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Deep analysis of skin molecular
heterogeneities and their
significance on the precise
treatment of patients
with psoriasis
Shengxiao Zhang1,2†, Minjing Chang2,3†, Leilei Zheng1,2†,
Can Wang2,3, Rong Zhao1,2, Shan Song1,2, Jiawei Hao1,2,
Lecong Zhang1,2, Caihong Wang1,2 and Xiaofeng Li1,2*

1Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China,
2Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan,
Shanxi, China, 3Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University,
Taiyuan, Shanxi, China
Background: Psoriasis is a highly heterogeneous autoinflammatory disease. At

present, heterogeneity in disease has not been adequately translated into

concrete treatment options. Our aim was to develop and verify a new

stratification scheme that identifies the heterogeneity of psoriasis by the

integration of large-scale transcriptomic profiles, thereby identifying patient

subtypes and providing personalized treatment options whenever possible.

Methods: We performed functional enrichment and network analysis of

upregulated differentially expressed genes using microarray datasets of lesional

and non-lesional skin samples from 250 psoriatic patients. Unsupervised

clustering methods were used to identify the skin subtypes. Finally, an Xgboost

classifier was utilized to predict the effects of methotrexate and commonly

prescribed biologics on skin subtypes.

Results: Based on the 163 upregulated differentially expressed genes, psoriasis

patients were categorized into three subtypes (subtypes A–C). Immune cells and

proinflammatory-related pathways were markedly activated in subtype A, named

immune activation. Contrastingly, subtype C, named stroma proliferation, was

enriched in integrated stroma cells and tissue proliferation-related signaling

pathways. Subtype B was modestly activated in all the signaling pathways.

Notably, subtypes A and B presented good responses to methotrexate and

interleukin-12/23 inhibitors (ustekinumab) but inadequate responses to tumor

necrosis factor-a inhibitors and interleukin-17A receptor inhibitors. Contrastly,

subtype C exhibited excellent responses to tumor necrosis factor-a inhibitors

(etanercept) and interleukin-17A receptor inhibitors (brodalumab) but not

methotrexate and interleukin-12/23 inhibitors.
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Conclusions: Psoriasis patients can be assorted into three subtypes with different

molecular and cellular characteristics based on the heterogeneity of the skin's

immune cells and the stroma, determining the clinical responses of

conventional therapies.
KEYWORDS

gene expression profiling, machine learning, psoriasis, stratification, unsupervised clustering
1 Introduction

Psoriasis is a common chronic auto-inflammatory skin disease

characterized by obviously erythematous and scaly skin lesions

accompanied by prominent skin and joint manifestations (1, 2).

Chronic plaque or psoriasis vulgaris is the most common form of

psoriasis, where lesions arise from hyperproliferation and disrupted

differentiation of epidermal keratinocytes provoked by innate and

adaptive immune system dysfunction (3, 4). The American Academy

of Dermatology proposes biologics as a first-line treatment option for

moderate to severe plaque psoriasis owing to their superior efficacy

and acceptable safety profile compared to other treatment options.

Specifically, the most commonly prescribed biologics are inhibitors to

tumor necrosis factor-a (TNF-a; including etanercept and

adalimumab) and cytokine-targeting treatments such as the p40

subunit of interleukin (IL)-12/23 (ustekinumab) and IL-17

(brodalumab) (5). The systemic anti-inflammatory response caused

by most of these biologics in treating psoriasis decreases the severity

of comorbidities. Nevertheless, a considerable number of patients

with psoriasis still present an inadequate response to these therapies

(6–8), which may result from the heterogeneous pathophysiological

background of psoriasis.

Gene expression profiling of psoriasis skin tissues has been used

to provide pathophysiological insights for explaining the variations in

treatment outcomes. Ainali et al. have revealed two distinct molecular

subgroups from a single chronic plaque psoriasis skin transcriptomic

profile and noted that one of these subgroups enriched in the

transforming growth factor-b and ErbB signaling pathways might

be more amenable to biologics therapies (9). Wang et al. have

delineated two distinct immune phenotypes and constructed a

psoriatic microenvironment score from a meta-analysis of psoriasis

skin transcriptomic profiles (10). There is a correlation between

improved clinical outcomes and overexpression of genes

responsible for keratinocyte differentiation in the nonlesional
X, methotrexate; PASI,

ponents analysis; PPI,

plex Detection; GSEA,

lopedia of Genes and

N, type I interferon;
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phenotype. Some characteristics are common among the various

subtypes, but their conclusions are inconsistent. Consequently,

gaining more profound and comprehensive mechanistic insights

into divergent and shared features of the psoriasis skin subtypes is

necessary for determining the pathobiological approaches for

treatment-resistant patients with psoriasis.

