 (8-74)
• Grade IV: 100%

• CD3+ or CD8+
• Graded as mild (71.8%),
moderate (25.6%),
marked (2.6%)

• No correlation • Retrospective
• Relatively small sample size
• Necrosis was ubiquitously present in samples
• Lymphocyte intensity, distribution, and presence in perivascular
area were not associated with preoperative KPS, MGMT promoter
methylation or degree of resection• CD4+ • Negative; univariate

and multivariate
analysis (p<0.05)

Wang
et al.
(2021)
(228)

• Total: 57
• Male: 45 (78.9%);
female: 12 (21.1%)
• Mean age: 55.3 ±
8.9
• Grade IV: 100%
(multifocal
and multicentric)

• Low CD8+ • 12.5 vs. 6.3 months;
HR 3.671, 95% CI 1.679-
8.026, P=0.001
• Multivariate: HR
4.404, 95% CI 1.954-
9.926, P=0.0004

• Retrospective
• Relatively small sample size
• Multivariate analysis adjusted for KPS, age, MGMT promoter
methylation status, extent of resection, tumor size, and
radio-/chemotherapy

Mauldin
et al.
(2021)
(229)

• Total: 77
• Male: 45 (58.4%);
female: 32 (41.6%)
• Mean age: 61.48 ±
14.68
• Grade IV: 100%

• CD4+ or CD8+ • No correlation • Retrospective
• Relatively small sample size
• No significant associations between dexamethasone treatment
and CD4+ or CD8+ densities
• Multivariate analysis adjusted for KPS, extent of resection, and
MGMT promoter methylation status

• CD8/CD4 ratio • Multivariate: HR
0.31, 95% CI 0.14-0.71,
p=0.005

• CD8+Ki67+ • HR 0.36, 95% CI 0.2-
0.66, p=0.001
• Multivariate: HR
0.15, 95% CI 0.06-0.38,
p<0.001

• CD8+T-bet+ • HR 0.46, 95% CI
0.26-0.79, p=0.004,
• No multivariate
analysis

Innocenti
et al.
(2023)
(208)

• Total: 59
• Male: 34 (58%);
female: 25 (42%)
• Median age
(range): 62 (26-80)
• Mean age: 62.15 ±
10.9
• Grade IV: 100%

• CD4+ • HR 1.79, 95% CI 1.1-
3.1, p=0.035
• No multivariate
analysis

• Retrospective
• Relatively small sample size
• Multivariate analysis adjusted for age, gender, MGMT promoter
methylation status, extent of resection, and radio-/chemotherapy

• CD8+ or CD4/CD8 ratio • No correlation

• Low CD4+ and low
CD8+

• Multivariate: HR
0.38, 95% CI 0.18-0.79,
p=0.014

(Continued)
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4.7 The need to standardize the
assessment of tumor-
infiltrating lymphocytes

A lack of standardization and recommendations for assessing

tumor-infiltrating lymphocytes (technical and methodological

differences associated with staining and analysis, including high

inter‐observer variability) in glioma tissue, as well as non-uniform

patient cohorts, are potential factors contributing to inconsistent

correlations between tumor infiltrating lymphocytes and overall

survival (Table 2). It is known that pre-analytical variables such as

tissue collection, fixation (time, buffer composition, and

temperature), processing (dehydration reagents, temperature, and

paraffin embedding), storage, staining (manual versus automated,

quality, and quantity of antibodies), and other conditions may affect

the accurate assessment of CD3+, CD4+, and CD8+ lymphocytes

within a tissue (251, 252). Moreover, since the immune infiltrate

and individual subpopulations of immune cells are heterogeneously

distributed in glioblastoma tissue (e.g., central areas versusmarginal

areas; perivascular areas versus perinecrotic areas), histochemical

sections of different tumor regions will give different insights into

immune cell density and diversity. New high‐throughput multiplex

immunohistochemistry and immunofluorescence technologies are

expanding the ability to obtain additional information on cellular

composition and spatial arrangement with greater reproducibility

using standardized quantitative protocols (253). Therefore, in-

depth spatial immunophenotyping of glioblastoma tissue, together

with consensus guidelines for the assessment of glioma-infiltrating

lymphocytes, is required to more accurately establish the prognostic

power of infiltrating lymphocytes. In general, this also applies to

subsets of myeloid cells (254, 255).
4.8 The immune landscape of isocitrate
dehydrogenase-mutant gliomas

