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Genetic insights into across
pancreatitis types: the causal
influence of immunoglobulin
G N-glycosylation variants
on disease risk
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Background:While a few case-control studies indicated a possible correlation of

IgG N-glycosylation patterns with pancreatitis, their restricted sample sizes and

methodologies prevented conclusive insights into causality or distinguishing

traits across pancreatitis types.

Method:We conducted a two-sample Mendelian Randomization (MR) analysis to

investigate the causal relationship between 77 IgG N-glycosylation traits and

various types of pancreatitis, including acute pancreatitis (AP), chronic

pancreatitis (CP), alcohol acute pancreatitis (AAP), and alcohol chronic

pancreatitis (ACP). This analysis utilized summary-level data from genome-

wide association studies (GWAS), employing methods such as IVW, MR-Egger,

and weighted median. To ensure the robustness of our findings, several

sensitivity analyses, including Cochran’s Q statistic, leave-one-out, MR-Egger

intercept, and MR-PRESSO global test were conducted.

Result: Our study uncovered the causal relationship between specific IgG N-

glycosylation traits and various types of pancreatitis. Notably, an increase in

genetically predicted IGP7 levels was associated with a decreased risk of

developing AP. For CP, our data suggested a protective effect associated with

higher levels of both IGP7 and IGP31, contrasting with increased levels of

IGP27 and IGP65, which were linked to a heightened risk. Moreover, in the

case of AAP, elevated IGP31 levels were causatively associated with a lower

incidence, while higher IGP26 levels correlated with an increased risk

for ACP.

Conclusion: This study establishes causal relationship between specific IgG

N-glycosylation patterns and varying risks of different pancreatitis forms,
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underscoring their potential as predictive biomarkers. These findings

necessitate further exploration into the underlying mechanisms, promising to

inform more personalized diagnostic and therapeutic strategies in

pancreatitis management.
KEYWORDS
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1 Introduction

Acute pancreatitis, a prevalent inflammatory disorder

originating in the pancreas, triggers a systemic inflammatory

response and presents varied clinical outcomes (1, 2). While the

majority of cases are mild, approximately 20% progress to severe,

developing complications (3, 4), and 8% evolve into chronic

pancreatitis, thereby increasing the risk of metabolic disorders

and pancreatic cancer (5).

The balance between pro-inflammatory and anti-inflammatory

responses significantly influences the progression and outcomes of

acute pancreatitis (6). A well-regulated inflammatory response is

essential for restoring homeostasis. However, persistent,

uncontrolled inflammation can exacerbate acute pancreatitis and

potentially lead to chronic pancreatitis (7). Research has long been

focused on the role of innate immune responses in acute

pancreatitis (8, 9), but increasing findings highlight the equally

critical role of adaptive immune cells, including T and B

lymphocytes, in modulating the immune response and

exacerbating the condition (9–13). Early overactivity of these cells

can precipitate severe complications in acute pancreatitis, such as

multiple organ dysfunction syndrome (14). Regulatory T and B

lymphocytes, vital for controlling inflammation and promoting

immune tolerance, show a marked decrease in severe acute

pancreatitis compared to milder forms (15), suggesting their

involvement in the disease’s progression and potential transition

to chronic pancreatitis. A noteworthy aspect of severe acute

pancreatitis is the persistent reduction in B cell counts, indicating

a prolonged immune disruption (12). This observation aligns with

the research indicating that the crucial roles of B lymphocytes in the

development and progression of both acute and chronic

pancreatitis (13, 16–18).The differences in B lymphocyte counts

have been observed between mild and severe cases of acute

pancreatitis, with an increase in B lymphocyte counts being

associated with a higher risk of organ failure associated with

pancreatitis (19). Additionally, significant alterations in the

production of immunoglobulins, crucial molecules synthesized by

B lymphocytes, have been noted in pancreatitis patients compared

to healthy individuals. Specifically, levels of serum Immunoglobulin

M and Immunoglobulin G (IgG) are significantly decreased in
02
pancreatitis patients with infectious complications, with reduced

IgG levels being particularly evident in fatal cases (9). This

highlights the crucial immunomodulatory role of IgG during the

development of pancreatitis.