In this study, we aimed to elucidate the cellular, molecular, and

clinical features of three newly identified psoriasis skin subtypes

using an unsupervised machine learning method performing a

comprehensive meta-analysis of publicly available microarray

datasets published thus far. Finally, we sought to apply a

machine-learning model to identify the psoriasis skin subtypes for

evaluating the therapeutic efficacy of biologics.
2 Methods

2.1 Systematic search, data selection,
and preprocessing

The study design is outlined in Figure 1. We retrieved the

microarray gene expression datasets of psoriasis skin datasets from

the Gene Expression Omnibus database. Nine microarray datasets

(GSE30999 (11), GSE13355 (12), GSE14905 (13), GSE41662 (14),

GSE53552 (15), GSE34248 (14), GSE67853 (16), GSE47751 (17),

and GSE50790 (18) of eligible psoriasis skin tissues were collected

for this study (Supplementary Table 1). The independent cohorts

for treatment include 66, 85, 73 and 15 psoriasis lesions that were

treated with etanercept (14, 19), ustekinumab (19, 20), brodalumab

(20), and methotrexate (21), respectively, to which therapeutic

responses were measured using the Psoriasis Area and Severity

Index (PASI) score endpoint after the initiation of therapy. Here,

patients were considered responders when there was an

improvement of at least 75% on the PASI score from baseline and

were considered non-responders otherwise.

Using the affy R package, microarray raw data from Affymetrix

was processed by employing the robust multi-array average

algorithm for background correction, quantile normalization, and

probe-set summarization. Normalized matrix files are downloaded

directly from Illumina into raw microarray data.

Residual technical batch effects from different data sets were

corrected using the ‘ComBat’ function in the sva R package to
frontiersin.org
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reduce the systematic, dataset-specific bias (22). Quality assurance

and distribution bias were assessed using the principal component

analysis (PCA) of the same datasets before and after normalization

and batch correction (Supplementary Image 1).
2.2 Filtering of differentially expressed
genes and functional comments

The limma R package performed gene identification by

differential expression analysis of microarray data from lesional

and non-lesional psoriasis skin tissues using a linear model and

modified t-test (23). To control for the proportion of false positive

findings, we adjusted P-values using the Benjamini-Hohberg

correction (24), and adjusted P-values <0.05 and absolute fold

change values ≥1.5 were considered statistically significant. Then,

the functional enrichment analysis of the upregulated DEGs lists in

psoriatic lesions skin was performed via the Metascape online

website. Adjusted p <0.05 was deemed to be significant for

enriched functional pathways (25).
2.3 Construction of protein-protein
interaction network and identification of
the important modules

To visualize the interconnectedness of DEGs in the psoriasis

skin samples, we constructed a protein-protein interaction (PPI)
Frontiers in Immunology 03
network based on the STRING and BioGrid databases and

Cytoscape software (26, 27). The network is described by proteins

(i.e., nodes) and their relationships (physical or functional

interactions) (i.e., edges). Four significant modules were identified

during the analysis using the Molecular Complex Detection

(MCODE) algorithm (28). The biological functions of important

module genes were identified by enrichment analysis. Based on the

P value, the three highest-scoring terms were retained to describe

the function of the corresponding module.
2.4 Gene-set enrichment analysis

Gene-set enrichment analysis (GSEA) ranked the list of

upregulated DEGs in psoriasis-lesioned skin using a predefined

gene set database to identify potential biologically critical pathways

related to psoriasis (29, 30). Information on gene sets for signaling

pathways or biological processes was obtained from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Reactome

databases. Terms with a false discovery rate below 0.25 were

considered significant.
2.5 Unsupervised clustering for psoriasis
skin gene expression profiles