Gliomas with IDH mutation exhibit a unique immune landscape

due to the role of the oncometabolite R-2-hydroxyglutarate (2-HG) in

glioma immune evasion (256–258). The infiltration of CD3+ (259),

CD4+ (260), CD8+ (260, 261) T lymphocytes, Tregs (262),

monocyte-derived macrophages (263), neutrophils (260), overall

CD45+ immune cells, including macrophages, dendritic cells, and

T cells (264) was reduced in IDH-mutant gliomas compared with

IDH-wild type gliomas. However, another study documented a
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higher relative abundance of dendritic cells and CD8+ T

lymphocytes in IDH-mutant gliomas compared with IDH-wild type

gliomas (265). The activity of tumor-infiltrating immune subsets may

be significantly compromised by R-2-hydroxyglutarate, which was

shown to impair monocyte differentiation into dendritic cells and

dendritic cell functionality (265), proliferative potential and effector

functions of T cells (266–269), and NK cell-mediated killing (270),

promote an immunosuppressive phenotype of macrophages (271)

and reduce intratumoral vasculature density (272). Due to a distinct

immune microenvironment, including distorted immune cell

infiltration and impaired immune cell activity, IDH-mutant gliomas

may be potentially more resistant to immunotherapy. Small-molecule

IDH inhibitors may reverse R-2-hydroxyglutarate mediated immune

suppression and sensitize IDH-mutant gliomas to immunotherapy

(256, 273, 274). Moreover, in a double-blind phase III trial in patients

with grade 2 IDH-mutant glioma (NCT04164901), vorasidenib, an

inhibitor of mutant IDH1/2 enzymes, was shown to significantly

improve progression-free survival compared with the placebo group

(median progression-free survival, 27.7 versus 11.1 months) (275).
4.9 The immune landscape and prognostic
significance of mesenchymal, proneural,
and classical molecular subtypes

In 2006, using unsupervised expression profiling on a cohort of

76 grade III and IV astrocytoma samples to classify tumors into

prognostic groups, Philips et al. defined subtypes based on a 35-

gene signature termed proneural, mesenchymal, and proliferative

(276). The proneural subtype, containing the majority of grade III

astrocytoma samples, was distinguished by markedly better

prognosis compared with other subtypes (276). In 2010, Verhaak

et al. described a gene expression-based molecular classification

(840-gene set classifier) of glioblastoma samples into the proneural,

neural, classical, and mesenchymal subtypes (77% subtype

concordance) (277). Somatic mutations and/or DNA copy

number aberrations/overexpression of EGFR, NF1, and PDGFRA/

IDH1 predominantly defined the classical, mesenchymal, and

proneural subtypes, respectively. MGMT promoter methylation

status was not associated with subtypes (277). In meta-analyses,

IDH mutations are associated with better progression-free and

overall survival in patients with glioma (278–280). Surprisingly,

overall survival of patients with the proneural subtype was not

significantly different from other gene expression subtypes defined
TABLE 2 Continued

Study
(year)

Patient
characteristics

T cell subtype Correlation with
overall survival

Limitations/comments

Sobhani
et al.
(2023)
(230)

• Total: 58
• Male: 36 (62%);
female: 22 (38%)
• Median age
(range): 66 (41–81)
• Grade IV: 100%

• CD3+
• Graded as absent: 10
(17%); mild: 37 (64%);
moderate/high: 11 (19%)

• No correlation • Retrospective
• Relatively small sample size
KPS, Karnofsky performance score; MGMT, O6-methylguanine-DNA-methyltransferase; OS, overall survival.
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according to the classification of Verhaak et al. (281, 282). However,