The immunomodulatory role of IgG is further influenced by the

N-glycosylation at the conserved asparagine 297 within its fragment

crystallizable (Fc) region, acting as a critical immunoregulatory

switch (20). The process of adding N-glycans to the Fc region of

antibodies significantly influences their interaction with the

immune system, affecting how they activate various immune

responses. For example, removing fucose, a process known as

afucosylation, enhances the antibody’s ability to bind to the

FcgRIIIa receptor, thereby increasing its capacity for antibody-

dependent cellular cytotoxicity (ADCC), a critical mechanism for

targeting and destroying harmful cells. Additionally, introducing a

bisecting N-acetylglucosamine (GlcNAc), or bisection, is thought to

potentially amplify ADCC activity (21–24), despite ongoing

discussions about its precise impact on the Fc region’s role in

diseases and inflammation (25). On the other hand, the presence or

absence of galactose (galactosylation) is crucial, as its lack is

associated with triggering autoimmunity and inflammation.

Conversely, adding sialic acid (sialylation) tends to have an anti-

inflammatory effect and extends the lifespan of antibodies in the

bloodstream, aiding in a more regulated immune response (26).

Changes in these glycan structures, such as increased levels of

antibodies lacking galactose (agalactosylated) or sialic acid

(asialylated), often correlate with more severe disease states,

particularly in autoimmune diseases where decreased

galactosylation and sialylation are linked to exacerbated

conditions (27, 28). Notably, distinct IgG-glycosylation profiling

has been identified in patients with autoimmune pancreatitis and

pancreatic cancer (29). Furthermore, alterations in the N-

glycosylation profiles of plasma proteins, including IgG and other

antibodies, have been documented during conditions such as sepsis

and acute pancreatitis (6). These findings indicate the existence of

distinct IgG-glycosylation profiles across various types of

pancreatitis. However, comprehensive data on IgG-glycosylation

traits across different forms of pancreatitis are scarce, and the

specific roles and causal relationships between IgG-glycosylation

traits and various forms of pancreatitis, including acute pancreatitis
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(AP), chronic pancreatitis (CP), alcohol acute pancreatitis (AAP),

and alcohol chronic pancreatitis (ACP), remain to be elucidated.

To bridge this knowledge gap, we have employed Mendelian

Randomization (MR) analysis, using genetic variants as

instrumental variables (IVs), to explore potential causal

relationships between IgG-glycosylation traits and various forms

of pancreatitis in a comprehensive population. Furthermore, this

study is designed to identify unique IgG N-glycosylation profiles

across pancreatitis categories, thereby shedding light on the

complex interplay between IgG glycosylation and the

pathogenesis of pancreatitis.
2 Method and material

2.1 Ethics statement

In this study, we utilized publicly available summary statistics

for both either IgG N-glycosylation and pancreatitis, without

involving any original data collection. The consortia that

provided these statistics had previously obtained ethical approval

and informed consent from all participants, as documented in their

respective publications (30, 31).
2.2 Data sources for IgG N-glycosylation

We sourced the summary-level GWAS data for IgG N-

glycosylation traits from a comprehensive meta-analysis involving

8090 individuals of European ancestry. This dataset covered 77 IgG

N-glycosylation traits (IGP1-77), including 23 directly measured N-

glycosylation traits (IGP1-23) and 54 derived N-glycosylation traits

(IGP24-77), as detailed in Supplementary Table S1. The 23 directly

measured traits were quantified using ultraperformance liquid

chromatography (UPLC), each corresponding to a UPLC peak

indicative of a major biantennary complex N-glycan structure.