To classify patients with psoriasis into subtypes based on the

skin transcriptomic signatures, we performed hierarchical
FIGURE 1

Overview of data processing steps. From the public databases, nine microarray datasets containing 250 patients with psoriasis were selected.
According to the established methodologies, DEGs were filtered, and enrichment analysis, PPI network analysis, and supervised clustering were
performed. Finally, the Xgboost classifier was constructed to predict the responses of stratified subtypes to commonly used biologics. DEGs,
differentially expressed genes; GO, Gene Ontology; GSEA, Gene-set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes;
MCODE, Molecular Complex Detection; PPI, protein–protein interaction.
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agglomerative clustering using the ConsensuClusterPlus R package

(31). The procedure was repeated for 1000 iterations to ensure the

stability of the subtype stratification. The clustering approach

adopted a Partitioning Around Medoids algorithm with the

Euclidean distance and Ward-D2 linkage, and the optimal and

stable number of clusters was selected by the cumulative

distribution function (CDF). We then used the PCA to confirm

the results of unsupervised clustering. DEGs were differentially

expressed in the stroma- and immune-enriched subtypes

compared to those differentially expressed in the other subtypes.

An adjusted P-value <0.05 and absolute fold-change ≥1.5 were used

to identify enriched pathways in the Gene Ontology Biological

Process (GO-BP) and Reactome databases.
2.6 Inference of cell types and pathways
activated in psoriasis skin subtypes

To explore the specific biological pathways associated with the

subtypes, we used single-sample GSEA to condense information

from gene expression profiles into pathway or marker gene sets

(32). Here, the enrichment score is defined as the absolute

enrichment of the gene set in each sample of a given dataset.

Psoriasis skin-related pathways were collated from the published

literature and GSEA results, with gene sets from KEGG and

response group databases. We used the “xCell” algorithm to

calculate the enrichment scores for immune and stroma cell-type

signatures for elucidating the cellular composition of the three

subtypes (33). Enrichment scores representing given cell types

and pathway activities were compared among the three subgroups

using the Wilcoxon and Kruskal-Wallis test.
2.7 Construction of multi-classification
model for psoriasis skin subtype prediction

The Xgboost [extreme gradient boosting] (version 1.5.0.2) is a

machine learning method that assembles weak prediction models to

build more robust prediction models. We made a prediction model

based on 163 gene features using the Xgboost-tree method with

softmax objective function. The predictive power of the system was

then measured using the average area under the receiver operating

characteristic curve (AUC). For training the classifier, 250 psoriasis

skin samples were divided into training (n=176) and testing (n=74)

sets in 70% and 30% proportions, respectively, which used the caret

R package. We controlled overfitting in the model using 10-fold

cross-validation and used the fitted model to select subtypes for the

new samples. Finally, we applied the 163-gene classifier for

categorizing the samples into subtypes.
2.8 Statistical analysis

All statistical analyses were performed using the R software

(version 4.0.3). We used the Kruskal–Wallis test to compare

differences among two or more samples and the Wilcoxon test to
Frontiers in Immunology 04
compare two samples. The chi-square or Fisher’s test was applied to

analyze the relationship between the psoriasis skin subtypes and

clinical measures. Statistical significance was set at P<0.05 (two-

tailed test).
3 Results

3.1 DEGs, PPI network, and enriched
signaling pathways

On comparing the gene expression profiles of lesional and non-

lesional skin samples from 250 patients with psoriasis, 163

upregulated DEGs were obtained (Figures 2A, B). Gene ontology

[GO] annotation demonstrated that these upregulated DEGs in

lesional skin were appreciably enriched in biological processes(BP)

such as keratinization; inflammatory response; response to viruses,

bacteria, and fungi; and type I interferon (IFN) production

(Figure 2C). The KEGG and Reactome analysis indicated that the

upregulated DEGs primarily enriched the IL-17 signaling, p53

signaling, neutrophil degranulation, and IFN-a/b signaling

pathways (Figures 2D, E).