Noushmehr et al. found the glioma cytosine-phosphate-guanine

(CpG) island methylator phenotype (G-CIMP) (281). Tumors with

this phenotype were predominantly of the proneural subtype and

were strongly associated with IDH1 mutations, and proneural G-

CIMP-positive patients had significantly better survival than

proneural G-CIMP-negative patients or all other non-proneural

patients in univariate and multivariate analysis (281). Later, Turcan

et al. (283) and Brennan et al. (284) confirmed that the survival

advantage of the proneural subtype was conferred by G-CIMP

status, strongly associated with IDH-mutant gliomas, with

proneural non-G-CIMP and other subtypes demonstrating

similar and less favorable outcomes. Further studies showed that

IDH-mutant G-CIMP-positive tumors with 1p/19q codel status

were associated with better overall survival than IDH-mutant G-

CIMP-positive tumors with 1p/19q non-codel status (285, 286), and

G-CIMP-low non-codel subgroup, based on the extent of DNA

methylation, had poorer outcome compared with G-CIMP-high

non-codel subgroup in IDH-mutant gliomas (287–290). Finally, by

combining epigenetic signature and gene copy number variations,

Li et al. separated IDH-mutant glioblastoma into G-CIMP-high

group and G-CIMP-low group without CDKN2A and MET

alteration with favorable and comparable overall survival, while

G-CIMP-low group with CDKN2A and/or MET alteration showed

significantly shorter overall survival in univariate and multivariate

analysis (290). Currently, the combination of these parameters

allows for improved prediction of outcome (291).

In 2017, applying unsupervised transcriptome analysis after

filtering glioblastoma overexpressed genes to 369 IDH-wild type

glioblastoma samples, Wang et al. confirmed three subtypes

previously designated mesenchymal, proneural, and classical

(≥93% subtype concordance; defined 50-gene signatures for each

subtype with overlap with Verhaak et al.’s 840-gene set ranging

from 42% to 54%), while the neural phenotype was suggested to be

non-tumor specific (292). In addition, strong associations between

subtypes and genomic abnormalities in previously reported

subtype-defining genes were also confirmed (292). Again, patient

survival did not differ significantly between the three subtypes

(292). In 2019, using a 500-gene set classifier (only 108 genes

matched Verhaak et al.’s 840-gene set) on six different datasets

(three TCGA-cohorts and three Asian-cohorts), Teo et al. also

confirmed the classical, mesenchymal, and proneural subtypes, with

similar survival outcomes between subtypes (293). Finally, in 2023,

White et al. also found no significant difference in overall survival

between subtypes in the GLIOTRAIN (n=123), TCGA (n=164), and

CGGA (n=693) cohorts after stratifying the mesenchymal,

proneural, and classical subtypes according to Wang et al.’ report

(294). Interestingly, the authors introduced novel glioblastoma

tumor microenvironment subtypes for IDH wild type

glioblastoma (TMEHigh, TMEMed, and TMELow), characterized by

significantly different expression of genes specific to all immune and

endothelial cell markers. However, stratification into these new

subtypes showed no association with overall survival in the

GLIOTRAIN, TCGA, CGGA, and DUKE cohorts (294).
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Using The Cancer Genome Atlas (TCGA) database, Doucette et al.

analyzed the mRNA expression levels of immune system genes

(cytokines, cell markers, and signaling pathways) between four

glioblastoma subtypes and found that the mesenchymal subtype was

the most proinflammatory due to the preferential enrichment of both

pro-inflammatory and immunosuppressive genes compared with other

subtypes (295). Rutledge et al., using histochemical analysis, found that

tumor-infiltrating lymphocytes were enriched in the mesenchymal

subtype and strongly associated with mutations in NF1 and RB1,

while lymphocytes were depleted in the classical subtype, EGFR-

amplified, and homozygous PTEN-deleted tumors. However, no

association with survival was found (209). Wang et al. documented

the increased presence of macrophages/microglia and neuroglial cells

in mesenchymal subtype, and NF1 deactivation was associated with

macrophage/microglia recruitment (292). The activated natural killer

cell gene signature was significantly reduced in the mesenchymal

subtype, the resting memory CD4+ T cell gene signature was

significantly reduced in the proneural subtype, and the activated

dendritic cell gene signature was significantly greater in the classical

subtype (292). In an immunohistochemical study of the immune

infiltrate of the four glioblastoma subtypes, Martinez-Lage et al.