These complex structures were characterized by specific features,

including core-fucose, bisecting N-acetylglucosamine (GlcNAc),

terminal galactose, and terminal sialic acids present on the

antennae. The 54 derived traits calculated from these direct

measurements represent relative abundances or proportions of

specific glycan groups, categorized defined by structural similarities.
2.3 Data source for AAP, ACP, AP, and CP

For summary statistics for AP, we utilized data from a GWAS

meta-analysis by Bourgault, et al, which incorporated data from the

UK Biobank, the Estonian Biobank, and FinnGen (30). This

analysis involved 10,630 AP cases and 844,679 controls,

examining 9,570,209 SNPs with a minor allele frequency of ≥0.01

across participants of European ancestry. For AAP, ACP, and CP,
Frontiers in Immunology 03
summary statistics were derived from R9 release of the FinnGen

consortium (https://storage.googleapis.com/finngen-public-data-

r9/summary_stats), comprising 931 AAP cases with 376,346

controls, 1,794 ACP cases with 375,483 controls, and 3,320 CP

cases with 330,903 controls.
2.4 Selection of IVs for IgG
N-glycosylation traits

SNPs associated with IgG N-glycosylation traits that achieved

genome-wide significance (p < 5E-8) were selected as potential IVs,

based on summary statistics for IgG N-glycosylation as previously

described. To ensure the analysis was based on representative genetic

signals, any SNPs found in close linkage disequilibrium (LD, r2 < 0.001

within a 10 Mb range) were removed. The R2 and F statistics for each

potential IV were calculated using the established formulas: R2 = 2 ×

EAF × (1−EAF) × b2 and F statistic = R2 × (N−2)/(1−R2). Any SNP

with an F statistic below 10 was excluded to minimize the risk of weak

instrument bias. To further refine the IVs, PhenoScanner V2 (http://

www.phenoscanner.medschl.cam.ac.uk/), an online tool, was used to

filter out SNPs associated with pancreatitis. Additionally, IgG

N-glycosylation traits represented by fewer than 2 SNPs after the

aforementioned filtering were discarded. This thorough process of

selection and filtration led us to identify and focus on 63 IgG

N-glycosylation traits for this analysis.
2.5 MR analysis

We estimated the causal associations of IgG N-glycosylation

traits with AP, CP, AAP, and ACP using three two-sample MR

methods: random-effects inverse-variance-weighted (IVW), MR-

Egger, and weighted median. The IVW method was primarily

employed to derive the outcomes. To assess the robustness of

these outcomes, we also applied the MR-Egger and weighted

median methods. We presented the effect estimates as odds ratios

(ORs) with 95% confidence intervals (CIs), reflecting the impact on

pancreatitis outcomes per genetically predicted increase in IgG N-

glycosylation levels. Considering the multiple tests conducted, we

adjusted the significance level thresholds using the Benjamini-

Hochberg method, defining significance as an FDR of less than 5%.
2.6 The MR sensitivity analysis

We performed Cochran’s Q statistic and leave-one-out analysis

to evaluate the heterogeneity across each SNP. Additionally, the MR-

Egger intercept test and the MR-PRESSO global test were conducted

to detect any presence of horizontal pleiotropy. All these analyses

were executed using TwoSampleMR (version 0.5.6) andMR-PRESSO

(version 1.0) packages in R software (version 4.2.0).
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3 Result

3.1 The selection of IgG N-glycosylation
genetic instruments

To investigate the causal effect of IgG N-glycosylation traits on

pancreatitis, we selected genetic variants significantly associated

with these traits as IVs (Supplementary Table S2). This selection

was based on the most comprehensive GWAS meta-analysis

available, encompassing data from 8,090 European individuals.

Our analysis included 304 independent SNPs representing 63 IgG

N-glycosylation traits. Notably, these SNPs were not associated with

the pancreatitis (Supplementary Tables S4–S7). Among these traits,

the number of IVs for each IgG N-glycosylation trait ranged up to

eight, with a median number of six IVs across the 63 traits

(Supplementary Table S2). The F-statistics for the chosen SNPs,

which ranged from 33 to 1480, indicated robust effects, avoiding

weak instrument bias (Supplementary Table S3).
3.2 Estimated causal association of IgG
N-glycosylation traits with AP

After multiple testing corrections, a strong causal relationship was

observed between the genetically predicted IgG N-glycosylation trait

IGP7 and AP, with increased IGP7 correlating with reduced risk of AP

(OR = 0.906, 95% CI = 0.887-0.925, FDR = 5.13E-18) (Figure 1A;