In total, 188 interactions among 82 DEGs were identified in the

PPI networks constructed using these DEGs, and 81 genes were

isolated without any direct relation to each other. The MCODE

analysis identified 29 hub genes and clustered them into four highly

correlated protein clusters (Figure 2F). Enrichment analysis was

performed separately for each module, and a functional descriptor

was chosen for each module based on the three terms that scored

best based on the P-value. In line with our expectations, combining

the result of GSEA, IFN-related (IFN-a/b/g signaling and response

to viruses) genes, neutrophil-related (neutrophil degranulation and

response to bacteria and fungi) genes, toll-like receptor (TLR),

NOD-like receptor (NLR), RIG-I-like receptor (RLR) signaling

pathways, and keratinization were significantly enriched in

lesional skin, adequately explaining the molecular mechanism of

psoriasis skin.
3.2 Identification of skin gene expression-
driven subtypes

Using the “ConsensusClusterPlus” R package of 1,000

iterations, we evaluated the number of clusters from k = 2 to k =

6. The CDF value and the delta area were used to measure the

robustness of clustering results. The results show that when K=3,

the consensus matrix (Figure 3A), consensus CDF plot (Figure 3B),

and delta area plot (Figure 3C) all showed stable results, and the

clustering consistency scores of each subgroup exceeded 0.8

(Figure 3D). Psoriasis skin subtype segregation patterns were

revealed using the PCA (Figure 3E). The heatmap plot showed

upregulated DEG in the three subtypes, showing the gene-level

variability of the three subtypes (Figure 3F).

We compared each cluster with the others (such as subtype A vs

subtype B and subtype C) to determine the specific upregulation of

DEG signatures in each psoriasis skin subtype and to evaluate the
frontiersin.org
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molecular signatures and biological processes of the corresponding

subtype. Here, 144 DEGs were significantly upregulated in subtype

A, only 1 in subtype B, and 305 in subtype C using the same filtering

threshold (Figure 4A). Thereafter, the Metascape was used to enrich

the most obviously dysregulated biological processes and signaling

pathways of each subtype from the Gene Ontology Biological

Process (GO-BP), KEGG, and Reactome databases. To be specific,

there was a significant activation of canonical immune pathways in

subtype A, such as neutrophil-related pathways (including

neutrophil degranulation and response to bacteria or fungi) and
Frontiers in Immunology 05
IFN-related pathways (including response to IFN-a/b/g and

response to viruses) (Figures 4B–D). There was an enrichment of

stroma proliferating pathways in subtype C, including cornified

envelope formation, peroxisome proliferator-activated receptor

(PPAR) signaling pathway, and Wnt signaling pathway

(Figures 4E–G). Additionally, the mixed subtype (subtype B)

shared features with both the immune-activating and stroma-

proliferating subtypes, whereas upregulated DEGs of these

subtypes exhibited no overlap. As it was a blend of the two

subtypes, very few genes were unique to the mixed subtype.
A B

D

E

F

C

FIGURE 2

Upregulated DEGs analysis between lesional and nonlesional skin samples of patients with psoriasis. (A, B) Volcano plot and heatmap of all the DEGs.
(C) Functional enrichment analysis of upregulated DEGs. The top 20 most significant biological processes in the GO-BP database. (D, E) Pathway
enrichment analysis of upregulated DEGs. Top 5 most considerable signaling pathways in the KEGG and Reactome databases. (F) Protein–protein
network of upregulated DEGs. The nodes and edges of the network represent genes and the functional or physical relationships between them,
respectively. Four modules were found to be significant using the MCODE algorithm. GO-BP, Gene Ontology Biological Process.
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3.3 Molecular and cellular characterization
of the three skin subtypes

There were three clustered subtypes: A (n=121), B (n=94), and C

(n=35). To validate whether immune and stromal characteristics

differ among these subtypes, we compared enrichment scores of

important psoriasis-associated pathways and cell subsets. Twelve

psoriasis-associated pathways or processes were curated from the

literature and KEGG and Reactome databases. There were significant

differences among these subtypes in enrichment scores for these

signaling pathways associated with psoriasis. In subtype A, NLR,
Frontiers in Immunology 06
TLR, RLR, p53, IFN-a/b, IFN-g, IL-17, IL-23, T-cell receptor, and B-

cell receptor signaling were strongly activated, indicating immune

activation. Subtype C was characterized by stroma proliferation and

enrichment in the Wnt and PPAR signaling pathways, whereas all

signaling pathways are moderately activated in subtype B (Figure 5A).