found that the mesenchymal and proneural subtypes were the most

and least immunogenic, respectively (194). The percentage of CD3+,

CD4+, and CD5+ lymphocytes differed significantly between the

mesenchymal and proneural or classical subtypes but not other

subtypes. The percentage of CD8+ did not differ between the four

subtypes. The percentage of CD163+ and CD68+ macrophages/

microglia in the mesenchymal subtype was also significantly

different compared with the classical or proneural subtypes, with

no difference between them (194). In another immunohistological

study of three glioblastoma subtypes defined according to the

classification of Wang et al., the numbers of IBA1+ microglia/

macrophage cells and CD3+ and FOXP3+ lymphocytes were

significantly higher in the mesenchymal subtype compared with

other subtypes, with no significant difference between the proneural

and classical subtypes (296). The number of CD8+ differed

significantly only between the mesenchymal and proneural

subtypes (296). On the contrary, Han et al. reported that the

number of CD4+, CD8+, and FoxP3+ lymphocytes did not vary

greatly between the subtypes defined according to the classification

of Verhaak et al. (203). Finally, using flow cytometry, Gabrusiewicz

et al. found that the frequency of MDSCs, microglia, and

macrophages in the proneural and neural subtypes was not

significantly different; the classical subtype had a markedly

higher percentage of MDSCs than macrophages, whereas the

mesenchymal subtype was predominantly infiltrated with

microglia (72).

Taken together, glioma/glioblastoma transcriptome subtypes in

different studies were defined using different numbers of only

partially overlapping gene sets, and in each case the subtypes

(except for the classification of Philips et al.) did not differ

prognostically unless at least proneural G-CIMP status was not

taken into account, despite the fact that the proneural subtype is

characterized by the presence of prognostic IDH mutations much
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more often than other subtypes, on the one hand, and the existence

of the greatest immunological difference between the proneural/

IDH mutant and mesenchymal subtypes, on the other hand. These

observations might explain why stratification of glioblastoma

patients based on the transcriptomic subtypes has not translated

into clinical practice. Considering the enormous inter- and

intratumoral cellular heterogeneity and plasticity, as well as the

evolution of the cancer genome and phenotype, clinically

meaningful subtyping of glioblastoma based on the transcriptome

alone is challenging. However, there is some retrospective clinical

evidence that mesenchymal or TMEHigh glioblastoma might

respond better to immunotherapy (vaccine, checkpoint inhibitor

or oncolytic virus) (294, 297).
5 Future directions

There is growing interest in evaluating neoadjuvant immunotherapy

in neuro-oncology (298–300). Neoadjuvant immunotherapy is

advantageous over adjuvant immunotherapy, since it is applied

before lymphotoxic standard radio-/chemotherapy (43). However,

in patients with glioblastoma/glioma before standard therapy,

tumor-related immunosuppression involves deregulation of many

components of immunity, including changes in expression of

different soluble and membrane proteins, reduced T lymphocyte

counts (lymphopenia), increased NLR, increased levels or ratios of

circulating and tumor-infiltrating immunosuppressive immune

subsets (e.g., macrophages, MDSCs, and Tregs), and defective

functions of antigen-presenting, helper, and effector immune cell
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subsets due to altered expression of receptors, costimulatory

molecules, and cytokines (Figure 1). In this condition, the

effectiveness of neoadjuvant immunotherapy for glioblastoma/

glioma might be suboptimal.

The spatial complexity and phenotypic diversity of the immune

infiltrate (multicellular spatial organization) in patients with

glioblastoma/gliomas at presentation, as well as the prognostic

and/or predictive significance of immune cell subsets/signatures

remain poorly characterized and largely unknown (255, 301, 302).