Supplementary Table S8). This result was consistent across MR Egger

and weighted median models (Supplementary Table S9). The

remaining 62 IgG N-glycosylation traits showed no causal

association with AP (Supplementary Table S8). Further sensitivity

analyses indicated no SNP heterogeneity per Cochran’s Q test and

leave-one-out analysis (Supplementary Tables S10, S11). The
Frontiers in Immunology 04
horizontal pleiotropy was ruled out as per MR-Egger and MR-

PRESSO analysis. (Supplementary Tables S12, S13).
3.3 Estimated causal association of IgG
N-glycosylation traits with CP

Genetically predicted IgG N-glycosylation traits IGP7 (OR =

0.908, 95% CI = 0.878-0.939, FDR = 1.80E-6) and IGP31 (OR =

0.820, 95% CI = 0.760-0.885, FDR = 2.40E-5) were causally

correlated with a decreased CP risk (Figure 1B; Supplementary

Table S8). Conversely, IGP27 (OR = 1.399, 95% CI = 1.203-1.627,

FDR = 7.69E-4) and IGP65 (OR = 1.158, 95% CI = 1.064-1.259,

FDR = 0.024) were associated with an increased CP risk (Figure 1B;

Supplementary Table S8). These findings were consistent in MR

Egger and weighted median models (Supplementary Table S9).

However, no causal links were found between IGP31 and either AP

or ACP, and neither for IGP27 or IGP65 with AP, AAP, or ACP

(Supplementary Table S8). Cochran’s Q test results indicated no

SNP heterogeneity, though minor heterogeneity was noted for

IGP27 (P = 0.047) and IGP31 (P = 0.034) in leave-one-out

analysis (Supplementary Tables S14, S15). Meanwhile, these

associations persisted in MR-PRESSO corrected results. No

evidence of horizontal pleiotropy was found using MR-Egger

intercepts and MR-PRESSO methods (Supplementary Tables

S16, S17).
3.4 Estimated causal association of IgG
N-glycosylation traits with AAP

The genetically predicted IgG N-glycosylation trait IGP31 was

causally associated with a reduced AAP risk (OR = 0.768, 95% CI =
B

C D

A

FIGURE 1

MR estimates for the association of IgG N-glycosylation traits with different pancreatitis types. (A) The casual effect of IgG N-glycosylation traits on
(A) AP, (B) CP, (C) AAP, and (D) ACP. The OR was estimated using the random-effects inverse variance weighted method. MR, Mendelian
Randomization; SNPs, single-nucleotide polymorphisms; OR, odds ratio.
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0.681-0.865, FDR = 7.69E-4) (Figure 1C; Supplementary Table S8).

These results were consistent with MR Egger and weighted median

models (Supplementary Table S9). However, no causal associations

were observed for IGP31 with ACP or AP (Supplementary Table

S8). Furthermore, we detected no heterogeneity among the SNPs

(Supplementary Table S18), and the leave-one-out analysis

(Supplementary Table S19) confirmed this consistency, revealing

that no single SNP influenced the overall results. Additionally,

neither the MR-Egger nor the MR-PRESSO methods showed

signs of horizontal pleiotropy (Supplementary Tables S20, S21).
3.5 Estimated causal association of IgG
N-glycosylation traits with ACP

The genetic prediction of IgG N-glycosylation trait IGP26 (OR =

1.179, 95% CI = 1.078-1.290, FDR = 0.014) was found to be causally

associated with an increased risk of ACP (Figure 1D; Supplementary

Table S8). This association was validated by analysis using MR Egger

and weighted median models (Supplementary Table S9). However,

there were no observed causal relationships between IGP26 and

either AP or CP (Supplementary Table S8). Further, our sensitivity

analysis, including Cochran’s Q test (Supplementary Table S22) and

leave-one-out analysis (Supplementary Table S23), did not reveal any

significant heterogeneity among the SNPs. Also, we found no

evidence of horizontal pleiotropy for IgG N-glycosylation traits

when using MR-Egger and MR-PRESSO methods (Supplementary

Tables S24, S25).
4 Discussion

Uncovering the causal effects of genetically predicted IgG

N-glycosylation traits on pancreatitis is crucial for advancing our

understanding of their role in this condition. This study is the first

to explore the causal associations of these traits with both acute and

chronic pancreatitis, including AP, CP, AAP, and ACP, in

European populations. Our findings reveal that an increase in

genetically predicted IGP7, which directly measures IgG N-

glycosylation trait, appears to protective against AP. This aligns

with previous study identifying a similar correlation in scenarios of

acute inflammation, such as early phase of sepsis and AP (6).