The xCell software was used to identify cell types leading to gene

expression discrepancy among subtypes, and a machine-learning

framework was built to estimate cell type enrichment. All three

subgroups showed differential activation of immune and stromal

cells, consistent with these expression patterns. Immune cells

[including neutrophils, basophils, macrophages, plasmacytoid
A B

D

E F

C

FIGURE 3

Identification of psoriasis skin subtypes based on upregulated DEGs. (A) A recorded consensus matrix at k=3 for the psoriasis skin compendium. The
values of the consistency matrix from white to dark blue are from 0 to 1. (B) Consensus clustering for the CDF for k=2–6. (C) Relative change in area
under CDF curve for k=2–6. (D) The cluster consistency score for each subgroup of k=2–6, and the red horizontal line indicates a cluster
consistency score of 0.8. (E) PCA for the DEG expression profiles shows the stability and reliability of the classification. (F) A heatmap of 250 patients
with psoriasis with a red gradient illustrating the gene expression distribution for three psoriasis skin subtypes. In each column, patients are grouped
based on cluster assignment. Red represents overexpression, while blue represents under-expression. CDF, cumulative distribution function; PCA,
Principal components analysis.
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dendritic cells (pDCs), and monocytes] and stroma cells (including

epithelial cells, keratinocytes, and sebocytes) were more activated in

subtype A than in subtypes B and C, whereas mast cell activation

declined sharply. Moreover, fibroblasts, adipocytes, and endothelial

cells were significantly infiltrated in subtype C (Figure 5B). An analysis

of functional pathways in subtypes of psoriasis confirmed these results.
3.4 Prediction of the treatment responses
of the subgroups

An Xgboost machine learning algorithm developed a 163-gene

classifier to verify the psoriasis subtyping scheme. After training the

classifier with 176 psoriasis samples, we applied it to the testing set

containing 74 psoriasis samples to confirm its practicality.We observed

that the AUC of the training set is 0.932, which proves that the model

effectively classifies it. Furthermore, the classifier demonstrated

robustness by achieving an average classification performance of

0.905 in the testing set. As a consequence, the classifier was highly

effective and applicable in assessing psoriasis skin subtypes.

To determine whether the therapeutic response to etanercept,

brodalumab, methotrexate (MTX) and ustekinumab were associated

with subtypes of psoriasis, we classified patients at baseline using a

fitted Xgboost classifier in four datasets. In the etanercept and

brodalumab treated groups, the proportion of good responders was
Frontiers in Immunology 07
significantly higher in subtype C [9/10 (90.0%) and 10/10 (100.0%)]

than in subtypes A [25/39 (64.1%) and 26/33 (78.8%)] and B [11/17

(64.7%) and 25/30 (83.3%); Figures 6A, B]. In contrast, an opposite

trend was observed in the MTX-treated group; the proportion of good

responders was higher in subtypes A [3/8 (37.5%)] and B [1/3 (33.3%)]

than in subtype C [0/4 (0.0%); Figure 6C]. An excellent response to

ustekinumab was more frequently observed in subtypes A [32/43

(74.4%)] and B [26/31 (83.9%)] than in subtype C [6/11 (54.5%;

Figure 6D]. In spite of this, the differences were not statistically

significant, likely due to the limited sample size. In our analysis,

subtypes A and B exhibited good responses to MTX and IL-12/23

inhibitors (i.e., ustekinumab) and inadequate responses to TNF-a
inhibitors (etanercept) and IL-17A receptor (IL-17RA) inhibitors

(i.e., brodalumab) compared with subtype C. Collectively, psoriasis

molecular subtyping could have an impact on the benefits of drug

treatment. Future clinical studies should integrate this information.
4 Discussion

Studying the molecular features of skin stratification in psoriasis

has improved our understanding of its biological complexity and

clinical heterogeneity and promoted research on psoriasis. Although

previous studies have emphasized that stromal-cell-rich subtypes

may respond well to existing biological therapies (9, 10), adequate
A

B

D

E

F

G

C

FIGURE 4

Gene expression patterns of psoriasis skin subtypes. (A, B) Molecular pattern distribution of subtypes A and C concerning different biological processes. The
top 20 most significant biological processes in the GO-BP database. (C–F) Molecular pattern distribution of subtypes (A, C) concerning different pathways.
Top 5 most considerable signaling pathways in the KEGG and Reactome databases. (G) A Venn diagram shows upregulated DEGs in subtypes (A, C).
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information on approaching treatment-resistant patients with

psoriasis remains lacking. Here, we classified the psoriasis skin

tissues based on their molecular signatures using unsupervised

cluster analysis (31). We characterized the different features of the

three clustered subgroups in cellular components and biological

processes and explained the results from therapeutic perspectives.