As discussed above, the accurate prognostic assessment of immune

infiltrate by traditional immunochistochemistry is influenced by too

many analytical variables and factors. Although multidimensional

single-cell approaches such as multiplexed ion beam imaging,

imaging mass cytometry, and mass cytometry has become

powerful tools for characterizing different immune cell subsets in

immunology and identifying specific immune signatures associated

with survival and response to immunotherapy in cancer patients

(184, 245–247, 303–306) and may also help better decipher immune

deregulation in patients with glioblastoma/gliomas and identify

putative predictive or prognostic markers of therapeutic response

and improved survival, but at present they should still be considered

discovery tools in preclinical research and clinical trials rather than

for routine clinical practice (303–305, 307–312). It is also worth

considering the factor of the availability and quality of tissue for

assessing spatially distributed immune infiltrate in glioblastoma.

Moreover, in various reports, approximately 15-20% of cases

present as unresectable glioblastoma (diagnostic “biopsy-only”)

(313). However, the actual number of such patients may be

higher. In the National Cancer Database, the percentage of
FIGURE 1

Glioblastoma/glioma-related systemic and local immunosuppression. Before standard therapy, patients may have reduced counts of circulating T
lymphocytes (lymphopenia); however, in the majority of studies, the increased fractions of regulatory T cells (Tregs) are documented. The numbers
of circulating myeloid-derived suppressor cells (MDSCs) and neutrophils are higher in patients with glioblastoma than in healthy donors or patients
with low-grade gliomas. The counts of circulating natural killer (NK) and NKT cells are within the normal range in the majority of studies. The density
of tumor-infiltrating CD4+, CD8+, and Tregs increases with glioma grade; however, lymphocytes are differentially distributed in tissue samples, from
absent to abundant. Glioblastoma tissue is abundantly infiltrated by neutrophils and macrophages, while NK cells and NKT cells are scarcely present.
Serum levels of Th1-type cytokines (IL-2, IL-6, IL-12, TNF-a, and IFN-g) are reduced, while serum levels of Th2-type cytokines (IL-4 and IL-10) are
increased. Serum, cerebral spinal fluid, or tumor cyst fluid from patients can suppress the proliferation and/or function of lymphocytes and other
immune cells from healthy donors. Consequently, patients have defective functions of antigen-presenting, helper, and effector immune cell subsets
due to altered expression of different soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). The tumor-infiltrating
lymphocytes have suppressed and functionally impaired state/phenotype. The Figure was generated using Servier Medical Art, provided by Servier,
licensed under a Creative Commons Attribution 3.0 unported license.
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patients with unresectable glioblastoma among patients diagnosed

from 2004 to 2013 with known survival and extent of resection is

28.5% (314). Kole et al. documented that among 1325 patients with

biopsy-only glioblastoma who received radiochemotherapy, the

median overall survival was 9.2 months (313), and Harlay et al.

reported that among 139 patients who underwent biopsy only, 54

(39%) and 68 (49%) were amenable to standard radiochemotherapy

or chemotherapy only, with the median overall survival of 14

months (95% CI, 9.65-18.71) and 8 months (95% CI, 4.62-7.67),

respectively (315). This relatively large group of patients is

particularly in need of new treatment strategies and should not

be ignored.

What is needed is a cost-effective, easily accessible and

repeatedly validated prognostic and predictive factor, available to

all patients, that can be dynamically assessed (at baseline, during

and/or after treatment) and rapidly integrated into all ongoing and

planned clinical studies of various forms of therapy in all clinical

centers around the world. In general, immune-related biomarkers

derived from blood rather than tumor tissue may be more suitable

in terms of these requirements. NLR has prognostic value in

patients with solid tumors across cancer types, stages of disease,

and treatment strategies, including immunotherapy. However,

although NLR has often been correlated with the effectiveness of

immune checkpoint inhibitors in carcinomas, NLR has only rarely

been taken into account when evaluating the effectiveness of

vaccines, oncolytic viruses, and other immunotherapies in cancer

patients. For patients with glioblastoma, this may also be due to the

fact that the vast majority of clinical trials of all forms of therapy in

general are non-randomized and/or uncontrolled (316, 317). It is

also important to note that evaluation of the prognostic/predictive

significance of NLR has been largely limited to retrospective studies,

with very few of the studies based on prospectively collected

samples [e.g (318–320)], including glioblastoma/glioma (53, 112).