However, our study delves deeper into the potential causal

relationship between IGP7 and AP, extending the protective effect

with CP. Considering that approximately 8% of acute pancreatitis

cases may progress to CP (3, 32), the observed protective effect of

IGP7 across both pancreatitis types underscores its significant role

not only in the initial phase of inflammation but also in the

transition from acute to chronic inflammation. This protective

role of IGP7 extends beyond the early stages of the disease and

potentially influenced the progression trajectory. However, the

specific mechanisms underlying this protective effect require

further elucidation through experimental studies. Additionally, a

protective effect against CP was observed from IGP31, a trait
Frontiers in Immunology 05
indicative of the proportion of monosialylated, fucosylated, and

digalactosylated structures with bisecting GlcNAc within total IgG

glycans. This trait, reflecting overall IgG glycans, showed a

protective effect similar to that of IGP7, underscoring the

potential importance of specific IgG N-glycosylation structures in

inflammation modulation.

Furthermore, we discovered significant associations between

the IgG N-glycosylation traits IGP27 and IGP65 and an increased

risk of CP, a finding not observed for AP. This presents a novel area

of investigation, as current literature does not directly link these

glycosylation traits with CP. The absence of direct evidence compels

us to delve into the potential mechanisms through analyzing the

characteristics of similarities and differences between IGP27 and

IGP65. IGP27 is noted for its sialylation of all fucosylated structures

including bisecting GlcNAc, while IGP65 is defined on the

fucosylation of digalactosylated structures, specifically excluding

bisecting GlcNAc. Their different structures suggest that

fucosylation patterns in IgG N-glycans may significantly influence

CP risk, rather than whether bisecting GlcNAc is present or not.

Although the role of bisecting GlcNAc in CP is still unclear, its

contrasting relevance in other chronic inflammation diseases has

been documented. For instance, bisecting GlcNAc was upregulated

in systemic lupus erythematosus (33), contrasting with rheumatoid

arthritis (34), where bisecting GlcNAc appeared to exert minimal or

no effect, and a downregulation was noted in granulomatosis with

polyangiitis patients (35). These variations highlight the complex

role of bisecting GlcNAc across different inflammation conditions.

In contrast, our findings that fucosylation patterns, as shared by

IGP27 and IGP65, were significantly associated with an increased

risk of CP, suggesting an important role for these glycosylation

traits in the pathogenesis of CP. This is supported by research in

autoimmune pancreatitis, where significantly increased IgG1

fucosylation were observed, highlighting the unique impact of

fucosylated structures in pancreatitis (29). Furthermore, a study

on COVID-19 patients revealed an association with increased total

IgG fucosylation with severity of COVID-19 (36). However, the

presence of fucosylated IgG N-glycans is typically linked to reduced

inflammation, attributed to a diminished capacity to mediate

antibody-dependent cellular cytotoxicity (ADCC) (37–39). These

variations in IgG N-glycan fucosylation may be influenced by the

type and progression of the disease. Alternatively, these differences

in IgG N-glycan fucosylation may be associated with different

molecular mechanisms involved in the immune response. While

fucosylated IgG N-glycans are known to contribute to anti-

inflammatory processes and inflammation resolution, an

imbalance in fucosylation could disrupt these processes. Such an

imbalance may lead to prolonged or exacerbated inflammation, a

characteristic feature of CP. Similarly, increased IgG N-glycan

fucosylation might affect the formation and clearance of immune

complexes (40). Alterations in glycosylation patterns can influence

the solubility and clearance rates of these complexes, potentially

leading to their accumulation and deposition (41). This process can

promote inflammation in various tissues, including the pancreas

(42). This complex interplay between IgG N-glycan fucosylation
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patterns and immune responses underscores the need for further

investigation into how these mechanisms contribute to the

pathogenesis and progression of CP.