In detail, subtype A (named immune activation subtype) had a

transcriptomic signature of immune cells and proinflammatory
Frontiers in Immunology 08
activation-related pathways. In contrast, subtype C (designated as

the stroma proliferation subtype) exhibited more enriched transcripts

in stroma cells (such as fibroblasts and endothelial cells) and tissue

proliferative-related pathways, while the features of subtype B

(named as mixed subtype) fell somewhere in between. Notably, the

therapeutic responses were different among these three subgroups.

Currently, 20-30% of patients do not respond to FDA-approved

treatments for psoriasis (34). Therefore, correct disease stratification
A

B

FIGURE 5

Pathway and cell subset-driven characterization of psoriasis skin subtypes. (A, B) Box plots for enrichment scores of pathways and xCell-inferred cell
subsets for each psoriasis skin subtype. Differences across the three subtypes were analyzed using the Wilcoxon and Kruskal-Wallis test. ns, not
significant; *P<0.05; **P<0.01; ***P<0.001; **** P<0.0001.
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and active exploration of the response of Psoriasis patients to different

treatments are the first steps in the precision treatment of Psoriasis. In

the past few years, Wang et al. analyzed genome-wide mRNA

expression in psoriatic skin biopsies, discovered different immune

cell infiltration patterns that distinguish psoriatic lesions from

healthy skin, and successfully classified psoriasis into two different

immune phenotypes. Among them, the nonlesional phenotype was

characterized by overexpression of genes involved in keratinocyte

differentiation and referred to as associated with better treatment

response of biologics (10). This conclusion is highly consistent with

our findings but has not provided an adequate explanation and address

on how to approach it. Our results indicate that subtype C was strongly

enriched with proliferative tissue pathways, including PPAR and Wnt

signaling, and cellular components, such as fibroblasts and endothelial

cells, but not for immune cells and proinflammatory signaling

pathways. This finding indicates that immune cell activation was not

necessarily involved in skin destruction and may provide a reasonable

explanation for the conflict between the low level of inflammatory

markers and continuous disease progression on the part of patients

with psoriasis. Patients with subtype C presented good responses to

TNF-a inhibitors (such as etanercept) and IL-17RA inhibitors

(brodalumab). Previous studies have shown that a small amount of

TNF-a and IL-17 can act on fibroblasts and endothelial cells to

stimulate and produce numerous proinflammatory and proliferative

cytokines, such as IL-6, IL-8, and CXCL-1, which cause excessive

proliferation of psoriatic skin epidermis (35). Notably, Zaba et al. found

that the efficacy of TNF-a inhibitors was associated with IL-17RA

inhibition, as rapid downregulation of IL-17A pathway-related gene

expression was observed in patients who responded to etanercept but

not in the non-responders (36). These results suggest that the current
Frontiers in Immunology 09
therapeutic strategies targeting TNF-a and IL-17RA could almost

wholly inhibit the skin pathology in the good responders.

Interestingly, brodalumab’s effects on fibroblasts and endothelial cells

have been demonstrated in systemic sclerosis (37). Brodalumab

reduces fibroblast proliferation and collagen production by

maintaining the regulatory T (Treg) cells/T helper (Th) 17 balance

(38), resulting in reduced dermal thickness and improvement in

modified Rodnan skin score. In addition, Takemichi Fukasawa et al.

found that after six months of guselkumab (IL-23 inhibitor) being used

to treat patients with psoriasis vulgaris complicated by systemic

sclerosis, both Th2 and Th17 cells showed a decline, and the severity

of the disease was also significantly improved (39). These findings

further confirm that the IL-23/IL-17 axis is an essential pathway for

targeted therapy of inflammatory skin diseases.

Activation of the inflammatory profile of subtypes A may account

for the positive results of current psoriasis treatment targeting the

upstream immune-inflammatory response. Patients with subtypes A

were relatively sensitive to disease-modifying anti-rheumatic drugs

(DMARDs) (i.e., MTX) and IL-12/23 inhibitors (i.e., ustekinumab).