Since the number of prospective studies evaluating NLR in

oncology is limited, NLR has not yet entered routine clinical

practice as a stratification/predictive factor.

The prognostic/predictive power of NLR may be further

improved by combining NLR assessment with other biomarkers.

According to recent meta-analyses and systematic reviews,

absolute/total lymphocyte count (ALC/TLC, especially post-

treatment) (321), platelet-to-lymphocyte ratio (PLR) (133, 322),

lymphocyte-to-monocyte ratio (LMR) (323), systemic immune-

inflammation index (SII), calculated by platelet count×neutrophil

count/lymphocyte count (129, 324), and systemic immune response

index (SIRI), calculated by neutrophil count×monocyte/

lymphocyte count (325–327) are the emerging prognostic factors

in glioblastoma/glioma. In a retrospective study, Yang et al.

developed and compared the SII-NLR, SII-PLR, and NLR-PLR,

and SII-NLR-PLR scoring systems and found that the combination

of these inflammatory markers demonstrated greater predictive

accuracy for overall survival at one and two years than any single

indicator in patients with glioblastoma (n=208), with the best

scoring system being SII-NLR (129). The authors constructed a
Frontiers in Immunology 16
nomogram including age, Karnofsky Performance Status (KPS),

extent of resection, MGMT promoter methylation status,

chemoradiotherapy, and SII-NLR score to predict 2-year survival

in patients with glioblastoma (the c-index of the nomogram was

0.848 (95% CI 0.836–0.861) and 0.843 (95% CI 0.830–0.855)

excluding MGMT promoter methylation status) (129).

Finding methods to reduce NLR is another important area of

research in clinical oncology. In patients with recurrent

glioblastoma (n=18), treatment with recombinant interleukin-7

restored and maintained total lymphocyte counts without serious

toxicity and irrespective of steroid and temozolomide use (328).

Interleukin-7 is currently considered the most potent therapeutic

candidate for the treatment of lymphopenia in cancer and non-

cancer patients (41). As we have discussed, NLR may be affected by

many physiological and pathological confounding factors, including

psychological/emotional stress in cancer patients. It is known that

cortisol and epinephrine may increase neutrophil and decrease

lymphocyte counts (329–331). In a randomized trial of lung

cancer patients (n=80), psychological intervention was shown to

significantly reduce NLR compared with usual care (332).
6 Conclusion

Glioma progression and molecular characteristics (e.g., IDH

mutations or mesenchymal gene signature) have distinct effects on

major immune cell subsets, and conversely, different proportions of

immune cell subsets and their polarization or activation states may

have different effects on tumor progression, response to therapy,

and survival. All attempts to identify a reliable prognostic immune

marker in glioblastoma tissue have led to markedly contradictory

results, which can be explained, among other things, by the

unprecedented level of spatial heterogeneity of the immune

infiltrate and the significant phenotypic and functional diversity

of immune subpopulations. High NLR has been repeatedly

established as an independent prognostic factor for shorter overall

survival in patients with glioblastoma and carcinomas, and its

combination with other markers of the immune response

significantly improves the accuracy of prediction; however, more

prospective studies are needed to confirm the prognostic/predictive

power of NLR. We call for incorporating the dynamic assessment of

NLR and other emerging blood inflammatory markers (e.g.,

platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio,

systemic immune-inflammation index, and systemic immune

response index) into all neuro-oncology trials to carefully evaluate

and compare their individual and combinatorial prognostic/

predictive significance and relative superiority.
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