Given the reported incidence of acute alcoholic pancreatitis as a

leading cause in the European population (43), we further evaluated

the correlation between IgG N-glycosylation traits and AAP or

ACP. Intriguingly, akin to CP, IGP31 showed a negative causal

association with AAP, but not with ACP. This parallel influence of

IGP31 in both CP and AAP could be interpreted as an indication

that acute alcoholic pancreatitis was frequently correlated with

prolonged alcohol misuse. Even in the absence of overt

pancreatitis symptoms, pancreatic tissue may undergo chronic

microscopic inflammation and structural changes due to alcohol’s

direct toxicity, impacting pancreatic acinar and stellate cells,

altering pancreatic secretions, and affecting blood flow (44).

Consequently, the pancreas of long-term alcohol consumers

might already be in a compromised state, and thus prone to acute

inflammation. Nevertheless, the predicted increase IgG N-

glycosylation, including IGP31, did not exhibit a protective effect

against ACP. In contrast, predicted increased IgG N-glycosylation

IGP26, which measured the percentage of sialylation of all

fucosylated structures without bisecting GlcNAc in total IgG

glycans, was specifically associated with a highly risk of ACP.

Although no studies have reported evidence of differences in IgG

N-glycosylation traits between CP and ACP, recent studies have

shown differences in the innate and adaptive immune responses

among pancreatitis subtypes (45). Taken together with our results,

this suggests that differences in immunopathogenic mechanisms of

different subtypes of chronic pancreatitis.

Pro- and anti-inflammatory properties of IgG, which are pivotal

in the pathology of various pancreatitis subtypes, were intricately

influenced by N-glycosylation modifications of such as galactose,

fucose, sialic acid, and bisecting GlcNAc (21, 25, 46). Concurrently,

our current insights revealed that while different pancreatitis

subtypes share certain IgG N-glycosylation patterns, they also

present unique characteristics. These commonalities in IgG N-

glycosylation may reflect a delicate equilibrium between the pro-

and anti-inflammatory properties of IgG. Additionally, they could

be tied to the homeostasis maintained by pancreatic exocrine cells

and the surrounding microenvironment. This nuanced

understanding underscored the complexity of inflammatory

regulation during the occurrence and outcome of pancreatitis and

highlighted the need for a more granular approach to its study,

particularly in the context of immune responses and cellular

environment interactions.

However, it’s crucial to note several limitations within our

study. First, despite our analysis to assess the causal relationship

between IgG N-glycosylation traits and various forms of

pancreatitis, participants of our study only included European

ancestry. This fact potentially narrows the generalizability of our

findings to individuals from diverse ethnic backgrounds, such as

those of Asian and African ancestry. Second, the absence of

granular individual-level data from GWAS and clinical data on

pancreatitis constrains our ability to conduct an in-depth analysis of
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the association between IgG N-glycosylation profiles and various

aspects of pancreatitis. This includes its severity, etiology (such as

gallstone-related or autoimmunity-related), and other clinical

features, that cannot be further performed. Third, a significant

limitation of our study is the small number of cases involving acute

alcoholic pancreatitis and chronic pancreatitis. Studies with larger

sample sizes are necessary for further validation. Fourth, the

discussion on the negative impacts of IgG glycosylation traits on

AAP and ACP is limited due to the lack of relevant research, small

sample sizes of these subtypes, and the inherent variability in IgG

N-glycosylation patterns. Lastly, to solidify the causal effects of IgG

N-glycosylation traits in pancreatitis, and to explore the intricate

mechanisms involved, additional in vitro and in vivo studies

are imperative.
5 Conclusions

Overall, the current study establishes causal associations

between specific IgG N-glycosylation patterns and varying risks of

different pancreatitis forms, underscoring their potential as

predictive biomarkers. These findings necessitate further

exploration into the underlying mechanisms, promising to inform

more personalized diagnostic and therapeutic strategies in

pancreatitis management.
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