The anti-microbial peptide LL-37 is primarily secreted by keratinocytes

and immune cells in the early stages of psoriasis development through

direct activation of pDCs and myeloid dendritic cells to secrete IL-12

and IL-23 (40–42). Moreover, IL-12 and IL-23 stimulated TNF-a and

IL-17 secretion in Th1 and Th17 cells (43, 44), resulting in a strong skin

inflammatory reaction. Ustekinumab was designed to prevent the

proliferation of the series of immune cells and the secretion of various

proinflammatory cytokines by blocking IL-12/23 (45), an upstream

target of the inflammatory signaling pathway enriched in subtypes A

and B. The effects of MTX therapy on molecular signatures were largely

restricted to proinflammatory pathways and immune cell subsets. In
A B

DC

FIGURE 6

Treatment response of each psoriasis skin subtype. Distribution of psoriasis skin subtypes based on the treatment response of patients treated with
(A) etanercept, (B) brodalumab, (C) methotrexate and (D) ustekinumab. Response: responded to the biologics; non-response: did not respond to
the biologics.
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addition, MTX has recently been discovered to inhibit the JAK/STAT

pathway, whilemany of its side effects are likely to be related to the folate

pathway (46). The IL-23 receptor relies on a heterodimer of Janus kinase

2 (JAK2) and tyrosine kinase 2 (TYK2) for signal transduction, thereby

highlighting the role of JAKs in the therapeutical potential of JAK

inhibitors (47, 48). Moreover, Ishizaki et al. observed that TYK2-

deficient mice injected with IL-23 showed significantly reduced ear

erythema and epidermal hyperplasia compared to wild-type mice (49).

A lack of TYK2 also impaired the infiltration of various immune cells

into the skin and the production of IL-17 and IL-22. The JAK/STAT

and IL-12/23 pathways have similar contributions to the progression of

psoriasis. Thus, it ought to be prudent to research whether the loss of

efficacy or delayed treatment resistance can be attributed to the

conversion of skin molecular patterns.

Nevertheless, the weak response to TNF-a and IL-17RA

inhibitors in patients with subtypes A compared with that for

subtype C seemed to contradict their enrichment of numerous

inflammatory pathways and underlying pathophysiology. This

might be attributed to a paradoxical reaction, in which the disease

worsens during treatment with targeted biological drugs. Two main

hypotheses have been proposed for this contradictory response

(50). One theory is the involvement of TNF-a and IFN-a cross-

regulation. Palucka et al. demonstrated that blocking endogenous

TNF-a results in increased IFN-g production by pDC and

subsequent T-cell activation resulting in increased TNF-a
production (51). The skin lesions in patients with psoriasis

induced by TNF-a inhibitors are characterized by IFN-a
overexpression compared with those in patients with psoriasis

vulgaris. Another hypothesis posits that following TNF-a
inhibition, Th17 cells are enhanced and regulatory T cells are

downregulated, leading to increased production of the Th17

cytokine IL-22 (52). Both pathways produce cytokines that act on

keratinocytes and generate a proinflammatory cycle, leading to

suboptimal treatment of psoriasis. This suggests that although

targeted therapy for specific cytokines has achieved good efficacy,

some people may experience negative feedback after long-term

targeted therapy, leading to the loss of treatment effectiveness.

Moreover, inhibiting single downstream cytokines (TNF-a and

IL-17) to prevent inflammatory response and reverse the disease

outcome entirely is challenging. Thus, active intervention in the

dysregulation of upstream targets (IL-12/23) is warranted.

Our study has some limitations. First, this study was conducted

in different clinical environments from different public datasets;

more meta-data is required, but this may prove challenging. Second,

owing to the lack of complete annotation for each psoriasis sample,

we could not address the association of each psoriasis subtype with

clinical factors, such as autoantibody levels. Finally, these

differences across responders and non-responders of subtypes

were not statistically significant owing to the limited sample size

of the clinical response in patients with psoriasis.
5 Conclusions

In summary, we deconvoluted psoriasis skin tissues into

pathologically discrete subsets by combining skin transcriptomic
Frontiers in Immunology 10
data with machine learning algorithms. We described their

different molecular and cellular characteristics regarding

treatment response. Our results provide critical insights into

distinct and shared mechanistic features of psoriasis to

determine the pathobiological approaches for benefiting drug-

resistant patients.
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Principal component analysis (PCA) plots with or without the elimination of
batch effects. (A) PCA before batch effect adjustment for the training

microarray datasets. Samples from the different datasets cluster together.

(B) PCA after batch effect adjustment for the training microarray datasets.
Samples from different datasets overlap.
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